首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In biological nitrogen removal, application of the autotrophic anammox process is gaining ground worldwide. Although this field has been widely researched in last years, some aspects as the accelerating effect of putative intermediates (mainly N?H? and NH?OH) need more specific investigation. In the current study, experiments in a moving bed biofilm reactor (MBBR) and batch tests were performed to evaluate the optimum concentrations of anammox process intermediates that accelerate the autotrophic nitrogen removal and mitigate a decrease in the anammox bacteria activity using anammox (anaerobic ammonium oxidation) biomass enriched on ring-shaped biofilm carriers. Anammox biomass was previously grown on blank biofilm carriers for 450 days at moderate temperature 26.0 (±0.5) °C by using sludge reject water as seeding material. FISH analysis revealed that anammox microorganisms were located in clusters in the biofilm. With addition of 1.27 and 1.31 mg N L?1 of each NH?OH and N?H?, respectively, into the MBBR total nitrogen (TN) removal efficiency was rapidly restored after inhibitions by NO??. Various combinations of N?H?, NH?OH, NH??, and NO?? were used as batch substrates. The highest total nitrogen (TN) removal rate with the optimum N?H? concentration (4.38 mg N L?1) present in these batches was 5.43 mg N g?1 TSS h?1, whereas equimolar concentrations of N?H? and NH?OH added together showed lower TN removal rates. Intermediates could be applied in practice to contribute to the recovery of inhibition-damaged wastewater treatment facilities using anammox technology.  相似文献   

2.
The performance of a 10 L sequencing batch reactor (SBR) treating slaughterhouse wastewater was examined at ambient temperature. The influent wastewater comprised 4672+/-952 mg chemical oxygen demand (COD)/L, 356+/-46 mg total nitrogen (TN)/L and 29+/-10 mg total phosphorus (TP)/L. The duration of a complete cycle was 8 h and comprised four phases: fill (7 min), react (393 min), settle (30 min) and draw/idle (50 min). During the react phase, the reactor was intermittently aerated with an air supply of 0.8L/min four times at 50-min intervals, 50 min each time. At an influent organic loading rate of 1.2g COD/(Ld), average effluent concentrations of COD, TN and TP were 150 mg/L, 15 mg/L and 0.8 mg/L, respectively. This represented COD, TN and TP removals of 96%, 96% and 99%, respectively. Phase studies show that biological phosphorus uptake occurred in the first aeration period and nitrogen removal took place in the following reaction time by means of partial nitrification and denitrification. The nitrogen balance analysis indicates that denitrification and biomass synthesis contributed to 66% and 34% of TN removed, respectively.  相似文献   

3.
A mathematical model for nitrification and anaerobic ammonium oxidation (ANAMMOX) processes in a single biofilm reactor (CANON) was developed. This model describes completely autotrophic conversion of ammonium to dinitrogen gas. Aerobic ammonium and nitrite oxidation were modeled together with ANAMMOX. The sensitivity of kinetic constants and biofilm and process parameters to the process performance was evaluated, and the total effluent concentrations were, in general, found to be insensitive to affinity constants. Increasing the amount of biomass by either increasing biofilm thickness and density or decreasing porosity had no significant influence on the total effluent concentrations, provided that a minimum total biomass was present in the reactor. The ANAMMOX process always occurred in the depth of the biofilm provided that the oxygen concentration was limiting. The optimal dissolved oxygen concentration level at which the maximum nitrogen removal occurred is related to a certain ammonium surface load on the biofilm. An ammonium surface load of 2 g N/m2. d, associated with a dissolved oxygen concentration level of 1.3 g O2/m3 in the bulk liquid and with a minimum biofilm depth of 1 mm seems a proper design condition for the one-stage ammonium removal process. Under this condition, the ammonium removal efficiency is 94% (82% for the total nitrogen removal efficiency) (30 degrees C). Better ammonium removal could be achieved with an increase in the dissolved oxygen concentration level, but this would strongly limit the ANAMMOX process and decrease total nitrogen removal. It can be concluded that a one-stage process is probably not optimal if a good nitrogen effluent is required. A two-stage process like the combined SHARON and ANAMMOX process would be advised for complete nitrogen removal.  相似文献   

4.
An investigation was performed on the biological removal of ammonium nitrogen from synthetic wastewater by the simultaneous nitrification/denitrification (SND) process, using a sequencing batch biofilm reactor (SBBR). System behavior was analyzed as to the effects of sludge type used as inoculum (autotrophic/heterotrophic), wastewater feed strategy (batch/fed-batch) and aeration strategy (continuous/intermittent). The presence of an autotrophic aerobic sludge showed to be essential for nitrification startup, despite publications stating the existence of heterotrophic organisms capable of nitrifying organic and inorganic nitrogen compounds at low dissolved oxygen concentrations. As to feed strategy, batch operation (synthetic wastewater containing 100 mg COD/L and 50 mg N-NH(4)(+)/L) followed by fed-batch (synthetic wastewater with 100 mg COD/L) during a whole cycle seemed to be the most adequate, mainly during the denitrification phase. Regarding aeration strategy, an intermittent mode, with dissolved oxygen concentration of 2.0mg/L in the aeration phase, showed the best results. Under these optimal conditions, 97% of influent ammonium nitrogen (80% of total nitrogen) was removed at a rate of 86.5 mg N-NH(4)(+)/Ld. In the treated effluent only 0.2 mg N-NO(2)(-)/L,4.6 mg N-NO(3)(-)/L and 1.0 mg N-NH(4)(+)/L remained, demonstrating the potential viability of this process in post-treatment of wastewaters containing ammonium nitrogen.  相似文献   

5.
厌氧氨氧化工艺的应用现状和问题   总被引:4,自引:0,他引:4       下载免费PDF全文
厌氧氨氧化(Anaerobic ammonium oxidation,ANAMMOX)工艺因其高效低耗的优势,在废水生物脱氮领域具有广阔的应用前景。在过去的20年中,许多基于ANAMMOX反应的工艺得以不断研究和应用。预计到2014年末,全球范围内的ANAMMOX工程将会超过100座。综述了各种形式的ANAMMOX工艺,包括短程硝化-厌氧氨氧化、全程自养脱氮、限氧自养硝化反硝化、反硝化氨氧化、好氧反氨化、同步短程硝化-厌氧氨氧化-反硝化耦合、单级厌氧氨氧化短程硝化脱氮工艺。对一体式和分体式工艺运行条件进行了比较,结合ANAMMOX工艺工程(主要包括移动床生物膜,颗粒污泥和序批式反应器系统)应用现状,总结了工程化应用过程中遇到的问题及其解决对策,在此基础上对今后的研究和应用方向进行了展望。今后的研究重点应集中于运行条件的优化和水质障碍因子的解决,尤其是工艺自动化控制系统的开发和特殊废水对工艺性能影响的研究。  相似文献   

6.
探究了3种水力负荷(HLR)下三级串联垂直潜流人工湿地(T-VFCWs)对农村生活污水的处理效果,并解析了系统中的氮素转化机制。结果表明: 当系统HLR由0.10增至0.20 m3·m-2·d-1时,T-VFCWs始终保持着对农村生活污水高效的处理效果,系统出水水质满足《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级A标准。T-VFCWs中顺次连接的3个VFCW单元(标记为V-1、V-2和V-3)在限氧环境下因其进水水质的差异可形成各自不同的氮素转化途径,并通过协同作用实现系统的高效脱氮。当T-VFCWs在试验期间连续运行时,V-1、V-2和V-3中主要的脱氮途径分别为短程硝化/反硝化作用、基于亚硝化的全程自养脱氮(CANON)作用和反硝化作用,上述3单元对进水中总氮(TN)和NH4+-N去除的贡献率分别为(51.3±4.4)%和(63.7±2.6)%、(30.9±4.8)%和(35.5±4.5)%、(17.8±5.0)%和(0.8±0.1)%。该研究可为组合式人工湿地的研发及工程化应用提供科学依据和技术支撑。  相似文献   

7.
Autotrophic nitrite removal in the cathode of microbial fuel cells   总被引:3,自引:0,他引:3  
Nitrification to nitrite (nitritation process) followed by reduction to dinitrogen gas decreases the energy demand and the carbon requirements of the overall process of nitrogen removal. This work studies autotrophic nitrite removal in the cathode of microbial fuel cells (MFCs). Special attention was paid to determining whether nitrite is used as the electron acceptor by exoelectrogenic bacteria (biologic reaction) or by graphite electrodes (abiotic reaction). The results demonstrated that, after a nitrate pulse at the cathode, nitrite was initially accumulated; subsequently, nitrite was removed. Nitrite and nitrate can be used interchangeably as an electron acceptor by exoelectrogenic bacteria for nitrogen reduction from wastewater while producing bioelectricity. However, if oxygen is present in the cathode chamber, nitrite is oxidised via biological or electrochemical processes. The identification of a dominant bacterial member similar to Oligotropha carboxidovorans confirms that autotrophic denitrification is the main metabolism mechanism in the cathode of an MFC.  相似文献   

8.
In this study, combination of a partial nitritation reactor, using immobilized polyethylene glycol (PEG) gel carriers, and a continuous stirred granular anammox reactor was investigated for nitrogen removal from livestock manure digester liquor. Successful nitrite accumulation in the partial nitritation reactor was observed as the nitrite production rate reached 2.1 kg-N/m3/day under aerobic nitrogen loading rate of 3.8 kg-N/m3/day. Simultaneously, relatively high free ammonia concentrations (average 50 mg-NH3/l) depressed the activity of nitrite oxidizing bacteria with nitrate concentration never exceeding 3% of TN concentration in the effluent of the partial nitritation reactor (maximum 35.2 mg/l). High nitrogen removal rates were achieved in the granular anammox reactor with the highest removal rate being 3.12 kg-N/m3/day under anaerobic nitrogen loading rate of 4.1 kg-N/m3/day. Recalcitrant organic compounds in the digester liquor did not impair anammox reaction and the SS accumulation in the granular anammox reactor was minimal. The results of this study demonstrated that partial nitritation–anammox combination has the potential to successfully remove nitrogen from livestock manure digester liquor.  相似文献   

9.
The inhibitory effects and removal efficiency of dieldrin (DLD) in anaerobic reactors were investigated. Anaerobic toxicity assay (ATA) experiments conducted in batch reactors revealed that 30 mg/l DLD had inhibitory effects on the unacclimated mixed anaerobic cultures. Continuous reactor experiments performed in a lab-scale two-stage upflow anaerobic sludge blanket (UASB) reactor system which was fed with ethanol as the sole carbon source, indicated that anaerobic granular cultures could be successfully acclimated to DLD. Chemical oxygen demand (COD) removal efficiencies were 88-92% for the two-stage system. The influent DLD concentration of 10 mg/l was removed by 44-86% and 86-94% in the second stage and overall UASB system, respectively. Biosorption of DLD on granular anaerobic biomass was found to be a significant mechanism for DLD removal in the UASB system. The maximum DLD loading rate and minimum HRT achievable for the first stage UASB reactor were 0.5 mg/lday (76 microg DLD/g VSS.day) and 10 h, respectively, which resulted in the overall COD removal efficiency of 85%.  相似文献   

10.
A lab-scale anaerobic-anoxic-aerobic (A(2)O) process was operated to investigate denitrifying phosphorus removal and nitritation-denitritation from domestic wastewater, especially regarding the impact of nitrite accumulation caused by nitritation on phosphorus removal. The results showed that mean total nitrogen (TN) removal was only about 47% and phosphorus removal was almost zero without the pre-anoxic zone and additional carbon source. Contrastively, with configuration of pre-anoxic zone, TN and phosphorus removal was increased to 75% and 98%, respectively, as well as denitrifying phosphorus removal of 66-91% occurred in the anoxic zone. Nitritation-denitritation was achieved through a combination of short aerobic actual hydraulic retention time and low dissolved oxygen levels (0.3-0.5 mg/L); however, phosphorus removal deteriorated with increase of nitrite accumulation rates. The free nitrous acid (FNA) concentration of 0.002-0.003 mg HNO(2)-N/L in the aerobic zone inhibited phosphorus uptake, which was major cause of phosphorus removal deterioration. Through supplying the carbon sources to enhance denitrification and anaerobic phosphorus release, nitrite and FNA concentrations in the aerobic zone were reduced, and phosphorus removal was improved. Compared with nitrification-denitrification, nitritation-denitritation reduced the carbon requirement by 30% and performed biological nutrients removal well with mean TN and phosphorus removal of 85% and 96%, respectively.  相似文献   

11.
A laboratory scale experiment was described in this paper to enhance biological nitrogen removal by simultaneous nitrification and denitrification (SND) via nitrite with a sequencing batch biofilm reactor (SBBR). Under conditions of total nitrogen (TN) about 30 mg/L and pH ranged 7.15–7.62, synthetic wastewater was cyclically operated within the reactor for 110 days. Optimal operation conditions were established to obtain consistently high TN removal rate and nitrite accumulation ratio, which included an optimal temperature of 31 °C and an aeration time of 5 h under the air flow of 50 L/h. Stable nitrite accumulation could be realized under different temperatures and the nitrite accumulation ratio increased with an increase of temperature from 15 to 35 °C. The highest TN removal rate (91.9%) was at 31 °C with DO ranged 3–4 mg/L. Process control could be achieved by observing changes in DO and pH to judge the end-point of oxidation of ammonia and SND.  相似文献   

12.
几种湿地植物净化生活污水COD、总氮效果比较   总被引:38,自引:2,他引:36  
以无植被、基质为河砂的潜流型人工湿地为对照,研究了石菖蒲、灯心草和蝴蝶花3种类型植被、基质均为河砂的潜流型人工湿地净化生活污水COD、总氮的效果.结果表明,在污水COD浓度小于200mg·L^-1、总氮浓度小于30mg·L^-1的低浓度范围里,无植被的人工湿地和有植被的人工湿地对污水中COD、总氮均有很好的去除效果,两者差异不大,其COD去除率均达90%以上,总氮的去除率达80%以上.随着污水中COD和总氮浓度的增加,无植被人工湿地和有植被人工湿地去除COD和总氮的效果均有不同程度下降,两者差异明显,有植被的人工湿地能维持较高的COD、总氮的去除效果,无植被的人工湿地COD和总氮去除效果下降很快,植被在人工湿地系统去除污水COD和总氮过程中起着重要的作用.在整个试验阶段,石菖蒲植被人工湿地COD和总氮平均净化效率分别为80.46%和77.77%、灯心草人工湿地分别为75.53%和71.17%、蝴蝶花人工湿地分别为70.50%和66.38%,无植被人工湿地分别为61.39%和55.81%.同无植被人工湿地COD和总氮净化效果相比,石菖蒲植被人工湿地净化效果最好;其次为灯心草植被人工湿地,再次为蝴蝶花植被人工湿地.不同类型植被的人工湿地净化污水中COD和总氮的效果与其生物量关系密切,这与植被系统吸收同化有机物质和总氮数量、根际微生物分解有机物质和硝化-反硝化作用有关。  相似文献   

13.
Simultaneous nitrification and denitrification (SND) was realized by means of a novel air-lift internal loop biofilm reactor, in which aeration was set in middle of the reactor. During operation, the aeration was adjusted to get appropriate dissolve oxygen (DO) in bulk solution and let aerobic and anoxic zone coexist in one reactor. When aeration was at 0.6 and 0.2 L/min, corresponding to DO of 5.8 and 2.5 mg/L in bulk solution, ammonia nitrogen removal percentage reached about 80 and 90 %, but total nitrogen removal percentage was lower than 25 %. While the aeration was reduced to 0.1 L/min, aerobic and anoxic zones existed simultaneously in one reactor to get 75 % of ammonia nitrogen and 50 % of total nitrogen removal percentage. Biofilms were, respectively, taken from aerobic and anoxic zone to verify their function of nitrification and denitrification in two flasks, in which ammonia nitrogen was transferred into nitrate completely by aerobic biofilm, and nitrate was removed more than 80 % by anoxic biofilm. Microelectrode was used to measure the DO distribution inside biofilms in anoxic zone corresponding to different aerations. When aeration was at 0.6 and 0.2 L/min, DO inside biofilm was more than 1.5 mg/L, but the DO inside biofilm decreased to anoxic status with depth of biofilm increasing corresponding to aeration of 0.1 L/min. The experimental results indicated that SND could be realized because of simultaneous existence of aerobic and anoxic biofilms in one reactor.  相似文献   

14.
《Process Biochemistry》2007,42(4):620-626
Experiments have been performed to investigate the nitrogen removal performance in a novel combined biofilm reactor using synthetic wastewater. In the reactor, one cubic box was separated by two baffles into three zones: aerobic zone, buffering zone and anoxic zone. Nitrification and denitrification were supposed to be mainly accomplished in the aerobic and anoxic zones, respectively. When the influent total nitrogen (TN) and organic carbon loadings were averaged at 0.093 and 0.40 kg/m3/d, 84% TN removal efficiency was achieved by adjusting the aeration rate and the configuration of the reactor. Continuous experimental results demonstrated that NH3-N removal efficiency increased by adjusting the clapboards of the reactor at a certain aeration rate. Energy produced by aeration was used for liquid recycle, so TN could be more efficiently removed at lower cost in this reactor.  相似文献   

15.
OLAND生物脱氮系统中硝化菌群16S rDNA的DGGE分析   总被引:8,自引:0,他引:8  
为了考察生物脱氮系统中硝化菌群(氨氧化菌和亚硝酸氧化菌)的种群多样性及硝化菌群随溶解氧降低的种群变化规律,并建立一套行之有效的用于自养生物脱氮系统中功能微生物菌群的快速分子检测技术,采用DGGE(变性梯度凝胶电泳)分子检测技术对硝化菌群的16SrDNA的特异性PCR扩增产物进行了分析,结果表明:OLAND生物脱氮系统中氨氧化菌和亚硝酸氧化菌随溶解氧的降低表现出了不同的种群变化规律,氨氧化菌种群多样性受溶解氧的影响非常大,而非亚硝酸氧化菌的种群多样性比较单一,且不受溶解氧的影响。结合FISH(全细胞荧光原位杂交)分析结果表明,在OLAND限氧稳定运行后期,亚硝化单胞菌属(Nitrosomonas)是主要的氨氧化菌,占OLAND限氧亚硝化阶段反应器中总细菌数的72.5%左右。  相似文献   

16.
Kinetic model of a granular sludge SBR: influences on nutrient removal   总被引:6,自引:0,他引:6  
A mathematical model was developed that can be used to describe an aerobic granular sludge reactor, fed with a defined influent, capable of simultaneously removing COD, nitrogen and phosphate in one sequencing batch reactor (SBR). The model described the experimental data from this complex system sufficiently. The effect of process parameters on the nutrient removal rates could therefore be reliably evaluated. The influence of oxygen concentration, temperature, granule diameter, sludge loading rate, and cycle configuration were analyzed. Oxygen penetration depth in combination with the position of the autotrophic biomass played a crucial role in the conversion rates of the different components and thus on overall nutrient removal efficiencies. The ratio between aerobic and anoxic volume in the granule strongly determines the N-removal efficiency as it was shown by model simulations with varying oxygen concentration, temperature, and granule size. The optimum granule diameter for maximum N- and P-removal in the standard case operating conditions (DO 2 mg L(-1), 20 degrees C) was found between 1.2 and 1.4 mm and the optimum COD loading rate was 1.9 kg COD m(-3) day(-1). When all ammonia is oxidized, oxygen diffuses to the core of the granule inhibiting the denitrification process. In order to optimize the process, anoxic phases can be implemented in the SBR-cycle configuration, leading to a more efficient overall N-removal. Phosphate removal efficiency mainly depends on the sludge age; if the SRT exceeds 30 days not enough biomass is removed from the system to keep effluent phosphate concentrations low.  相似文献   

17.
A membrane bioreactor filled with carriers instead of activated sludge named a moving bed membrane bioreactor (MBMBR) was investigated for simultaneously removing organic carbon and nitrogen in wastewater. Its performance was compared with a conventional membrane bioreactor (CMBR) at various influent COD/TN ratios of 8.9–22.1. The operational parameters were optimized to increase the treatment efficiency. COD removal efficiency averaged at 95.6% and 96.2%, respectively, for MBMBR and CMBR during the 4 months experimental period. The MBMBR system demonstrated good performance on nitrogen removal at different COD/TN ratios. When COD/TN was 8.9 and the total nitrogen (TN) load was 7.58 mg/l h, the TN and ammonium nitrogen removal efficiencies of the MBMBR were maintained over 70.0% and 80.0%, respectively, and the removed total nitrogen (TN) load reached to 5.31 mg/l h. Multifunctional microbial reactions in the carrier, such as simultaneous nitrification and denitrification (SND), play important roles in nitrogen removal. In comparison, the CMBR did not perform so well. Its TN removal was not stable, and the removed total nitrogen (TN) load was only 1.02 mg/l h at COD/TN ratio 8.9. The specific oxygen utilization rate (SOUR) showed that the biofilm has a better microbial activity than an activated sludge. Nevertheless, the membrane fouling behavior was more severe in the MBMBR than in the CMBR due to a thick and dense cake layer formed on the membrane surface, which was speculated to be caused by the filamentous bacteria in the MBMBR.  相似文献   

18.
In this study, a non-woven rotating biological contactor reactor was operated for the start-up of completely autotrophic nitrogen removal over nitrite (CANON) process. In this perfectly attached growth system, nitrite oxidizing was identified, which interfered with the nitrogen removal performance. Batch tests indicated that 10 g NaCl per liter salinity was a preferable definite level to stand out ammonium-oxidizing activity and anammox activity, and selectively suppress nitrite-oxidizing activity under oxygen-limited conditions. Reactor operation showed that the maximum TN removal rate was increased from 425 mg N l(-1) day(-1) to 637 mg N l(-1) day(-1) after the addition of 10 g NaCl per liter salinity on analogous technological parameters. Microbiological community analysis revealed that bacteria strains similar to the genus Nitrospira sp. were specialized nitrite oxidizers existing in CANON reactor, which were then eliminated under salinity exposure for their no salinity-tolerant relative. However, anammox bacteria belonging to Planctomycetes and some aerobic ammonium oxidizers belonging to Nitrosomonas could be highly enriched under this oxygen-limited salinity conditions. Salinity-contained high ammonium wastewater will be so considered as suitable influent for CANON process in further industrial application.  相似文献   

19.

In this research, a novel packed anoxic/oxic moving bed biofilm reactor (MBBR) was established to achieve high-organic matter removal rates, despite the carbon/nitrogen (C/N) ratio of 2.7–5.1 in the influent. Simultaneous nitrification–denitrification (SND) was investigated under a long sludge retention time of 104 days. The system exhibited excellent performance in pollutant removal, with chemical oxygen demand and total nitrogen (TN) enhanced to 93.6–97.4% and 34.4–60%, respectively. Under low C/N conditions, the nitrogen removal process of A/O MBBR system was mainly achieved by anaerobic denitrification. The increase of C/N ratio enhanced SND rate of the aerobic section, where dissolved oxygen was maintained at the range of 4–6 mg/L, and resulted in higher TN removal efficiency. The microbial composition and structures were analyzed utilizing the MiSeq Illumina sequencing technique. High-throughput pyrosequencing results indicated that the dominant microorganisms were Proteobacteria and Bacteroidetes at the phylum level, which contributes to the removal of organics matters. In the aerobic section, abundances of Nitrospirae (1.12–29.33%), Burkholderiales (2.15–21.38%), and Sphingobacteriales (2.92–11.67%) rose with increasing C/N ratio in the influent, this proved that SND did occur in the aerobic zone. As the C/N ratio of influent increased, the SND phenomenon in the aerobic zone of the system is the main mechanism for greatly improving the removal rate of TN in the aerobic section. The C/N ratio in the aerobic zone is not required to be high to exhibit good TN removal performance. When C/NH4+ and C/TN in the aerobic zone were higher than 2.29 and 1.77, respectively, TN removal efficiency was higher than 60%, which means that carbon sources added to the reactor could be saved. This study would be vital for a better understanding of microbial structures within a packed A/O MBBR and the development of cost-efficient strategies for the treatment of low C/N wastewater.

  相似文献   

20.
以纸为碳源去除地下水硝酸盐的研究   总被引:13,自引:0,他引:13  
研究了以纸为碳源和反应介质的生物反应器对水中硝酸盐的去除。结果表明,以纸为碳源的反应器启动快.反硝化反应受温度及水力停留时间影响大。25℃的反硝化速率是14℃的1.7倍。在室温25±1℃,进水硝酸盐氮浓度为45.2mg·L^-1、水力停留时间8.6h时,反应器对硝酸盐氮的去除率在99.6%以上,当水力停留时间为7.2h,氮去除率只有50%。反硝化反应受pH值和溶解氧的影响小,反应进行过程中,纸表面形成了生物膜,纸也被消耗了.采用反应器出水再经活性炭吸附的工艺流程处理高硝酸盐氮地下水,<33.9mg·L^-1的硝酸盐氮完全去除,没有出现NC2-N,最终出水水质DOC<11mg·L^-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号