首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the postgenome era, the analysis of entire subproteomes in correlation with their function has emerged due to high throughput technologies. Early approaches have been initiated to identify novel components of the circadian system. For example, in the marine dinoflagellate Lingulodinium polyedra, a chronobiological proteome assay was performed, which resulted in the identification of already known circadian expressed proteins as well as novel temporal controlled proteins involved in metabolic pathways. In the green alga Chlamydomonas reinhardtii, two circadian expressed proteins (a protein disulfide isomerase and a tetratricopeptide repeat protein) were identified by functional proteomics. Also, the first hints of temporal control within chloroplast proteins of Arabidopsis thaliana were identified by proteome analysis.  相似文献   

2.
3.
4.
【目的】围食膜(peritrophic membrane, PM)是昆虫抵御随食物摄入的病原微生物入侵的第一道天然屏障。本研究旨在鉴定出农业重大害虫棉铃虫Helicoverpa armigera围食膜的总蛋白成分,为进一步揭示昆虫围食膜的形成机制及研发新颖的害虫控制策略奠定基础。【方法】剥离棉铃虫5龄幼虫PM,用三氟甲磺酸(trifluoromethane sulfonic acid, TFMS)处理,采用液质联用技术(LC-MS/MS)鉴定围食膜蛋白质组,然后对鉴定结果进行生物信息学分析。【结果】本研究共鉴定出棉铃虫幼虫围食膜蛋白质169个,是目前鉴定最多的棉铃虫围食膜蛋白。通过GO分析,可以将这些鉴定的蛋白分为细胞组分、分子功能和生物学过程三大类;KEGG富集结果显示,鉴定蛋白可以富集在12条代谢通路中;蛋白互作分析(protein protein interaction, PPI)结果表明,以ACC和CG3011等蛋白为核心可以形成蛋白互作网络。【结论】本研究鉴定了169个棉铃虫幼虫围食膜蛋白质,并对其进行了GO, KEGG和PPI分析,结果有助于人们全面理解昆虫围食膜的分子结构和功能。  相似文献   

5.
Circadian orchestration of the hepatic proteome   总被引:1,自引:0,他引:1  
  相似文献   

6.
天麻Gastrodia elata是典型的腐生型兰科药用植物,其种子萌发需要小菇属Mycena真菌的侵染和共生,目前天麻种子共生萌发分子机制是该领域的热点问题。我们首次对天麻种子共生萌发过程进行了系统的蛋白质组学研究。采用iTRAQ标记的液质联用技术,成功鉴定了天麻成熟种子和萌发后原球茎的蛋白质组,共鉴定蛋白1 769个(global FDR 1%)。两组进行了差异蛋白质组学研究,获得差异蛋白269个。差异蛋白GO注释结果表明,在天麻种子共生萌发过程中,差异蛋白参与的功能和生物过程多样,以催化和结合为主,还参与感知环境刺激、分子信号等功能。KEGG代谢通路分析表明,差异蛋白还主要参与了转导、能量代谢、次生代谢和环境适应等过程。我们发现,一些参与内吞作用的蛋白在共生萌发过程中存在差异表达,表明内吞可能参与到二者互作过程中。对差异蛋白质组的深入解析和研究有利于揭示天麻种子共生萌发的分子机制,具有较强的理论和现实意义。  相似文献   

7.
An endogenous clock regulates the temporal expression of genes/mRNAs that are involved in the circadian output pathway. In the bioluminescent dinoflagellate Gonyaulax polyedra circadian expression of the luciferin-binding protein (LBP) is controlled at the translational level. Thereby, a clock-controlled RNA-binding protein, called circadian controlled translational regulator (CCTR), interacts specifically with an UG-repeat, which is situated in the lbp 3' UTR. Its binding activity correlates negatively with the amount of LBP during a circadian cycle. In the green alga Chlamydomonas reinhardtii, a clock-controlled RNA-binding protein (CHLAMY 1) was identified, which represents an analog of the CCTR from the phylogenetically diverse alga G. polyedra. CHLAMY 1 binds specifically to the 3' UTRs of several mRNAs and recognizes them all via a common cis-acting element, composed of at least seven UG-repeats. The binding strength of CHLAMY 1 is strongest to mRNAs, whose products are key components of nitrogen metabolism resulting in arginine biosynthesis as well as of CO2 metabolism. Since temporal activities of processes involved in nitrogen metabolism have an opposite phase than CHLAMY 1 binding activity, the protein might repress the translation of the cognate mRNAs.  相似文献   

8.
The facultative intracellular pathogen Francisella tularensis is the causative agent of the serious infectious disease tularemia. Despite intensive research, the virulence factors and pathogenetic mechanisms remain largely unknown. To identify novel putative virulence factors, we carried out a comparative proteome analysis of fractions enriched for membrane-associated proteins isolated from the highly virulent subspecies tularensis strain SCHU S4 and three representatives of subspecies holarctica of different virulence including the live vaccine strain. We identified six proteins uniquely expressed and four proteins expressed at significantly higher levels by SCHU S4 compared to the ssp. holarctica strains. Four other protein spots represented mass and charge variants and seven spots were charge variants of proteins occurring in the ssp. holarctica strains. The genes encoding proteins of particular interest were examined by sequencing in order to confirm and explain the findings of the proteome analysis. Our studies suggest that the subspecies tularensis-specific proteins represent novel potential virulence factors.  相似文献   

9.
Essentially all biological processes depend on protein–protein interactions (PPIs). Timing of such interactions is crucial for regulatory function. Although circadian (∼24-hour) clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression) suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc.) contributing to temporal organization of cellular physiology in an unprecedented manner.  相似文献   

10.
Proteomic analysis is helpful in identifying cancer-associated proteins that are differentially expressed and fragmented that can be annotated as dysregulated networks and pathways during metastasis. To examine meta-static process in lung cancer, we performed a proteomics study by label-free quantitative analysis and N-terminal analysis in 2 human non-small-cell lung cancer cell lines with disparate metastatic potentials—NCI-H1703 (primary cell, stage I) and NCI-H1755 (metastatic cell, stage IV). We identified 2130 proteins, 1355 of which were common to both cell lines. In the label-free quantitative analysis, we used the NSAF normalization method, resulting in 242 differential expressed proteins. For the N-terminal proteome analysis, 325 N-terminal peptides, including 45 novel fragments, were identified in the 2 cell lines. Based on two proteomic analysis, 11 quantitatively expressed proteins and 8 N-terminal peptides were enriched for the focal adhesion pathway. Most proteins from the quantitative analysis were upregulated in metastatic cancer cells, whereas novel fragment of CRKL was detected only in primary cancer cells. This study increases our understanding of the NSCLC metastasis proteome.  相似文献   

11.
Spermatogenesis is a complex process of terminal differentiation wherein mature sperm are produced. In the first wave of mouse spermatogenesis, different spermatogenic cells appear at specific time points, and their appearance is expected to be accompanied by changes in specific protein expression patterns. In this study, we used 2D-PAGE and MALDI-TOF/TOF technology to construct a comparative proteome profile for mouse testis at specific time points (days 0, 7, 14, 21, 28, and 60 postpartum). We identified 362 differential protein spots corresponding to 257 different proteins. Further cluster analysis revealed 6 expression patterns, and bioinformatics analysis revealed that each pattern was related to many specific cell processes. Among them, 28 novel proteins with unknown functions neither in somatic cells nor germ cells were identified, 8 of which were found to be uniquely or highly expressed in mouse testes via comparison with the GNF SymAtlas database. Further, we randomly selected 7 protein spots and the above 8 novel proteins to verify the expression pattern via Western blotting and RT-PCR, and 6 proteins with little information in testis were further investigated to explore their cellular localization during spermatogenesis by performing immunohistochemistry for the mouse testis tissue. Taken together, the above results reveal an important proteome profile that is functional during the first wave of mouse spermatogenesis, and they provide a strong basis for further research.  相似文献   

12.
Exposure to a toxicant causes proteome alterations in an organism. In ecotoxicology, analysis of these changes may allow linking them to physiological and biochemical endpoints, providing insights into subcellular exposure effects and responses and, ultimately mechanisms of action. Based on this, useful protein markers of exposure can be identified. We investigated the proteome changes induced by the herbicides paraquat, diuron, and norflurazon in the green alga Chlamydomonas reinhardtii. Shotgun proteome profiling and spectral counting quantification in combination with G-test statistics revealed significant changes in protein abundance. Functional enrichment analysis identified protein groups that responded to the exposures. Significant changes were observed for 149-254 proteins involved in a variety of metabolic pathways. While some proteins and functional protein groups responded to several tested exposure conditions, others were affected only in specific cases. Expected as well as novel candidate markers of herbicide exposure were identified, the latter including the photosystem II subunit PsbR or the VIPP1 protein. We demonstrate that the proteome response to toxicants is generally more sensitive than the physiological and biochemical endpoints, and that it can be linked to effects on these levels. Thus, proteome profiling may serve as a useful tool for ecotoxicological investigations in green algae.  相似文献   

13.
14.
The proteome of Haemophilus influenzae strain Rd KW20 was analyzed by liquid chromatography (LC) coupled with ion trap tandem mass spectrometry (MS/MS). This approach does not require a gel electrophoresis step and provides a rapidly developed snapshot of the proteome. In order to gain insight into the central metabolism of H. influenzae, cells were grown microaerobically and anaerobically in a rich medium and soluble and membrane proteins of strain Rd KW20 were proteolyzed with trypsin and directly examined by LC-MS/MS. Several different experimental and computational approaches were utilized to optimize the proteome coverage and to ensure statistically valid protein identification. Approximately 25% of all predicted proteins (open reading frames) of H. influenzae strain Rd KW20 were identified with high confidence, as their component peptides were unambiguously assigned to tandem mass spectra. Approximately 80% of the predicted ribosomal proteins were identified with high confidence, compared to the 33% of the predicted ribosomal proteins detected by previous two-dimensional gel electrophoresis studies. The results obtained in this study are generally consistent with those obtained from computational genome analysis, two-dimensional gel electrophoresis, and whole-genome transposon mutagenesis studies. At least 15 genes originally annotated as conserved hypothetical were found to encode expressed proteins. Two more proteins, previously annotated as predicted coding regions, were detected with high confidence; these proteins also have close homologs in related bacteria. The direct proteomics approach to studying protein expression in vivo reported here is a powerful method that is applicable to proteome analysis of any (micro)organism.  相似文献   

15.
The MS/MS analysis by Electrospray ionization quadrupole-time of flight mass spectrometry (ESI-Q-TOF MS) was applied to identify proteins in proteome analysis of bacteria whose genomes are not known. The protein identification by ESI-Q-TOF MS was performed sequentially by database search and then de novo sequencing using MS/MS spectra. Soil bacteria having unanalyzed genome, Acinetobacter lwoffii K24 is an aniline degrading bacterium. In this report, we present the results of a comparison between the proteome profile of A. lwoffii K24 cultured in aniline- or succinate-containing media. Protein analysis was performed using two-dimensional gel electrophoresis (2-DE) with pH 3-10 immobilized pH gradient (IPG) strips followed by ESI-Q-TOF MS. More than 780 protein spots were detected by 2-DE from the soluble proteome. Forty-eight of these proteins were expressed exclusively in aniline cultured bacteria, and 81 proteins increased and 162 proteins decreased in aniline-cultured versus succinate cultured A. lwoffii K24. Internal amino acid sequences of 43 major protein spots were successfully determined by ESI-Q-TOF MS to try to identify the bacterial proteins responding to aniline culture condition. Since the A. lwoffii K24 genome is not yet sequenced, many proteins were found to be hypothetical. Comparative proteome analysis of the insoluble protein fractions showed that one novel protein that was strongly induced by succinate-cultured A. lwoffii K24 was repressed under aniline culture conditions. These results suggest that comprehensive analysis of bacterial proteomes by 2-DE and amino acid sequence analysis by ESI-Q-TOF MS is useful for understanding induced novel proteins of biodegrading bacteria.  相似文献   

16.
17.
Salinity together with waterlogging or flooding, a condition that occurs frequently in the field, can cause severe damage to crops. Combined flooding and salinity decreases the growth and survival of plants more than either stress alone. We report here the first proteomic analysis to investigate the global effects of saline flooding on multiple metabolic pathways. Soybean seedlings at the emergence (VE) stage were treated with 100 mM NaCl and flooded with water or 100 mM sodium chloride solution for 2 days. Proteins were extracted from hypocotyl and root samples and analyzed by two-dimensional gel electrophoresis followed by MALDI-TOF, MALDI-TOF/TOF mass spectrometry or immunoblotting. A total of 43 reproducibly resolved, differentially expressed protein spots visualized by Coomassie brilliant blue staining were identified by MALDI-TOF MS. Identities of several proteins were also validated by MS/MS analysis or immunoblot analysis. Twenty-nine proteins were upregulated, eight proteins were downregulated and six spots were newly induced. The identified proteins include well-known salt and flooding induced proteins as well as novel proteins expressed by the salinity-flooding combined stress. The comparative analysis identified changes at the proteome level that are both specific and part of a common or shared response. The identification of such differentially expressed proteins provides new targets for future studies that will allow assessment of their physiological roles and significance in the response of glycophytes to a combination of flooding and salinity.  相似文献   

18.
The microtubule (MT) cytoskeleton is essential for a variety of cellular processes. MTs are finely regulated by distinct classes of MT-associated proteins (MAPs), which themselves bind to and are regulated by a large number of additional proteins. We have carried out proteome analyses of tubulin-rich and tubulin-depleted MAPs and their interacting partners isolated from bovine brain. In total, 573 proteins were identified giving us unprecedented access to brain-specific MT-associated proteins from mammalian brain. Most of the standard MAPs were identified and at least 500 proteins have been reported as being associated with MTs. We identified protein complexes with a large number of subunits such as brain-specific motor/adaptor/cargo complexes for kinesins, dynein, and dynactin, and proteins of an RNA-transporting granule. About 25% of the identified proteins were also found in the synaptic vesicle proteome. Analysis of the MS/MS data revealed many posttranslational modifications, amino acid changes, and alternative splice variants, particularly in tau, a key protein implicated in Alzheimer’s disease. Bioinformatic analysis of known protein–protein interactions of the identified proteins indicated that the number of MAPs and their associated proteins is larger than previously anticipated and that our database will be a useful resource to identify novel binding partners.  相似文献   

19.
The first protein map was developed of Synechococcus sp. strain PCC 7942, a model organism for studies of photosynthesis, prokaryotic circadian rhythms, cell division, carbon-concentrating mechanisms, and adaptive responses to a variety of stresses. The proteome was analyzed by two-dimensional gel electrophoresis with subsequent MALDI-TOF mass spectroscopy and database analysis. Of the 140 analyzed protein spots, 110 were successfully identified as 62 different proteins, many of which occurred as multiple spots on the gel. The identified proteins participate in the major metabolic and cellular processes in cyanobacterial cells during the exponential growth phase. In addition, 14 proteins which were previously either unknown or considered to be hypothetical were shown to be true gene products in Synechococcus sp. strain PCC 7942. These results may be helpful for the annotation of the recently sequenced genome of this cyanobacterium, as well as for biochemical and physiological studies of Synechococcus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号