首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fumB gene of Escherichia coli, which complements the fumarase deficiency of a fumA mutant when present in multiple copies, has been located at 93.5 min in the E. coli linkage map and its product has been identified as a polypeptide of 61 kDal. Four overlapping ColE1-fumB+ plasmids representing a continuous segment of 23.3 kb of bacterial DNA have been isolated from the Clarke-Carbon E. coli gene bank and the location of the fumB gene relative to the restriction map and the adjacent mel operon has been defined. Hybridization studies have shown that the fumB gene is homologous to the fumA gene, which complements the fumA1 mutation in single and multi-copy situations, and encodes an analogous 61 kDal product formerly regarded as the E. coli fumarase. The hybridization studies also showed that the Bacillus subtilis fumarase gene (citG) is homologous to an independent gene, fumC (formerly g48), which lies adjacent to the fumA gene at 35.5 min in the E. coli linkage map. The N-terminal sequences of the citG and fumC products exhibit a 51% identity over 88 residues. It is possible that the fumC and citG genes are fumarase structural genes of E. coli and B. subtilis, and that the fumA gene may encode a differentially-regulated fumarase or be a positive regulator gene which is essential for the expression of fumC (but not citG). If so, the fumB gene may encode a related enzyme or activator that can replace the fumA function when amplified.  相似文献   

2.
3.
4.
A fragment of DNA (3.1 kilobases [kb]) from a ColE1 Escherichia coli DNA hybrid plasmid containing the bacterial citrate synthase gene (gltA) was subcloned in both orientations into phage lambda vectors by in vitro recombination. The resulting phages were able to transduce gltA and, as prophages, complemented the lesion of a gltA mutant, showing that a functional gltA gene is contained in the 3.1-kb fragment. The segment of E. coli DNA cloned in these lambda gltA phages was extended in vivo by prophage integration and aberrant excision in the gltA region. Plaque-forming derivatives, carrying up to three additional tricarboxylic acid cycle genes, succinate dehydrogenase (sdh), 2-oxoglutarate dehydrogenase (sucA), and dihydrolipoamide succinyltransferase (sucB), were isolated and characterized by their transducing and complementing activities with corresponding mutants, and the order of the genes was confirmed as gltA-sdh-sucA-sucB. Physical maps of a variety of the transducing phages showed that the four tricarboxylic acid cycle genes are contained in a 12.8-kb segment of bacterial DNA. The four gene products, plus a possible succinate dehydrogenase small subunit, were identified in postinfection labeling studies, and the polarities of gene expression were defined as counterclockwise for gltA and clockwise for sdh, sucA, and sucB, relative to the E. coli linkage map.  相似文献   

5.
6.
Mal+ lacZ operon fusions, inducible by maltose, were isolated in Escherichia coli, strain MC4100. One fusion strain, SF1707, was analyzed in detail. This fusion did not map in any of the known genes of the malA or malB region, but its expression was under control of malT, the positive regulator gene of the maltose regulon. The gene in which the fusion occurred mapped between xyl and mtl at 80 min on the linkage map and was transcribed clockwise. We define this gene as malS. The malS-lacZ fusion was transferred onto a phage lambda vector and the 5' portion of malS was subcloned into pBR322. The resulting plasmid was used as a probe to identify the intact malS gene in a lambda library of E. coli chromosomal HindIII fragments. The phage that hybridized with the probe contained a 12-kilobase insert. The malS containing portion was subcloned into pBR322 as a 4-kilobase ClaI-HindIII fragment. This plasmid directed the malT and maltose-dependent synthesis of a periplasmic protein of 66,000 apparent molecular weight. The purified enzyme hydrolyzed maltodextrins longer than maltose including cyclic dextrins. The primary products of hydrolysis were glucose, maltose, and maltotriose, even when maltotetraose was used as a substrate. These properties differentiate this periplasmic enzyme from the cytoplasmic amylomaltase and define it as an alpha-amylase.  相似文献   

7.
8.
9.
10.
The glpR gene encoding the repressor for the glp regulon of Escherichia coli was cloned from a library of HindIII DNA fragments established in bacteriophage lambda. Phages harboring glpR were isolated by selection for sn-glycerol-3-phosphate dehydrogenase function encoded by glpD, which is adjacent to glpR on the E. coli linkage map. Restriction endonuclease analysis and recloning of DNA fragments localized glpR to a 3-kilobase-pair EcoRI-SalI segment of DNA. Strains exhibiting constitutive expression of the glp operons were strongly repressed after introduction of multicopy plasmids containing the glpR gene. Analysis of proteins labeled in minicells harboring either glpR+ recombinant plasmids or a glpR::Tn5 derivative showed that the glpR gene product is a protein with an apparent molecular weight of 33,000.  相似文献   

11.
The Escherichia coli cca gene which encodes the enzyme tRNA nucleotidyltransferase has been cloned by taking advantage of its proximity to the previously cloned dnaG locus. A series of recombinant bacteriophages, spanning the chromosomal region between the dnaG and cca genes at 66 min on the E. coli linkage map, were isolated from a lambda Charon 28 partial Sau3A E. coli DNA library using recombinant plasmids containing regions between dnaG and cca as probes. Two of the recombinant phage isolates, lambda c1 and lambda c4, contained the cca gene. A BamHI fragment from lambda c1 was subcloned into pBR328, and cells containing this recombinant plasmid, pRH9, expressed tRNA nucleotidyltransferase activity at about 10-fold higher level than the wild type control. The cca gene was further localized to a 1.4-kilobase stretch of DNA by Bal31 deletion analysis. The nucleotide sequence of the cca gene was determined by the dideoxy method, and revealed an open reading frame extending for a total of 412 codons from an initiator GTG codon that would encode a protein of about 47,000 daltons. Southern analysis using genomic blots demonstrated that the cca gene is present as a single copy on the E. coli chromosome and that there is no homology on the DNA level between the E. coli cca gene, and the corresponding gene in the Bacillus subtilis, Saccharomyces cerevisiae, Petunia hybrida, or Homo sapiens genomes. Homology was found only with DNA from the closely related species, Salmonella typhimurium. These studies have also allowed exact placement of the cca gene on the E. coli genetic map, and have shown that it is transcribed in a clockwise direction.  相似文献   

12.
A chromosomal region of Escherichia coli contiguous to the fabE gene at 71 min on the chromosomal map contains multiple genes that are responsible for determination of the rod shape and sensitivity to the amidinopenicillin mecillinam. The so-called mre region was cloned and analyzed by complementation of two closely related but distinct E. coli mutants characterized, respectively, by the mutations mre-129 and mre-678, that showed a rounded to irregular cell shape and altered sensitivities to mecillinam; the mre-129 mutant was supersensitive to mecillinam at 30 degrees C, but the mre-678 mutant was resistant. The mre-678 mutation also caused simultaneous overproduction of penicillin-binding proteins 1Bs and 3. A chromosomal region of the wild-type DNA containing the total mre region and the fabE gene was first cloned on a lambda phage; a 7-kilobase (kb) fragment containing the whole mre region, but not the fabE gene, was then recloned on a mini F plasmid, pLG339; and finally, a 2.8-kb fragment complementing only mre-129 was also cloned on this low-copy-number plasmid. The whole 7-kb fragment was required for complementing the mre-678 mutant phenotypes. Fragments containing fabE but not the mre-129 region could be cloned on a high-copy-number plasmid. Southern blot hybridization indicated that the mre-678 mutant had a large deletion of 5.25 kb in its DNA, covering at least part of the mre-129 gene.  相似文献   

13.
14.
The tsBN2 cell line, a temperature-sensitive (ts) mutant of baby hamster kidney cell line BHK21/13, seems to possess a mutation in the gene that controls initiation of chromosome condensation. At the nonpermissive temperature (39.5 degrees C), the chromatin of tsBN2 cells is prematurely condensed, and the cells die. Using tsBN2 cells as a recipient of DNA-mediated gene transfer, we investigated a human gene that is responsible for regulation of chromosome condensation and cell proliferation. We found that the human gene complementing the tsBN2 mutation resides in the area of the 40- to 50-kilobase HindIII fragment, derived from HeLa cells. Based on this finding, we initiated cloning of a human gene complementing the tsBN2 mutation. From lambda and cosmid libraries carrying partial digests of DNA from the secondary transformants, the 41.8-kilobase HindIII fragment containing the human DNA was isolated. The cloned human DNA was conserved in ts+ transformants through primary and secondary transfections. Two cosmid clones convert the ts- phenotype of tsBN2 cells to ts+ with more than 100 times a higher efficiency, compared with cases of transfection with total human DNA. Thus, the cloned DNA fragments contain an active human gene that complements the tsBN2 mutation.  相似文献   

15.
A series of lambda defective ilvC specialized transducing phage has been isolated which carry regions of isoleucine and valine structural and regulatory genes derived from the ilv cluster at minute 83 on the linkage map of the chromosome of Escherichia coli K-12. The ilv genes carried by these phages and their order have been determined by transduction of auxotrophs. The ilvC+ lysogen of an ilvC- strain gave rise, after heat induction of the lysogen, to transducing particles which carried the wild-type allele of the cya-marker. Further experiments have shown that the lambda defective ilvC phages were able to cotransduce a rho-15ts mutation as well as a rep-5 mutation. Hence, the order of the clockwise excision of the ilv cluster was found to be ilvC-rho-rep-cya. Enzyme levels in strains carrying the lambda defective ilvC phages indicated the the ilvC gene was not altered by the insertion of lambda into the ilv cluster. The isolation and digestion of lambda defective ilvC DNA by EcoRI and HindIII restriction endonucleases demonstrated that the specialized transducing phages carried part of the genome from the E. coli K-12 chromosome.  相似文献   

16.
A hybrid plasmid from the Clarke and Carbon collection has been isolated. This plasmid carries the trmA gene of E. coli, which is necessary for the formation of 5-methyluridine (m5U,ribothymidine) present in all transfer ribonucleic acid (tRNA) chains of the organism so far sequenced. A restriction map of the argCBH-trmA regions is presented. By using cloning in vitro, the trmA gene was located on a 2.9-kilobase pair deoxyribonucleic acid (DNA) fragment. These results and comparison with lambda dargECBH transducing phages established the gene order: argECBH trmA bfe in the 88-min region of the E. coli chromosomal map. Plasmids carrying this 2.9-kilobase pair DNA fragment overproduce the enzyme tRNA(m5U)methyltransferase (EC 2.1.1.35) 20 to 40 times. When this 2.9-kilobase pair chromosomal DNA fragment was expressed in a minicell system, a polypeptide of a molecular weight of 42,000 was synthesized. This polypeptide was tentatively identified as the tRNA(m5U)methyltransferase. These results support the earlier suggestion that the trmA gene is the structural gene for the tRNA(m5U)methyltransferase.  相似文献   

17.
A lambda recombinant phage expressing beta-mannanase activity in Escherichia coli has been isolated from a genomic library of the extremely thermophilic anaerobe "Caldocellum saccharolyticum." The gene was cloned into pBR322 on a 5-kb BamHI fragment, and its location was obtained by deletion analysis. The sequence of a 2.1-kb fragment containing the mannanase gene has been determined. One open reading frame was found which could code for a protein of Mr 38,904. The mannanase gene (manA) was overexpressed in E. coli by cloning the gene downstream from the lacZ promoter of pUC18. The enzyme was most active at pH 6 and 80 degrees C and degraded locust bean gum, guar gum, Pinus radiata glucomannan, and konjak glucomannan. The noncoding region downstream from the mannanase gene showed strong homology to celB, a gene coding for a cellulase from the same organism, suggesting that the manA gene might have been inserted into its present position on the "C. saccharolyticum" genome by homologous recombination.  相似文献   

18.
A lambda placMu1 insertion was made into araE, the gene for arabinose-proton symport in Escherichia coli. A phage containing an araE'-'lacZ fusion was recovered from the lysogen and its restriction map compared with that of the 61-min region of the E. coli genome to establish the gene order thyA araE orf lysR lysA galR; araE was transcribed toward orf. A 4.8-kilobase SalI-EcoRI DNA fragment containing araE was subcloned from the phage lambda d(lysA+ galR+ araE+) into the plasmid vector pBR322. From this plasmid a 2.8-kilobase HincII-PvuII DNA fragment including araE was sequenced and also subcloned into the expression vector pAD284. The araE gene was 1416-base pairs long, encoding a hydrophobic protein of 472 amino acids with a calculated Mr of 51,683. The amino acid sequence was homologous with the xylose-proton symporter of E. coli and the glucose transporters from a human hepatoma HepG2 cell line, human erythrocytes, and rat brain. The overexpressed araE gene product was identified in Coomassie-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels of cell membranes as a protein of apparent Mr 35,000 +/- 1,150. Arabinose protected this protein against reaction with N-ethylmaleimide.  相似文献   

19.
20.
hisT is part of a multigene operon in Escherichia coli K-12.   总被引:14,自引:8,他引:6       下载免费PDF全文
The Escherichia coli K-12 hisT gene has been cloned, and its organization and expression have been analyzed on multicopy plasmids. The hisT gene, which encodes tRNA pseudouridine synthase I (PSUI), was isolated on a Clarke-Carbon plasmid known to contain the purF gene. The presence of the hisT gene on this plasmid was suggested by its ability to restore both production of PSUI enzymatic activity and suppression of amber mutations in a hisT mutant strain. A 2.3-kilobase HindIII-ClaI restriction fragment containing the hisT gene was subcloned into plasmid pBR322, and the resulting plasmid (designated psi 300) was mapped with restriction enzymes. Complementation analysis with different kinds of hisT mutations and tRNA structural analysis confirmed that plasmid psi 300 contained the hisT structural gene. Enzyme assays showed that plasmid psi 300 overproduced PSUI activity by ca. 20-fold compared with the wild-type level. Subclones containing restriction fragments from plasmid psi 300 inserted downstream from the lac promoter established that the hisT gene is oriented from the HindIII site toward the ClaI site. Other subclones and derivatives of plasmid psi 300 containing insertion or deletion mutations were constructed and assayed for production of PSUI activity and production of proteins in minicells. These experiments showed that: (i) the proximal 1.3-kilobase HindIII-BssHII restriction fragment contains a promoter for the hisT gene and encodes a 45,000-dalton polypeptide that is not PSUI; (ii) the distal 1.0-kilobase BssHII-ClaI restriction fragment encodes the 31,000-dalton PSUI polypeptide; (iii) the 45,000-dalton polypeptide is synthesized in an approximately eightfold excess compared with PSUI; and (iv) synthesis of the two polypeptides is coupled, suggesting that the two genes are part of an operon. Insertion of mini-Mu d1 (lac Km) phage into plasmid psi 300 confirmed that the hisT gene is the downstream gene in the operon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号