首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
棉花与番茄抗棉花黄萎病不依赖于Ve1   总被引:1,自引:0,他引:1  
黄萎病是我国棉花的主要病害之一,发掘抗病基因和阐明抗病机制是开展棉花抗病分子育种的基础.本研究将目前唯一的植物抗黄萎病主效基因Ve1分别在本氏烟和陆地棉中超量表达,以探讨其在防控棉花黄萎病中的价值.研究发现,Ve1基因在本氏烟中超量表达后并未对番茄大丽轮枝菌2个生理小种和棉花黄萎病菌产生明显抗性.RT-PCR分析表明,Ve1并不能激活烟草抗病相关基因的表达,推测本氏烟中可能不存在完整的Ve1介导的抗黄萎病信号路径.Ve1超量表达的转基因棉花接种棉花黄萎病菌"V991"后表现出与本氏烟类似的结果,同时发现,陆地棉对番茄大丽轮枝菌1号生理小种表现出高抗性.利用番茄抗/感黄萎病近等基因系"Craigella GCR218"/"Craigella GCR26"进一步研究发现,2个番茄材料均对棉花落叶型强致病力黄萎病菌"V991"免疫,这暗示番茄对棉花黄萎病菌的抗性不依赖于Ve1.分子鉴定表明,棉花黄萎病菌与番茄大丽轮枝菌1号和2号生理小种存在明显区别,番茄大丽轮枝菌1号和2号生理小种均属于非落叶型黄萎病菌.本研究中鉴定的棉花黄萎病菌均不含有ave1基因,这可能是在棉花中超量表达Ve1并不能增强其棉花黄萎病菌抗性的直接原因.通过病毒介导的基因沉默,在抑制GbSERK1的表达后能显著削弱海岛棉对黄萎病菌的抗性,证实"海7124"中存在类似于Ve1的下游抗病信号路径.本研究还对棉花类受体蛋白的进化以及Ve1抗病信号路径在棉花抗黄萎病机制研究中的价值进行了探讨.  相似文献   

2.
用β-葡萄糖苷酶水解大丽轮枝菌(Verticillium dahliae Kleb.)毒素中的多糖组份。发现经酶处理后的5个不同致病力类型的棉花黄萎病菌(大丽轮枝菌)菌株毒素都不能影响整个毒素复合物对棉花的致萎作用,表明毒素中的多糖组份在棉花的致萎作用中不占有重量地位。  相似文献   

3.
56种中药提取物对棉花黄萎病的防治效果研究   总被引:1,自引:0,他引:1  
为获得既能有效抑制棉花黄萎病致病菌(大丽轮枝菌)菌丝生长又可以提高棉花黄萎病防治效果的中药提取物,对56种中药提取物的抑菌活性及防治效果进行了筛选和鉴定。生长速率法测定结果显示,56种中药提取物中有26种在质量浓度为10 g/L时对大丽轮枝菌的菌丝生长抑制率可达到50%以上,主要集中在五味子、铁箍散、华盖木和黄苞大戟等9种植物提取物中。进一步用这些中药提取物处理棉花植株,统计病情指数和防治效果发现,黑龙江产五味子(北五味子)的氯仿∶丙酮=3∶2(V/V)段提取物对棉花黄萎病有显著的防治效果。茎切片观察发现,该提取物可以有效抑制大丽轮枝菌引起的维管束褐化症状,且棉花整株表现为黄萎病落叶症状得到缓解。上述研究表明,黑龙江产五味子的氯仿∶丙酮=3∶2段提取物不仅可以有效抑制大丽轮枝菌的菌丝生长,而且可以提高棉花黄萎病的防治效果,降低维管束褐化并缓解发病程度。  相似文献   

4.
[目的]初步明确高毒菌株VDG1特异片段SCF73与大丽轮枝菌致病力的关系.[方法]通过比较基因组学分析和PCR鉴定,明确大丽轮枝菌高毒菌株VDG1相对于低毒菌株VDG2的特异片段SCF73 ;构建SCF73片段敲除质粒,导入农杆菌AGL-1,应用农杆菌介导法转化大丽轮枝菌VDG1,抗性筛选和PCR扩增鉴定SCF73敲除转化子 ;利用果胶、纤维素和淀粉培养基模拟分析ΔSCF73降解细胞壁组分的能力,采用定量蘸根接种法鉴定其对感病棉种军棉1号的致病力.[结果]确定了大丽轮枝菌VDG1的特异片段SCF73,长度为27.1 kb,预测编码5个基因,推测2个基因具有水解酶功能 ;筛选获得了3个ΔSCF73突变株 ;突变株利用细胞壁组分的能力与野生型菌株VDG1相比无显著差异 ;突变株对感病棉种军棉1号的致病力显著减弱.[结论]高毒力菌株VDG1特异片段SCF73在大丽轮枝菌致病过程中具有重要作用.  相似文献   

5.
越来越多的研究表明,微丝骨架参与植物先天免疫过程,但是其作用机制尚不明确.本研究发现,棉花(Gossypium spp.)的profilin基因(GhPFN2)在大丽轮枝菌(Verticillium dahliae)侵染条件下表达水平上调,推测GhPFN2可能参与棉花应答黄萎病过程.当棉花根部侵染大丽轮枝菌后,根表皮细胞中微丝的密度和成束度显著增加.与野生型相比,过量表达GhPFN2棉花对黄萎病的耐受性提高,并且棉花根部微丝骨架高级结构与野生型受到大丽轮枝菌侵染后的表型一致.这些结果表明,GhPFN2能够介导微丝骨架的重排,进而参与棉花抵御大丽轮枝菌的侵染过程.  相似文献   

6.
海岛棉几丁质酶基因GbCHI的克隆与功能分析   总被引:1,自引:0,他引:1  
Ma YP  Wang FX  Yang CL  Shen FF  Xia GX 《遗传》2012,34(2):240-247
几丁质酶是植物主要的病程相关(PR)蛋白之一。前期工作中利用比较蛋白质组学方法,从海岛棉7124根部蛋白中分离到一个IV型几丁质酶(GbCHI)。文章通过同源克隆获得了海岛棉GbCHI基因的cDNA序列,并对该基因的表达特征及其蛋白的抑菌功能进行了分析鉴定。qRT-PCR实验结果表明GbCHI基因在棉花根、茎、叶、花和胚珠中均有表达,其表达受大丽轮枝菌、水杨酸(SA)、乙烯(ACC)和茉莉酸(JA)诱导;亚细胞定位分析显示GbCHI蛋白主要分布在细胞膜上;体外抑菌实验证明GbCHI蛋白能显著抑制大丽轮枝菌孢子的萌发和菌丝的生长。这些研究结果为了解GbCHI的功能及其在抗黄萎病棉花分子育种中的应用提供了实验依据和思路。  相似文献   

7.
几丁质酶是植物主要的病程相关(PR)蛋白之一。前期工作中利用比较蛋白质组学方法, 从海岛棉7124根部蛋白中分离到一个IV型几丁质酶(GbCHI)。文章通过同源克隆获得了海岛棉GbCHI基因的cDNA序列, 并对该基因的表达特征及其蛋白的抑菌功能进行了分析鉴定。qRT-PCR实验结果表明GbCHI基因在棉花根、茎、叶、花和胚珠中均有表达, 其表达受大丽轮枝菌、水杨酸(SA)、乙烯(ACC)和茉莉酸(JA)诱导; 亚细胞定位分析显示GbCHI蛋白主要分布在细胞膜上; 体外抑菌实验证明GbCHI蛋白能显著抑制大丽轮枝菌孢子的萌发和菌丝的生长。这些研究结果为了解GbCHI的功能及其在抗黄萎病棉花分子育种中的应用提供了实验依据和思路。  相似文献   

8.
高效大丽轮枝菌(Verticillium dahliae) 基因敲除体系的构建   总被引:2,自引:0,他引:2  
[目的]为了深入研究大丽轮枝菌(Verticillium dahliae)致病基因的功能,构建高效大丽轮枝菌基因敲除体系.[方法]融合PCR构建基因敲除载体;利用农杆菌介导法转化大丽轮枝菌;使用在T-DNA之间加入致死基因的双元载体,使T-DNA随机插入转化子在添加5-氟脱氧尿苷的培养基上不能存活,实现对随机插入转化子的"反向筛选".[结果]对大丽轮枝菌腺嘌呤合成酶基因和几丁质合成酶基因进行基因敲除验证,基因敲除转化子在总转化子中的比例分别达到87%和44%.[结论]成功构建大丽轮枝菌高效基因敲除体系,为大丽轮枝菌致病基因的功能验证提供了技术平台.  相似文献   

9.
黄萎病不同发生程度棉田中土壤微生物多样性   总被引:6,自引:1,他引:5  
刘海洋  姚举  张仁福  王伟  余璇  王琦 《生态学报》2018,38(5):1619-1629
作物根际土壤微生物群落对土壤生态及作物健康至关重要。以棉花黄萎病不同发生程度棉田的土壤为研究对象,采用理化分析、微生物纯培养及高通量测序技术对土壤理化性质及微生物数量、细菌丰度多样性进行综合分析。结果表明:在纯培养条件下,大丽轮枝菌无菌发酵滤液对细菌生长有明显的抑制作用;棉田接种大丽轮枝菌对土壤中细菌、真菌、放线菌的数量及细菌菌群丰度多样性未产生明显影响,不同采样时间的土壤中细菌菌群结构差异更大。土壤中大丽轮枝菌微菌核数量与棉花黄萎病的发生程度呈显著正相关。土壤肥力对土壤中微生物数量起主导作用,而水稻-棉花轮作能够使棉田有效降盐、减病、改善土壤肥力。通过生物防治、作物轮作、深翻等调控措施增加土壤中有益菌群数量、改善土壤生态、降低棉田土壤中大丽轮枝菌菌源数量是减轻棉花黄萎病危害的基础。  相似文献   

10.
大丽轮枝菌是一种土传性植物病原真菌,可侵染多种植物并引发黄萎病。目前,人们关于大丽轮枝菌的侵染和致病机制的了解还很不深入。本文通过敲除大丽轮枝菌编码丝氨酸/苏氨酸的蛋白激酶基因VdSCH9,阐明了其在大丽轮枝菌生长发育及致病过程中的作用。SCH9基因在酵母中的表达与cAMP-PKA途径和TOR信号通路相关,对酵母的生长、压力响应和寿命等有重要作用。大丽轮枝菌VdSCH9敲除突变体的生长速率显著下降,菌落边缘菌丝更为稀疏,菌丝分枝减少,对棉花植株为害的平均病情指数为56.6,显著低于野生型和互补突变体的平均病情指数90.5和82.8,对茄子植株为害的平均病情指数为65.9,也显著低于野生型和互补突变体的平均病情指数91.1和89.8。另外,敲除突变体对于高渗透压、氧化还原压力、细胞膜和细胞壁完整性等压力条件的敏感性增强。因此,VdSCH9对于大丽轮枝菌的生长、压力响应及致病力均有重要作用。  相似文献   

11.

Background  

The soil-borne fungal pathogen Verticillium dahliae Kleb causes Verticillium wilt in a wide range of crops including cotton (Gossypium hirsutum). To date, most upland cotton varieties are susceptible to V. dahliae and the breeding for cotton varieties with the resistance to Verticillium wilt has not been successful.  相似文献   

12.
Wilt caused by Verticillium dahliae significantly reduces cotton yields, as host resistance in commercially cultivated Gossypium species is lacking. Understanding the molecular basis of disease resistance in non‐commercial Gossypium species could galvanize the development of Verticillium wilt resistance in cultivated species. Nucleotide‐binding site leucine‐rich repeat (NBS‐LRR) proteins play a central role in plant defence against pathogens. In this study, we focused on the relationship between a locus enriched with eight NBS‐LRR genes and Verticillium wilt resistance in G. barbadense. Independent virus‐induced gene silencing of each of the eight NBS‐LRR genes in G. barbadense cultivar Hai 7124 revealed that silencing of GbaNA1 alone compromised the resistance of G. barbadense to V. dahliae isolate Vd991. In cultivar Hai 7124, GbaNA1 could be induced by V. dahliae isolate Vd991 and by ethylene, jasmonic acid and salicylic acid. Nuclear protein localization of GbaNA1 was demonstrated by transient expression. Sequencing of the GbaNA1 orthologue in nine G. hirsutum accessions revealed that all carried a non‐functional allele, caused by a premature peptide truncation. In addition, all 10 G. barbadense and nine G. hirsutum accessions tested carried a full‐length (~1140 amino acids) homologue of the V. dahliae race 1 resistance gene Gbve1, although some sequence polymorphisms were observed. Verticillium dahliae Vd991 is a non‐race 1 isolate that lacks the Ave1 gene. Thus, the resistance imparted by GbaNA1 appears to be mediated by a mechanism distinct from recognition of the fungal effector Ave1.  相似文献   

13.
Verticillium wilt is a disastrous disease in cotton-growing regions in China. As a common management method, cotton rotation with cereal crops is used to minimize the loss caused by Verticillium dahliae. However, the correlation between soil microbiome and the control of Verticillium wilt under a crop rotation system is unclear. Therefore, three cropping systems (fallow, cotton continuous cropping, and cotton–maize rotation) were designed and applied for three generations under greenhouse conditions to investigate the different responses of the soil microbial community. The soil used in this study was taken from a long-term cotton continuous cropping field and inoculated with V. dahliae before use. Our results showed that the diversity of the soil bacterial community was increased under cotton–maize rotation, while the diversity of the fungal community was obviously decreased. Meanwhile, the structure and composition of the bacterial communities were similar even under the different cropping systems, but they differed in the soil fungal communities. Through microbial network interaction analysis, we found that Verticillium interacted with 17 bacterial genera, among which Terrabacter had the highest correlation with Verticillium. Furthermore, eight fungal and eight bacterial species were significantly correlated with V. dahliae. Collectively, this work aimed to study the interactions among V. dahliae, the soil microbiome, and plant hosts, and elucidate the relationship between crop rotation and soil microbiome, providing a new theoretical basis to screen the biological agents that may contribute to Verticillium wilt control.  相似文献   

14.
Verticillium wilt is a devastating disease of a wide range of herbaceous and woody plant hosts, incited by the soilborne fungus Verticillium dahliae. In the present study, the effect of the potential biocontrol isolate Paenibacillus alvei, strain K165, on the germination of V. dahliae microsclerotia (msc) was investigated. Strain K165 was isolated from tomato root tips and its activity against V. dahliae has been shown in glasshouse and field experiments. In the present study, the application of K165 resulted in the reduction of msc germination of V. dahliae, in the root tips and the zone of elongation, of eggplants by 50% compared to the control treatment; whereas 10 and 12 cm away from root tips and in soil without plants the percentage of msc germination was reduced by 26% and 40%, respectively. However, K165 did not significantly affect the number and length of hyphae per germinated msc. In a split-root system, K165 triggered induced systemic resistance in eggplants against V. dahliae by reducing disease severity and msc germination by 27% and 20%, respectively. In addition, K165 colonised the rhizosphere of eggplants and soil in a population density of 5 and 3 log10 cfu g−1, 7 dpi, respectively. This is the first report of evaluating the direct/indirect effect of a rhizospheric bacterium on msc germination in the rhizosphere of eggplants, indicating that strain K165 reduces msc germination.  相似文献   

15.
The wilt defense reaction of cotton is a complicated continuous process and involves a battery of genes. In this study, we adopted the suppression subtractive hybridization (SSH) technique to isolate differentially expressed ESTs from Gossypium barbadense variety 7124 during the Verticillium wilt defense process. An array of 1165 clones from the subtractive library has been screened with reverse northern blotting, of which 131 ESTs were considered as overexpressed and 16 ESTs were downregulated. Sequence analysis and blast search showed that 83 ESTs were homologous to 45 unique sequences in the databases. Among all these differentially expressed ESTs, at least three kinds of genes were characterized. The majority of ESTs with a deduced identity as aerobic metabolism enzymes were strongly expressed in the infection process. Likewise, ESTs similar to those reported for pathogen-related protein genes were also picked out in this study. These ESTs, in combination with other kinase-like genes and a defensin-like EST, constituted an assembly of genes which responded during pathogenic infection. These results imply that sea-island cotton undergoes strong oxidative stress and results in a series of defense responses when attacked by V. dahliae. To our knowledge, this is the first report on the isolation of global ESTs during the sea-island cotton defense reaction.__________From Molekulyarnaya Biologiya, Vol. 39, No. 2, 2005, pp. 214–223.Original English Text Copyright © 2005 by Zuo, Wang, Wu, Chai, Sun, Tang.This article was submitted by the authors in English.  相似文献   

16.
Verticillium dahliae infection leads to Verticillium wilt in cotton and other dicotyledon crops. To reduce the loss of economic crops, more attention has been focused on the key genes involved in pathogenicity of this soil‐borne plant fungal pathogen. Sho1 encodes a conserved tetraspan transmembrane protein which is a key element of the two upstream branches of the HOG‐MAPK pathway in fungi. Sho1 is required for full virulence in a wide variety of pathogenic fungi. In this study, sho1 mutant in V. dahliae (designated ΔVdsho1) was generated by Agrobacterium tumefaciens‐mediated transformation. ΔVdsho1 strain was highly sensitive to menadione (at concentration of 120 μm ) and hydrogen peroxide (at concentration of 250 μm ), displayed delayed spore germination and reduced spore production compared with the wild type and the complemented strains. During infection of host cotton plants, ΔVdsho1 exhibited impaired ability of root attachment and invasive growth. Results from the present work suggest that VdSho1 controls external sensing, virulence and multiple growth‐related traits in V. dahliae and might serve as a potential target for control of Verticillium wilt.  相似文献   

17.
18.
Summary Verticillium wilt resistant A 66 107-51 and susceptible Russet Burbank potatoes differentially influenced populations of rhizosphere and rhizoplane bacteria. Although differences in total bacteria between the two genotypes were not significantly different, selective differences were evident. These included increases in bacteria antagonistic in vitro toward Verticillium dahliae strain RB 5, and bacteria capable of fixing nitrogen that were more commonly associated with the wilt-resistant potato. Bacteria that were antagonistic to V. dahliae were predominantly Bacillus spp. Other antagonists were species of Pseudomonas, Gluconobacter, Flavobacterium, and Streptomyces. Nitrogen-fixing bacteria were Azotobacter and Azomonas spp. The suppression of Verticillium wilt in Russet Burbank during the growing season following the planting of A 66 107-51 may, in part, be explained by the above findings.  相似文献   

19.
Verticillium wilt caused by soilborne fungus Verticillium dahliae could significantly reduce cotton yield. Here, we cloned a tomato Ve homologous gene, Gbve1, from an island cotton cultivar that is resistant to Verticillium wilt. We found that the Gbve1 gene was induced by V. dahliae and by phytohormones salicylic acid, jasmonic acid, and ethylene, but not by abscisic acid. The induction of Gbve1 in resistant cotton was quicker and stronger than in Verticillium-susceptible upland cotton following V. dahliae inoculation. Gbve1 promoter-driving GUS activity was found exclusively in the vascular bundles of roots and stems of transgenic Arabidopsis. Virus-induced silencing of endogenous genes in resistant cotton via targeting a fragment of the Gbve1 gene compromised cotton resistance to V. dahliae. Furthermore, we transformed the Gbve1 gene into Arabidopsis and upland cotton through Agrobacterium-mediated transformation. Overexpression of the Gbve1 gene endowed transgenic Arabidopsis and upland cotton with resistance to high aggressive defoliating and non-defoliating isolates of V. dahliae. And HR-mimic cell death was observed in the transgenic Arabidopsis. Our results demonstrate that the Gbve1 gene is responsible for resistance to V. dahliae in island cotton and can be used for breeding cotton varieties that are resistant to Verticillium wilt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号