首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
Induction of the Epstein-Barr virus lytic cycle is mediated through the immediate-early BZLF1 gene and the coordinately regulated BRLF1 gene. The BZLF1 gene product, Zta, transactivates its own promoter, as well as the promoters of a number of lytic genes, thereby initiating a cascade of viral gene expression. Previous work identified four related elements (ZIA, ZIB, ZIC, and ZID) and a cyclic AMP response element binding-AP-1 element (ZII) that are involved in the induction of the BZLF1 promoter (Zp) by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) (E. Flemington and S. H. Speck, J. Virol. 64:1217-1226, 1990). Here we report a detailed characterization of TPA induction mediated by the ZI domains. Mutation of individual ZI domains within the context of the intact promoter significantly diminished TPA induction. Cloning of individual ZI domains upstream of a minimal promoter demonstrated that the ZIA, ZIC, and ZID domains, but not the ZIB domain, are TPA responsive. Furthermore, cloning of the ZII domain downstream of the ZI domains significantly augmented TPA induction. The critical regions within the ZIA and ZIC elements involved in binding of cellular factors were identified by using methylation interference and electrophoretic mobility shift analyses of ZI domain mutants. Four specific complexes were observed with the ZIA and ZID domains, all of which could be specifically competed for by either the ZIA or ZID domain. Methylation interference analyses of bound complexes revealed the presence of two overlapping binding sites for cellular factors in the ZIA domain, and functional studies provided evidence that both of these sites are involved in TPA induction. Functional analyses of the ZIC domain revealed that the 5' region of this domain is largely responsible for mediating TPA induction. Binding data correlated well with functional activity and revealed that the ZIC domain binds only a subset of the cellular factors that bind to the ZIA and ZID domains. Analysis of factor binding to the ZIB domain revealed only a single shifted complex, which correlated with the most slowly migrating complex observed with the ZIA and ZID domains. These data provide a direct demonstration of TPA induction mediated by the ZIA, ZIC, and ZID domains and also provide the first evidence that the ZI domains exhibit distinct functional characteristics.  相似文献   

3.
4.
Reactivation of the Epstein-Barr virus from latency is dependent on expression of the BZLF1 viral immediate-early protein. The BZLF1 promoter (Zp) normally exhibits only low basal activity but is activated in response to chemical inducers such as 12-O-tetradecanoylphorbol-13-acetate and calcium ionophore. We found that Jun dimerization protein 2 (JDP2) plays a significant role in suppressing Zp activity. Reporter, EMSA, and ChIP assays of a Zp mutant virus revealed JDP2 association with Zp at the ZII cis-element, a binding site for CREB/ATF/AP-1. Suppression of Zp activity by JDP2 correlated with HDAC3 association and reduced levels of histone acetylation. Although introduction of point mutations into the ZII element of the viral genome did not increase the level of BZLF1 production, silencing of endogenous JDP2 gene expression by RNA interference increased the levels of viral early gene products and viral DNA replication. These results indicate that JDP2 plays a role as a repressor of Zp and that its replacement by CREB/ATF/AP-1 at ZII is crucial to triggering reactivation from latency to lytic replication.  相似文献   

5.
The Epstein-Barr virus BZLF1 gene product ZEBRA is a DNA-binding protein that is partially homologous to c-Fos, binds specifically to AP-1 sites, and can induce the lytic cycle in latently infected B lymphocytes. Induction of the viral lytic cycle can also be achieved by treatment with the phorbol ester 12-O-tetrade-canoylphorbol-13-acetate, a reagent which activates gene expression in part through AP-1 (Jun/Fos). In this article the interrelationship between ZEBRA and AP-1 is extended by the demonstration that ZEBRA can induce c-Fos expression through AP-1 and "AP-1-like" sites present in the c-fos promoter. Induction of c-Fos may be necessary for the expression of other viral lytic genes and perhaps cellular genes whose products are required for viral replication.  相似文献   

6.
Two regions of the Epstein-Barr virus BZLF1 trans-activator protein have sequence similarity to the c-fos protein. Part of the similarity corresponds to the region of c-fos which is similar to the DNA binding domain of c-jun and GCN-4. The structure of the exon which contains this region in c-fos and BZLF1 is also highly conserved between the two genes. Complete BZLF1 protein and a C terminal fragment were prepared either as purified fusion proteins or by in vitro translation from a BZLF1 cDNA. Gel retardation and DNase footprinting assays using these proteins show that BZLF1 is a sequence specific DNA binding protein capable of binding to a target sequence which contains a consensus AP-1 site.  相似文献   

7.
8.
9.
10.
The Epstein-Barr virus BRLF1 and BZLF1 genes are the first viral genes transcribed upon induction of the viral lytic cycle. The protein products of both genes (referred to here as Rta and Zta, respectively) activate expression of other viral genes, thereby initiating the lytic cascade. Among the viral antigens expressed upon induction of the lytic cycle, however, Zta is unique in its ability to disrupt viral latency; expression of the BZLF1 gene is both necessary and sufficient for triggering the viral lytic cascade. We have previously shown that Zta can activate its own promoter (Zp), through binding to two Zta recognition sequences (ZIIIA and ZIIIB). Here we describe mutant Zta proteins that do not bind DNA (referred to as Zta DNA-binding mutants [Zdbm]) but retain the ability to transactivate Zp. Consistent with the inability of these mutants to bind DNA, transactivation of Zp by Zdbm is not dependent on the Zta recognition sequences. Instead, transactivation by Zdbm is dependent upon promoter elements that bind cellular factors. An examination of other viral and cellular promoters identified promoters that are weakly responsive or unresponsive to Zdbm. An analysis of a panel of artificial promoters containing one copy of various promoter elements demonstrated a specificity for Zdbm activation that is distinct from that of Zta. These results suggest that non-DNA-binding forms of some transactivators retain the ability to transactivate specific target promoters without direct binding to DNA.  相似文献   

11.
Negative regulation of the BZLF1 promoter of Epstein-Barr virus.   总被引:10,自引:6,他引:4       下载免费PDF全文
  相似文献   

12.
13.
14.
15.
We previously located two 12-O-tetradecanoylphorbol-13-acetate (TPA)-responsive enhancers, MSTRE-I and MSTRE-II, in the upstream sequence of the MS gene of Epstein-Barr virus (Liu, Q., and Summers, W.C. (1989) J. Virol. 63, 5062-5068). The core sequence of the MSTRE-I enhancer is now determined to be between -718 and -708 of the upstream sequence of the MS gene. The activity of the enhancer is also sensitive to its immediate surrounding sequence on either side. A single copy of a 30-base pair (bp) fragment containing the MSTRE-I sequence was able to confer TPA responsiveness upon the MS promoter even in the absence of an AP-1 binding site. Multiple tandem copies of this 30-bp fragment, regardless of their relative orientations to each other, could function synergistically to enhance the MS promoter activity. At least two copies of the 30-bp fragment were required to bestow TPA induction upon the thymidine kinase gene promoter of herpes simplex virus type 1. The MSTRE-I sequence could also be bound by a Fos-GCN4 chimeric protein but with an affinity much lower than that between the chimeric protein and the AP-1 binding site. This MSTRE-I region has strong homology to one of the TPA-responsive elements (the ZII domain) in the upstream sequence of the EBV BZLF1 gene. In addition, a putative negative regulatory region or silencer was found immediately downstream of the MSTRE-I enhancer. This potential silencer region contains a 14-bp sequence that is homologous to the silencer consensus sequence of the BZLF1 gene. Therefore, the regulation of the MS gene may share the same pathway with the immediate early gene BZLF1.  相似文献   

16.
17.
18.
19.
Induction of the viral BZLF1 gene has previously been shown to be one of the first steps in the reactivation of Epstein-Barr virus (EBV). Using an EBV oriP episomal vector system, we have reconstituted the regulation of the promoter for BZLF1 on stably transfected episomes, mapped promoter elements required for that regulation, and investigated mechanisms that may control the switch between latency and the lytic cycle. Changes in histone acetylation at the promoter for the BZLF1 gene appear to be a key part of the reactivation mechanism of this herpesvirus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号