首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
Mitral regurgitation (MR) is associated with increased neuronal release of norepinephrine (NE) and epinephrine (EP) into myocardial interstitial fluid (ISF) that may be necessary in sustaining left ventricular (LV) function via activation of cardiomyocyte beta-adrenergic receptors (ARs). However, activation of neuronal beta-ARs on cardiac neurons may lead to further catecholamine release, with an attendant risk of functional deterioration. We hypothesize that a beneficial effect of beta-AR blockade may therefore mitigate excessive catecholamine release from cardiac adrenergic neurons in dogs with MR. We measured the effects of chronic beta-receptor blockade (beta-RB) on ISF NE and EP release using in vivo microdialysis in open-chest anesthetized dogs after 4 wk of MR with or without extended release of metoprolol succinate (100 mg/day) as well as in control dogs. Fractional shortening increased by 30% in both MR and MR + beta-RB dogs after 4 wk of MR. In MR + beta-RB dogs, stellate-stimulated heart rate change was attenuated compared with control and MR dogs, whereas peak change of LV pressure over time (+dP/dt) increased equally in all groups. Stellate-stimulated ISF NE increased fivefold over baseline in MR versus twofold in control dogs (< 0.05), but the NE release was significantly attenuated in MR + beta-RB dogs. In contrast, stellate-stimulated increases in ISF EP did not differ in control, MR, and MR + beta-RB dogs. This study demonstrates that beta-RB attenuates ISF NE release from cardiac neurons and that the LV functional response to MR is not dependent on an excess increase in ISF NE. Thus beta1-RB may exert a beneficial effect by attenuating untoward effects of excessive sympathetic efferent neural NE release while sustaining early LV functional adaptation to MR.  相似文献   

2.
The objective of the present study was to test the hypothesis that endogenous beta(3)-adrenoreceptor (AR) activation contributes to left ventricular (LV) and cardiomyocyte dysfunction in heart failure (CHF). Stimulation of the beta(3)-AR inhibits cardiac contraction. In the failing myocardium, beta(3)-ARs are upregulated, suggesting that stimulation of beta(3)-ARs may contribute to depressed cardiac performance in CHF. We assessed the functional significance of endogenous beta(3)-AR activation in 10 conscious dogs before and after pacing-induced CHF. Under normal conditions, L-748,337, a specific beta(3)-AR antagonist, produced a mild increase in LV contractile performance assessed by the slope (E(es)) of the LV pressure-volume relation (18%, 6.2 +/- 0.9 vs. 7.3 +/- 1.2 mmHg/ml, P < 0.05) and the improved LV relaxation time constant (tau; 28.4 +/- 1.9 vs. 26.8 +/- 1.0 ms, P < 0.05). After CHF, the plasma norepinephrine concentration increased eightfold, and L-748,337 produced a larger increase in E(es) (34%, 3.8 +/- 0.7 vs. 5.1 +/- 0.8 mmHg/ml, P < 0.05) and a greater decrease in tau (46.4 +/- 4.2 vs. 41.0 +/- 3.9 ms, P < 0.05). Similar responses were observed in isolated myocytes harvested from LV biopsies before and after CHF. In the normal myocyte, L-748,337 did not cause significant changes in contraction or relengthening. In contrast, in CHF myocytes, L-748,337 produced significant increases in contraction (5.8 +/- 0.9 vs. 6.8 +/- 0.9%, P < 0.05) and relengthening (33.5 +/- 4.2 vs. 39.7 +/- 4.0 microm/s, P < 0.05). The L-748,337-induced myocyte response was associated with improved intracellular Ca(2+) concentration regulation. In CHF myocytes, nadolol caused a decrease in contraction and relengthening, and adding isoproterenol to nadolol caused a further depression of myocyte function. Stimulation of beta(3)-AR by endogenous catecholamine contributes to the depression of LV contraction and relaxation in CHF.  相似文献   

3.
Previously we reported that the beneficial effects of beta-adrenergic blockade in chronic mitral regurgitation (MR) were in part due to induction of bradycardia, which obviously affects myocardial energy requirements. From this observation we hypothesized that part of the pathophysiology of MR may involve faulty energy substrate utilization, which in turn might lead to potentially harmful lipid accumulation as observed in other models of heart failure. To explore this hypothesis, we measured triglyceride accumulation in the myocardia of dogs with chronic MR and then attempted to enhance myocardial metabolism by chronic administration of the peroxisome proliferator-activated receptor (PPAR)-gamma agonist rosiglitazone. Cardiac tissues were obtained from three groups of dogs that included control animals, dogs with MR for 3 mo without treatment, and dogs with MR for 6 mo that were treated with rosiglitazone (8 mg/day) for the last 3 mo of observation. Hemodynamics and contractile function (end-systolic stress-strain relationship, as measured by K index) were assessed at baseline, 3 mo of MR, and 6 mo of MR (3 mo of the treatment). Lipid accumulation in MR (as indicated by oil red O staining score and TLC analysis) was marked and showed an inverse correlation with the left ventricular (LV) contractility. LV contractility was significantly restored after PPAR therapy (K index: therapy, 3.01 +/- 0.11*; 3 mo MR, 2.12 +/- 0.34; baseline, 4.01 +/- 0.29; ANOVA, P = 0.038; *P < 0.05 vs. 3 mo of MR). At the same time, therapy resulted in a marked reduction of intramyocyte lipid. We conclude that 1) chronic MR leads to intramyocyte myocardial lipid accumulation and contractile dysfunction, and 2) administration of the PPAR-gamma agonist rosiglitazone ameliorates MR-induced LV dysfunction accompanied by a decline in lipid content.  相似文献   

4.
In hearts with chronic left ventricular (LV) systolic dysfunction secondary to hypertension or myocardial infarction, MAPK phosphorylation and/or activity are increased. Whether other settings of LV dysfunction not associated with ischemia-reperfusion are also characterized by increased MAPK phosphorylation or activity is unknown. After 3 wk of rapid LV pacing (400 beats/min), eight rabbits displayed clinical signs of heart failure (HF), and echocardiography revealed an increase in LV end-diastolic diameter from 15.6 +/- 0.7 (means +/- SE) to 18.8 +/- 0.7 mm and a reduced shortening fraction from 31 +/- 1to10 +/- 2% (both P < 0.05). Morphological alterations in HF included increased numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cardiomyocytes, extent of fibrosis, and cross-sectional cardiomyocyte area. Total p38 MAPK did not differ between failing and normal hearts (n = 8). However, p38 MAPK phosphorylation [164,488 +/- 29,323 vs. 43,565 +/- 14,817 arbitrary units (AU), P < 0.05, densitometry] and the activities of p38 MAPK-alpha and -beta were increased in failing compared with normal hearts (149,441 +/- 38,381 and 170,430 +/- 32,952 vs. 68,815 +/- 28,984 and 81,788 +/- 22,774 AU, respectively, both P < 0.05). In failing compared with normal hearts, total and phosphorylated JNK46 and JNK54 MAPK were increased, whereas total and phosphorylated ERK MAPK remained unchanged. In pacing-induced HF, p38 and JNK MAPK phosphorylation as well as p38 MAPK activity was increased. Further studies will have to define whether or not chronic specific blockade of MAPK activity can interfere with apoptosis/fibrosis and thereby attenuate the progression of HF.  相似文献   

5.
The response to beta-adrenergic receptor (beta-AR) stimulation was evaluated in both isolated cardiomyocytes (video edge detection) and the intact animal (echocardiography) in dogs either susceptible (S) or resistant (R) to ventricular fibrillation induced by a 2-min coronary occlusion during the last minute of exercise. In the intact animal, velocity of circumferential fiber shortening (Vcf) was evaluated both before (n = 27, S = 12 and R = 15) and after myocardial infarction. Before infarction, increasing doses of isoproterenol provoked similar contractile and heart rate responses in each group of dogs. Either beta(1)-AR (bisoprolol) or beta(2)-AR (ICI-118551) antagonists reduced the isoproterenol response, with a larger reduction noted after the beta(1)-AR blockade. In contrast, after infarction, isoproterenol induced a significantly larger Vcf and heart rate response in the susceptible animals that was eliminated by beta(2)-AR blockade. The single-cell isotonic shortening response to isoproterenol (100 nM) was also larger in cells obtained from susceptible compared with resistant dogs and was reduced to a greater extent by beta(2)-AR blockade in the susceptible dog myocytes (S, -48%, n = 6; R, -15%, n = 9). When considered together, these data suggest that myocardial infarction provoked an enhanced beta(2)-AR response in susceptible, but not resistant, animals.  相似文献   

6.
To corroborate alterations in the functional responses to beta-adrenergic receptor (beta-AR) stimulation with changes in beta-AR signaling in failing cardiomyocytes, contractile and L-type Ca(2+) current responses to isoproterenol along with stimulated cAMP generation were compared among cardiomyocytes isolated from canines with tachycardia-induced heart failure or healthy hearts. The magnitude of shortening of failing cardiomyocytes was significantly depressed (by 22 +/- 4.4%) under basal conditions, and the maximal response to isoproterenol was significantly reduced (by 45 +/- 18%). Similar results were obtained when the responses in the rate of contraction and rate of relaxation to isoproterenol were considered. The L-type Ca(2+) current amplitude measured in failing cardiomyocytes under basal conditions was unchanged, but the responses to isoproterenol were significantly reduced compared with healthy cells. Isoproterenol-stimulated cAMP generation was similar in sarcolemmal membranes derived from the homogenates of failing (45 +/- 6.8) and healthy cardiomyocytes (52 +/- 8.5 pmol cAMP. mg protein(-1). min(-1)). However, stimulated cAMP generation was found to be significantly reduced when the membranes were derived from the homogenates of whole tissue (failing: 67 +/- 8.1 vs. healthy: 140 +/- 27.8 pmol cAMP. mg protein(-1). min(-1)). Total beta-AR density was not reduced in membranes derived from either whole tissue or isolated cardiomyocyte homogenates, but the beta(1)/beta(2) ratio was significantly reduced in the former (failing: 45/55 vs. healthy: 72/28) without being altered in the latter (failing: 72/28, healthy: 77/23). We thus conclude that, in tachycardia-induced heart failure, reduction in the functional responses of isolated cardiomyocytes to beta-AR stimulation may be attributed to alterations in the excitation-contraction machinery rather than to limitation of cAMP generation.  相似文献   

7.
The role of the Frank-Starling mechanism in the regulation of cardiac systolic function in the ischemic failing heart was examined in conscious dogs. Left ventricular (LV) dimension, pressure and systolic function were assessed using surgically implanted instrumentations and non-invasive echocardiogram. Heart failure was induced by daily intra-coronary injections of microspheres for 3-4 weeks via implanted coronary catheters. Chronic coronary embolization resulted in a progressive dilation of the left ventricle (12+/-3%), increase in LV end-diastolic pressure (118+/-19%), depression of LV dP/dt(max) (-19+/-4%), fractional shortening (-36+/-7%), and cardiac work (-60+/-9%), and development of heart failure, while the LV contractile response to dobutamine was depressed. A brief inferior vena caval occlusion in dogs with heart failure decreased LV preload to match the levels attained in their control state and caused a further reduction of LV dP/dt(max), fractional shortening, stroke work and cardiac work. Moreover, in response to acute volume loading, the change in the LV end-diastolic dimension-pressure (DeltaLVEDD-DeltaLVEDP) curve in the failing heart became steeper and shifted significantly to the left, while the increases in LV stroke work and cardiac work were blunted. Thus, our results suggest that the Frank-Starling mechanism is exhausted in heart failure and unable to further respond to increasing volume while it plays an important compensatory role in adaptation to LV dysfunction in heart failure.  相似文献   

8.
Several clinical trials have demonstrated that angiotensin-converting enzyme inhibitor (ACEI) and angiotensin II type 1 receptor blocker (ARB) are equally effective in the treatment of chronic heart failure. However, this has not been confirmed for acute cardiac dysfunction. We examined whether ACEI or ARB prevents isoproterenol-induced acute left ventricular (LV) dysfunction in dogs. LV dysfunction induced by a large dose of isoproterenol (1 microg.kg(-1).min(-1), 3-h infusion) was compared in dogs treated with ACEI (temocaprilat) or ARB (olmesartan). Atrial pacing induced a constant heart rate and use of adjustable aortic banding provided a nearly constant afterload. LV systolic function (LV dP/dt, fractional shortening, and ejection fraction) and diastolic function (tau and LV end-diastolic pressure) were significantly deteriorated after isoproterenol infusion. The LV dysfunction was almost totally prevented by ARB but was only partially prevented by ACEI. The partial effect of ACEI was complemented by cotreatment with HOE-140, a bradykinin B2 receptor antagonist. At baseline, the response to low doses of isoproterenol was significantly attenuated by ACEI but not by ARB, and the ACEI-induced attenuation was totally abolished by cotreatment with HOE-140. The response to isoproterenol was significantly attenuated after 3 h of excess isoproterenol loading, and it was almost completely preserved by ARB but not by ACEI. In conclusion, acute LV dysfunction and beta-adrenergic desensitization induced by excess isoproterenol administration were almost totally prevented by ARB but only partially prevented by ACEI. These differences were attributable at least in part to bradykinin pathways activated by ACEI administration in acute LV dysfunction.  相似文献   

9.
Left ventricular (LV) myocardial slices were isolated from murine hearts (300 microm thick) and were stimulated at 1 Hz without external load. Mean myocardial slice O(2) consumption (MVo(2)) per minute (mMVo(2)) without stimulation was 0.97 +/- 0.14 ml O(2).min(-1).100 g LV(-1) and mean mMVo(2) with stimulation increased to 1.80 +/- 0.17 ml O(2).min(-1).100 g LV(-1) in normal Tyrode solution. Mean DeltamVo(2) (the mMVo(2) with stimulation - the mMVo(2) without stimulation) was 0.83 +/- 0.12 ml O(2).min(-1).100 g LV(-1). There were no differences between mean mMVo(2) with and without stimulation in Ca(2+)-free solution. The increases in extracellular Ca(2+) concentrations up to 14.4 mM did not affect the mMVo(2) without stimulation but significantly increased the mMVo(2) with stimulation up to 140% of control. The DeltamMVo(2) significantly increased up to 190% of the control in a dose-dependent manner. In contrast, the shortening did not increase in a dose-dependent manner. Cyclopiazonic acid (CPA; 30 microM) significantly reduced the DeltamMVo(2) to 0.27 +/- 0.06 ml O(2).min(-1).100 g LV(-1) (35% of control). The combination of 5 mM 2,3-butanedione monoxime (BDM) and 30 microM CPA did not further decrease DeltamMVo(2). Although BDM (3-5 mM) decreased the DeltamMVo(2) by 28-30% of control in a dose-independent manner, 3-5 mM BDM decreased shortening in a dose-dependent manner. Our results indicate that the DeltamMVo(2) of mouse LV slices during shortening under mechanically unloaded conditions consists of energy expenditure for total Ca(2+) handling during excitation-contraction coupling, basal metabolism, but no residual cross-bridge cycling.  相似文献   

10.
11.
Adrenomedullin may provide a compensatory mechanism to attenuate left ventricular hypertrophy (LVH). Nitric oxide synthase inhibition, induced by chronic administration of N(omega)-nitro-L-arginine methyl ester (L-NAME) to rats, induces cardiac hypertrophy in some, but not all cases; there are few reports of direct assessment of cardiomyocyte parameters. The objective was to characterize hypertrophic parameters in left (LV) and right ventricular (RV) cardiomyocytes after administration of L-NAME to rats for 8 wk and to determine whether adrenomedullin and its receptor components were upregulated. After treatment with L-NAME (20 and 50 mg x kg(-1) x day(-1)), compared with nontreated animals, 1) systolic blood pressure increased (by 34.2 and 104.9 mmHg), 2) heart weight-to-body wt ratio increased 24.1% at the higher dose (P < 0.05), 3) cardiomyocyte protein mass increased (P = NS), 4) cardiomyocyte protein synthesis ([14C]phenylalanine incorporation) increased (P < 0.05), 5) expression of skeletal alpha-actin, atrial natriuretic peptide, brain natriuretic peptide, and ET-1 mRNAs was enhanced (P < 0.05) in LV but not RV cardiomyocytes at 20 and 50 mg x kg(-1) x day(-1), respectively, and 6) expression of adrenomedullin, receptor activity-modifying protein 3 (RAMP3), and RAMP2 (but not calcitonin receptor-like receptor and RAMP1) mRNAs was increased by L-NAME (20 mg x kg(-1) x day(-1)) in LV. In conclusion, L-NAME enhanced protein synthesis in both LV and RV cardiomyocytes but elicited a hypertrophic phenotype accompanied by altered expression of the counterregulatory peptide adrenomedullin and receptor components (RAMP2, RAMP3) in LV only, indicating that the former is due to impaired nitric oxide synthesis, whereas the phenotypic changes are due to pressure overload.  相似文献   

12.
Stimulation of DDT1 MF-2 vas deferens cells with epinephrine resulted in a time- and dose-dependent loss of alpha 1-adrenergic receptor-specific ligand binding. Regulation of alpha 1-adrenergic receptor mRNA was characterized. In monolayer culture, cells displayed 0.7 +/- 0.05 amol of alpha 1-adrenergic receptor mRNA/microgram of total cellular RNA. Epinephrine, which acts at both alpha 1- and beta 2-adrenergic receptors of DDT1 MF-2 cells, induced a short term (2-8 h) increase (50-70%) in the abundance of alpha 1-adrenergic receptor mRNA. Propranolol, a beta 2-adrenergic receptor antagonist, attenuated the epinephrine-mediated increase in alpha 1-adrenergic receptor mRNA but did not affect the decrease in alpha 1-adrenergic receptor-specific ligand binding. Phentolamine, an alpha 1-adrenergic receptor antagonist, did not attenuate the epinephrine-mediated increase in alpha 1-adrenergic receptor mRNA at 4 h but did block the decrease in alpha 1-adrenergic receptor-specific ligand binding. The half-life of the alpha 1-adrenergic receptor mRNA was approximately 7 h in untreated cells as well as in cells challenged with epinephrine. The epinephrine-promoted increase in alpha 1-adrenergic receptor mRNA was found to result from cross-regulation via beta 2-adrenergic receptors. Cholera toxin, forskolin, as well as the cyclic AMP analog CPT cAMP (8-(4-chlorophenylthio)adenosine 3':5'-cyclic monophosphate) increased the alpha 1-adrenergic receptor mRNA at 4 h, as did epinephrine in the presence of alpha 1-antagonists but not in the presence of a beta-adrenergic antagonist. This is the first report of heterologous up-regulation of mRNA levels of adrenergic receptors. Cross-regulation between alpha 1- and beta 2-adrenergic receptor-mediated pathways at 4 h occurs at the level of mRNA whereas later down-regulation of alpha 1-receptor mRNA and binding proceed via agonist activation of alpha 1-adrenergic receptors.  相似文献   

13.
ICAM-1 mediates interaction of cardiomyocytes with the extracellular matrix and leukocytes and may play a role in altering contractility. To investigate this possibility, rat ventricular cardiomyocytes were activated using TNF-alpha, IL-1beta, or LPS, washed, cultured with quiescent rat polymorphonuclear leukocytes (PMNs) for 4 h, and electrically stimulated to determine fractional shortening. PMNs cultured with activated cardiomyocytes reduced control fractional shortening of 20.5 +/- 0.7% by -2.8 +/- 0.3% per adherent PMN (P < 0.001). Fixing PMNs with paraformaldehyde or glutaraldehyde did not prevent PMN-mediated decreases in cardiomyocyte fractional shortening. However, PMN adherence and decreased fractional shortening were prevented by anti-ICAM-1 and anti-CD18 antibodies. Reduced fractional shortening was reproduced in the absence of PMNs by ICAM-1 binding using cross-linking antibodies (reduced by 36 +/- 3% from control, P < 0.01). Immunofluorescent staining demonstrated increased cortical cytoskeleton-associated focal adhesion kinase expression after ICAM-1 cross-linking, suggesting involvement of the actin cytoskeleton. Indeed, disruption of F-actin filament assembly using cytochalasin D or latrunculin A did not prevent PMN adherence but prevented decreased fractional shortening. Inhibition of the cytoskeleton-associated Rho-kinase pathway with HA-1077 prevented ICAM-1-mediated decreases in cardiomyocyte contractility, further suggesting a central role of the actin cytoskeleton. Importantly, ICAM-1 cross-linking did not alter the total intracellular Ca2+ transient during cardiomyocyte contraction but greatly increased heterogeneity of intracellular Ca2+ release. Thus we have identified a novel regulatory mechanism of cardiomyocyte contractility involving the actin cytoskeleton as a central regulator of the normally highly coordinated pattern of sarcoplasmic Ca2+ release. Cardiomyocyte ICAM-1 binding, by PMNs or other ligands, induces decreased cardiomyocyte contractility via this pathway.  相似文献   

14.
Enhanced cardiac beta(2)-adrenoceptor (beta(2)-AR) responsiveness can increase susceptibility to ventricular fibrillation (VF). Exercise training can decrease cardiac sympathetic activity and could, thereby, reduce beta(2)-AR responsiveness and decrease the risk for VF. Therefore, dogs with healed myocardial infarctions were subjected to 2 min of coronary occlusion during the last minute of a submaximal exercise test; VF was observed in 20 susceptible, but not in 13 resistant, dogs. The dogs were then subjected to a 10-wk exercise-training program (n = 9 susceptible and 8 resistant) or an equivalent sedentary period (n = 11 susceptible and 5 resistant). Before training, the beta(2)-AR antagonist ICI-118551 (0.2 mg/kg) significantly reduced the peak contractile (by echocardiography) response to isoproterenol more in the susceptible than in the resistant dogs: -45.5 +/- 6.5 vs. -19.2 +/- 6.3%. After training, the susceptible and resistant dogs exhibited similar responses to the beta(2)-AR antagonist: -12.1 +/- 5.7 and -16.2 +/- 6.4%, respectively. In contrast, ICI-118551 provoked even greater reductions in the isoproterenol response in the sedentary susceptible dogs: -62.3 +/- 4.6%. The beta(2)-AR agonist zinterol (1 microM) elicited significantly smaller increases in isotonic shortening in ventricular myocytes from susceptible dogs after training (n = 8, +7.2 +/- 4.8%) than in those from sedentary dogs (n = 7, +42.8 +/- 5.8%), a response similar to that of the resistant dogs: +3.0 +/- 1.4% (n = 6) and +3.2 +/- 1.8% (n = 5) for trained and sedentary, respectively. After training, VF could no longer be induced in the susceptible dogs, whereas four sedentary susceptible dogs died during the 10-wk control period and VF could still be induced in the remaining seven animals. Thus exercise training can restore cardiac beta-AR balance (by reducing beta(2)-AR responsiveness) and could, thereby, prevent VF.  相似文献   

15.
To assess the involvement of beta 1- and beta 2-receptors in the regulation of venous return in humans, changes in left ventricular end-diastolic (LVED) dimension were determined during beta-receptor stimulation either by exogenous catecholamines or by increased endogenous sympathetic activity after hydralazine, after placebo and during nonselective versus beta 1-selective blockade. Taking changes in heart rate and LV emptying into account, the three beta-agonists (isoproterenol, terbutaline, and epinephrine) as well as hydralazine increased venous return as inferred from LVED dimension. After hydralazine, nonselective and beta 1-selective blockade were equally effective in blunting the increases in venous return, in heart rate, and in positive inotropic response. Beta 1-Selective blockade did not affect the increase in heart rate caused by epinephrine and partially inhibited the positive inotropic effect and the increase in venous return. Nonselective blockade not only blocked the increase in venous return owing to epinephrine but actually led to a decrease, as evidenced by a decrease in LVED dimension despite the marked bradycardia and high afterload with this combination. The present findings in healthy humans indicate that stimulation of both beta 1- and beta 2-receptors increases venous return, heart rate, and myocardial contractility. Beta 1-Receptors appear to predominate in the response to neuronal sympathetic activity.  相似文献   

16.
Daily administration of propranolol to 9 chronically instrumented, trained dogs for 2 weeks caused significant (p less than 0.05) decreases in heart rate (70 +/- 8 to 57 +/- 6 beats/min), cardiac output (3.6 +/- 0.3 to 2.9 +/- 0.2 liters/min), pulmonary arterial pressure (15.7 +/- 0.5 to 10.0 +/- 0.5 mm Hg) and total pulmonary vascular resistance (4.6 +/- 0.6 to 3.3 +/- 0.4 units). Nadolol, a structurally dissimilar beta-adrenergic receptor antagonist, caused a similar decrease in total pulmonary resistance. Acute meclofenamate administration did not return to normal pulmonary arterial pressure and resistance in the dogs chronically treated with beta-adrenergic receptor blockers. We therefore conclude that chronic beta-adrenergic receptor blockade lowered pulmonary arterial pressure and resistance by a mechanism independent of cyclooxygenase. In addition, chronic beta-adrenergic receptor blockade did not affect the potential for hypoxic vasoconstriction.  相似文献   

17.
The mechanisms that underlie the development of myocardial dysfunction after resuscitated hemorrhagic shock (HS) are not known. Recent studies suggest that systemic activation of inflammatory mediators may contribute to cellular dysfunction and/or cell death in various organs, including the heart. However, the precise role that inflammatory mediators play in the heart in the setting of resuscitated HS is not known. Accordingly, the purpose of the present study was to use a well-defined murine model of resuscitated HS to characterize the functional significance of inflammatory mediators in the heart in vivo. Mice were subjected to sham operation or resuscitated HS. Left ventricular (LV) function was assessed by two-dimensional echocardiography 6 h after resuscitation. Myocardial TNF, IL-1beta, and IL-6 proteins were measured 1 and 6 h after resuscitation. To determine the role of TNF in HS-induced LV dysfunction, mice were treated with a soluble TNF receptor antagonist (etanercept) before HS or at the time of resuscitation. LV fractional shortening was significantly depressed (P < 0.05) in resuscitated HS mice (28 +/- 1.5%) compared with sham controls (35.8 +/- 1.0%). TNF and IL-1beta levels were significantly increased (P < 0.05) in resuscitated HS mice. Pretreatment with etanercept abrogated resuscitated HS-induced LV dysfunction, whereas treatment at the time of resuscitation significantly attenuated, but did not abrogate, LV dysfunction. Together, these data suggest that TNF plays a critical upstream role in resuscitated HS-induced LV dysfunction; however, once the deleterious consequences of reperfusion injury are initiated, TNF contributes to, but is not necessary for, the development of LV dysfunction.  相似文献   

18.
To investigate whether heart failure alters beta-adrenergic receptors on skeletal muscle and its associated vasculature, the density of beta-adrenergic receptors, isoproterenol-stimulated adenylate cyclase activity, and coupling of the guanine nucleotide-binding regulatory protein were compared in 18 control dogs and 16 dogs with heart failure induced by 5-8 wk of ventricular pacing at 260 beats/min. Hindlimb vascular responses to isoproterenol were compared in eight controls and eight of the dogs with heart failure. In dogs with heart failure, the density of beta-receptors on skeletal muscle was reduced in both gastrocnemius (control: 50 +/- 5; heart failure: 33 +/- 8 fmol/mg of protein) and semitendinosus muscle (control: 43 +/- 9; heart failure: 27 +/- 9 fmol/mg of protein, both P less than 0.05). Receptor coupling to the ternary complex, as determined by isoproterenol competition curves with and without guanosine 5'-triphosphate (GTP), was unchanged. Isoproterenol-stimulated adenylate cyclase activity was significantly decreased in semitendinosus muscle (control: 52.4 +/- 4.6; heart failure: 36.5 +/- 9.5 pmol.mg-1.min-1; P less than 0.05) and tended to be decreased in gastrocnemius muscle (control: 40.1 +/- 8.5; heart failure: 33.5 +/- 4.5 pmol.mg-1.min-1; P = NS). Isoproterenol-induced hindlimb vasodilation was not significantly different in controls and in dogs with heart failure. These findings suggest that heart failure causes downregulation of skeletal muscle beta-adrenergic receptors, probably due to receptor exposure to elevated catecholamine levels, but does not reduce beta-receptor-mediated vasodilation in muscle.  相似文献   

19.
This study tested the hypotheses that (i) lipophilic statins (atorvastatin and simvastatin) impair ventricular recovery from myocardial ischemia-reperfusion, owing to their greater myocyte permeability, compared with a hydrophilic statin (pravastatin), and (ii) statins enhance endothelium-dependent vasodilation of isolated coronary arteries from the ischemic region. Farm pigs consumed chow supplemented with atorvastatin (2.5 mg.kg(-1).d(-1); n=6), pravastatin (10 (n=3) or 20 (n=2) mg.kg(-1).d(-1)), simvastatin (5 mg.kg(-1).d(-1); n=6), or no statin (control; n=6) for 3 weeks. Animals were anesthetized and instrumented to measure regional (% segment shortening) and global (dP/dt max) left ventricular (LV) function during coronary artery occlusion (10 min) and reperfusion (30 min). Coronary resistance (i.d. = 119 +/- 3 microm) and conductance (i.d. = 487 +/- 11 microm) arteries were isolated from the ischemic region to measure receptor-dependent (acetylcholine (ACh)) and -independent (KCl) vasoconstriction, and endothelium-dependent (bradykinin (BK)) and -independent (sodium nitroprusside (SNP)) vasodilation. At 30 min reperfusion, neither percent recovery of regional ventricular function (atorvastatin, 24% +/- 15%; pravastatin, 36% +/- 13%; simvastatin, 29% +/- 13%; control, 36% +/- 13%) nor percent recovery of global LV cardiac function differed among groups. However, BK-induced vasorelaxation of coronary conductance vessels was greater (P<0.05) in statins versus controls, and ACh-induced vasoconstriction was less in simvastatin-treated animals, suggesting the potential for enhanced coronary arterial blood flow to the jeopardized region. In conclusion, our data suggest that ischemia-induced myocardial stunning is similar among pigs treated for 3 weeks with atorvastatin, pravastatin, or simvastatin, even though statin treatment appears to augment endothelium-dependent vasodilation of conductance, but not resistance, vessels subjected to ischemia-reperfusion.  相似文献   

20.
There is no direct evidence to indicate that pump dysfunction in a dilated chamber reflects the impact of chamber dilatation rather than the degree of intrinsic systolic failure resulting from myocardial damage. In the present study, we explored the relative roles of intrinsic myocardial systolic dysfunction and chamber dilatation as mediators of left ventricular (LV) pump dysfunction. Administration of isoproterenol, a beta-adrenoreceptor agonist, for 3 mo to rats (0.1 mg.kg(-1).day(-1)) resulted in LV pump dysfunction as evidenced by a reduced LV endocardial fractional shortening (echocardiography) and a decrease in the slope of the LV systolic pressure-volume relation (isolated heart preparations). Although chronic beta-adrenoreceptor activation induced cardiomyocyte damage (deoxynucleotidyl transferase-mediated dUTP nick-end labeling) as well as beta(1)- and beta(2)-adrenoreceptor inotropic downregulation (attenuated contractile responses to dobutamine and salbutamol), these changes failed to translate into alterations in intrinsic myocardial contractility. Indeed, LV midwall fractional shortening (echocardiography) and the slope of the LV systolic stress-strain relation (isolated heart preparations) were unchanged. A normal intrinsic myocardial systolic function, despite the presence of cardiomyocyte damage and beta-adrenoreceptor inotropic downregulation, was ascribed to marked increases in myocardial norepinephrine release, to upregulation of alpha-adrenoreceptor-mediated contractile effects as determined by phenylephrine responsiveness, and to compensatory LV hypertrophy. LV pump failure was attributed to LV dilatation, as evidenced by increased LV internal dimensions (echocardiography), and a right shift and increased volume intercept of the LV diastolic pressure-volume relation. In conclusion, chronic sympathetic stimulation, despite reducing beta-adrenoreceptor-mediated inotropic responses and promoting myocyte apoptosis, may nevertheless induce pump dysfunction primarily through LV dilatation, rather than intrinsic myocardial systolic failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号