首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p70 S6 kinase, a major insulin-mitogen-activated ribosomal S6 protein kinase in mammalian cells, is activated by phosphorylation of multiple Ser/Thr residues on the enzyme polypeptide. A synthetic peptide, corresponding to a 37-residue segment from the carboxyl-terminal tail of the kinase which resembles the sequence phosphorylated in S6, acts as a competitive inhibitor of p70 S6 kinase without itself being phosphorylated by the enzyme. This synthetic peptide is phosphorylated by an array of protein kinases which are rapidly activated by insulin. Thus, these sequences of p70 S6 kinase constitute a potential autoinhibitory pseudosubstrate site, whose phosphorylation is catalyzed by candidate upstream-activating protein kinases.  相似文献   

2.
3.
BACKGROUND: The p70 S6 kinase, like several other AGC family kinases, requires for activation the concurrent phosphorylation of a site on its activation loop and a site carboxyterminal to the catalytic domain, situated in a hydrophobic motif site FXXFS/TF/Y, e.g.,Thr412 in p70 S6 kinase (alpha 1). Phosphorylation of the former site is catalyzed by PDK1, whereas the kinase responsible for the phosphorylation of the latter site is not known. RESULTS: The major protein kinase that is active on the p70 S6 kinase hydrophobic regulatory site, Thr412, was purified from rat liver and identified as the NIMA-related kinases NEK6 and NEK7. Recombinant NEK6 phosphorylates p70 S6 kinase at Thr412 and other sites and activates the p70 S6 kinase in vitro and in vivo, in a manner synergistic with PDK1. Kinase-inactive NEK6 interferes with insulin activation of p70 S6 kinase. The activity of recombinant NEK6 is dependent on its phosphorylation, but NEK6 activity is not regulated by PDK1 and is only modestly responsive to insulin and PI-3 kinase inhibitors. CONCLUSION: NEK6 and probably NEK7 are novel candidate physiologic regulators of the p70 S6 kinase.  相似文献   

4.
An insulin-stimulated phosphorylation cascade was examined in rat liver after insulin injection via a portal vein by the use of immune complex kinase assays specific to the mitogen-activated protein (MAP) kinase and S6 kinase II homologue (rsk) kinase. We have prepared an antibody against the peptide consisting of a carboxyl-terminal portion of the extracellular signal-regulated kinase 1 (alpha C92), one of the MAP kinases, and an antibody against the peptide consisting of the carboxyl terminus of the mouse S6 kinase II homologue (alpha rsk(m)C). In alpha C92 immune complex assay, maximal activation of rat liver MAP kinases (approximately 4.3-fold) were observed 4.5 min after insulin injection. We also observed an insulin-stimulated MAP kinase activity (approximately 3-fold) in liver extracts from insulin-treated rat in fractions eluted from phenyl-Sepharose with 30-50% ethylene glycol. Kinase assay in myelin basic protein (MBP)-containing gel after sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by denaturation with 6 M guanidine HCl, and renaturation revealed that insulin injection stimulated the kinase activity of the 42- and 44-kDa proteins, which corresponded to the two distinct MAP kinases. In alpha rsk(m)C immune complex assay, maximal stimulation (approximately 5-fold) of the S6 peptide (Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala) kinase activity was observed 7.5 min after insulin injection. In addition, MAP kinases purified from insulin-treated rat liver were able to activate S6 peptide kinase activity in vitro in alpha rsk(m)C immunoprecipitates from untreated rat liver, accompanied by the appearance of several phosphorylated bands including a major band at 88 kDa. We also examined whether insulin injection stimulates the MAP kinase activator (Ahn, N. G., Seger, R., Bratlien, R. L., Diltz, C. D., Tonks, N. K., and Krebs, E. G. (1991) J. Biol. Chem. 266, 4220-4227) in rat liver. Using recombinant Xenopus MAP kinase, fractions of Q-Sepharose eluted early in the NaCl gradient were found to have MAP kinase activator activity accompanied by the phosphorylation of 42-kDa recombinant Xenopus MAP kinase. From these data, we demonstrate three tiers of a cascade composed of the MAP kinase activator, MAP kinases, and an S6 peptide kinase activity in rat liver under physiological conditions in the intact animal.  相似文献   

5.
The carboxyl-terminal domain (CTD) of the p90 ribosomal S6 kinases (RSKs) is an important regulatory domain in RSK and a model for kinase regulation of FXXFXF(Y) motifs in AGC kinases. Its properties had not been studied. We reconstituted activation of the CTD in Escherichia coli by co-expression with active ERK2 mitogen-activated protein kinase (MAPK). GST-RSK2-(aa373-740) was phosphorylated in the P-loop (Thr(577)) by MAPK, accompanied by increased phosphorylation on the hydrophobic motif site, Ser(386). Activated GST-RSK2-(aa373-740) phosphorylates synthetic peptides based on Ser(386). The peptide RRQLFRGFSFVAK, which was termed CTDtide, was phosphorylated with K(m) and V(max) values of approximately 140 microm and approximately 1 micromol/min/mg, respectively. Residues Leu at p -5 and Arg at p -3 are important for substrate recognition, but a hydrophobic residue at p +4 is not. RSK2 CTD is a much more selective peptide kinase than MAPK-activated protein kinase 2. CTDtide was used to probe regulation of hemagglutinin-tagged RSK proteins immunopurified from epidermal growth factor-stimulated BHK-21 cells. K100A but not K451A RSK2 phosphorylates CTDtide, indicating a requirement for the CTD. RSK2-(aa1-389) phosphorylates the S6 peptide, and this activity is inactivated by S386A mutation, but RSK2-(aa1-389) does not phosphorylate CTDtide. In contrast, RSK2-(aa373-740) containing only the CTD phosphorylates CTDtide robustly. Thus, CTDtide is phosphorylated by the CTD but not the NH(2)-terminal domain (NTD). Epidermal growth factor activates the CTD and NTD in parallel. Activity of the CTD for peptide phosphorylation correlates with Thr(577) phosphorylation. CTDtide activity is constrained in full-length RSK2. Interestingly, mutation of the conserved lysine in the ATP-binding site of the NTD completely eliminates S6 kinase activity, but a similar mutation of the CTD does not completely ablate kinase activity for intramolecular phosphorylation of Ser(386), even though it greatly reduces CTDtide activity. The standard lysine mutation used routinely to study kinase functions in vivo may be unsatisfactory when the substrate is intramolecular or in a tight complex.  相似文献   

6.
The co-chaperone murine stress-inducible protein 1 (mSTI1), a Hsp70/Hsp90 organizing protein (Hop) homolog, functions as a physical link between Hsp70 and Hsp90 by mediating the formation of the mSTI1/ Hsp70/Hsp90 chaperone heterocomplex. We show here that mSTI1 is an in vitro substrate of cell cycle kinases. Casein kinase II (CKII) phosphorylates mSTI1 at S189, and cdc2 kinase (p34cdc2) at T198, substantiating a predicted CKII-p34cdc2-NLS (CcN) motif. The possible implications of this phosphorylation as a cell cycle checkpoint are discussed.  相似文献   

7.
The subcellular distribution and regulation of MAP kinase isoforms in chicken hepatoma DU249 cells was investigated with antibodies directed against peptides patterned after sequences in the mitogen-activated protein (MAP) kinases, sea star p44mpk, and rat p44erk1. MonoQ chromatography of cytosol from these cells afforded the resolution of at least four peaks of myelin basic protein (MBP) phosphotransferase activity, but only one of these (peak II) was stimulated in extracts from phorbol ester-treated cells. A 40- to 41-kDa (p41) doublet on Western blots detected with three different MAP kinase antibodies was coincident with peak II, and it probably corresponded to the avian homolog of p42mapk/erk2. Immunofluorescent studies with DU249 cells and chicken embryo fibroblasts revealed that most of the cross-reactive protein with at least two different MAP kinase antibodies was distributed in the nucleus. Subcellular fractionation studies confirmed a predominantly nuclear localization for p41 MAP kinase. Nocodazole arrest of DU249 cells was exploited for the detection of an M-phase-activated MBP kinase that was resolved from p41 MAP kinase by phenyl-Superose chromatography. Western blotting analysis with antibodies for the cdc2-encoded protein kinase and p13suc1-agarose binding studies allowed positive identification of this MBP kinase as p34cdc2.  相似文献   

8.
During early development gene expression is controlled principally at the translational level. Oocytes of the surf clam Spisula solidissima contain large stockpiles of maternal mRNAs which are translationally dormant or masked until meiotic maturation. Fertilisation of the oocyte leads to rapid polysomal recruitment of the abundant cyclin and ribonucleotide reductase mRNAs at about the time they undergo cytoplasmic polyadenylation. Clam p82, a 3' UTR RNA-binding protein, and a member of the CPEB (cytoplasmic polyadenylation element binding protein) family, functions as a translational masking factor in oocytes and as a polyadenylation factor in fertilised eggs. In meiotically maturing clam oocytes, p82/CPEB is rapidly phosphorylated on multiple residues to a 92-kDa apparent size, prior to its degradation during the first cell cleavage. Here we examine the protein kinase(s) that phosphorylates clam p82/CPEB using a clam oocyte activation cell-free system that responds to elevated pH, mirroring the pH rise that accompanies fertilisation. We show that p82/CPEB phosphorylation requires Ca2+ (<100 microM) in addition to raised pH. Examination of the calcium dependency combined with the use of specific inhibitors implicates the combined and independent actions of cdc2 and MAP kinases in p82/CPEB phosphorylation. Calcium is necessary for both the activation and the maintenance of MAP kinase, whose activity is transient in vitro, as in vivo. While cdc2 kinase plays a role in the maintenance of MAP kinase activity, it is not required for the activation of MAP kinase. We propose a model of clam p82/CPEB phosphorylation in which MAP kinase initially phosphorylates clam p82/CPEB, at a minor subset of sites that does not alter its migration, and cdc2 kinase is necessary for the second wave of phosphorylation that results in the large mobility size shift of clam p82/CPEB. The possible roles of phosphorylation for the function and regulation of p82/CPEB are discussed.  相似文献   

9.
Cys-cdc2(8-20), a synthetic peptide derived from p34cdc2, was previously reported to be a specific and efficient substrate of a pp60c-src-related tyrosine kinase isolated from bovine spleen (the spleen tyrosine kinase) (Litwin, C.M.E., Cheng, H.-C., and Wang, J.H. (1991) J. Biol. Chem. 266, 2557-2566). The longer peptide, cdc2(1-24), was found to be phosphorylated by the kinase with similar efficiency, and Tyr15 was the only amino acid residue phosphorylated. This indicated that the amino acid sequence of cdc2(8-20) peptide, EKI-GEGTYGVVYK, contained the structural features important for protein tyrosine kinase substrate activity. A stepwise procedure using synthetic peptides was employed to investigate such structural features. First, a computer search of protein sequences homologous to cdc2(8-20) uncovered five protein kinases containing homologous sequence with tyrosine at a position corresponding to Tyr15 of p34cdc2. Second, a peptide derived from ribosomal S6 protein kinase (rsk(436-456] was synthesized. The rsk(436-456) peptide contained a segment, ETIGVGSYSVCKR, which is highly homologous to that of cdc2(8-20). It was found to be a very poor substrate of the spleen tyrosine kinase. Third, peptide analogs of cdc2(6-20) with single substitutions of amino acid residues Lys9, Glu12, Thr14, Gly16, Val18, and Tyr19 by amino acid residues at corresponding positions of rsk were synthesized and tested as spleen tyrosine kinase substrates. Only Glu12 and Thr14 substituted peptide analogs showed decreased substrate activities. (The substrate activity of a peptide is the ability of the peptide to serve as the substrate of the spleen tyrosine kinase. It was determined of the spleen tyrosine kinase. It was determined either by the kinetic parameters (Km and Vmax) of phosphorylation of the peptide or by the initial phosphorylation rate of the peptide by the spleen tyrosine kinase.) An analog with double substitution at Glu12 An analog with double substitution at Glu12 and Thr14 was found to be almost as poor a substrate as the rsk peptide. In addition, peptide analogs with Tyr15 substituted by Phe or D-Tyr had poor substrate activities as well as weak inhibitory activities. Thus, Glu12, Thr14, and Tyr15 residues of p34cdc2 contained structural components essential for the efficient phosphorylation of the peptides derived from p34cdc2 by the pp60c-src-related spleen tyrosine kinase.  相似文献   

10.
Phosphorylation of the TNF-alpha receptor TNF-R1 has been shown to differentially regulate receptor signaling and function and promote changes in its subcellular localization. Previous studies have shown that p42(mapk/erk2) phosphorylates Ser and Thr residues (T236, S240, S244, and S270) in the membrane proximal region of TNF-R1 and that mutation of these residues to Glu and Asp residues (TNF-R1.4D/E) mimics the effect of phosphorylation on receptor signaling and localization. In the present study, we investigated whether the initial phosphorylation of these residues by p42(mapk/erk2) promotes hierarchical phosphorylation of additional sites within the cytoplasmic domain of TNF-R1. This question was addressed by investigating the ability of the TNF-R1.4D/E mutant receptor to be phosphorylated in in vitro kinase assays using GST-mutant cytoplasmic domain fusion proteins as substrates and in intact cells following mutant receptor expression. In addition, we determined the location of the additional phosphorylation sites. Incubation of Sepharose bead-bound GST-TNF-R1(207)(-)(425).4D/E fusion protein with lysates containing activated p42(mapk/erk2) led to the phosphorylation of Ser and Thr residues in addition to the previously defined sites at T236, S240, S244, and S270. Deletional mutagenesis localized these residues to a stretch of 14 amino acids that encompasses three basic Pro-directed ([S/T]P) kinase consensus sequences located between residues S256 and T267. Point mutagenesis of T257, S262, and T267 to Ala residues indicated that these sites are targets of phosphorylation by p42(mapk/)(erk2). These findings support the conclusion that p42(mapk/erk2) promotes extensive phosphorylation of the membrane proximal region in a hierarchical fashion at both consensus and nonconsensus ERK-phosphorylation sites.  相似文献   

11.
We previously reported that p70 S6 kinase takes part in bone morphogenetic protein-4 (BMP-4)-stimulated vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. Recently, we showed that BMP-4-induced osteocalcin synthesis is regulated by p44/p42 MAP kinase and p38 MAP kinase in these cells. In the present study, we investigated whether the MAP kinases are involved in the BMP-4-stimulated synthesis of VEGF in MC3T3-E1 cells. PD-98059 and U-0126, inhibitors of the upstream kinase of p44/p42 MAP kinase, failed to affect BMP-4-stimulated VEGF synthesis. SB-203580 and PD-169316, inhibitors of p38 MAP kinase, significantly reduced VEGF synthesis, whereas SB-202474, a negative control for p38 MAP kinase inhibitor, had little effect on VEGF synthesis. The BMP-4-stimulated phosphorylation of p38 MAP kinase was not affected by rapamycin, an inhibitor of p70 S6 kinase. On the contrary, SB-203580 and PD-169316 reduced the BMP-4-stimulated phosphorylation of p70 S6 kinase. In addition, anisomycin, an activator of p38 MAP kinase, phosphorylates p70 S6 kinase, and the phosphorylation was suppressed by SB-203580. LY-294002, an inhibitor of phosphatidylinositol 3-kinase, failed to suppress the phosphorylation of p38 MAP kinase induced by BMP-4. Not BMP-4 but anisomycin weakly induced the phosphorylation of phosphoinositide-dependent kinase-1. However, anisomycin had little effect on phosphorylation of either Akt or the mammalian target of rapamycin. Taken together, our results suggest that p38 MAP kinase functions in BMP-4-stimulated VEGF synthesis as a positive regulator at a point upstream from p70 S6 kinase in osteoblasts.  相似文献   

12.
Activation of p70 S6 kinase (p70(S6K)) by growth factors requires multiple signal inputs involving phosphoinositide 3-kinase (PI3K), its effector Akt, and an unidentified kinase that phosphorylates Ser/Thr residues (Ser(411), Ser(418), Ser(424), and Thr(421)) clustered at its autoinhibitory domain. However, the mechanism by which G protein-coupled receptors activate p70(S6K) remains largely uncertain. By using vascular smooth muscle cells in which we have demonstrated Ras/extracellular signal-regulated kinase (ERK) activation through Ca(2+)-dependent, epidermal growth factor (EGF) receptor transactivation by G(q)-coupled angiotensin II (Ang II) receptor, we present a unique cross-talk required for Ser(411) phosphorylation of p70(S6K) by Ang II. Both p70(S6K) Ser(411) and Akt Ser(473) phosphorylation by Ang II appear to involve EGF receptor transactivation and were inhibited by dominant-negative Ras, whereas the phosphorylation of p70(S6K) and ERK but not Akt was sensitive to the MEK inhibitor. By contrast, the phosphorylation of p70(S6K) and Akt but not ERK was sensitive to PI3K inhibitors. Similar inhibitory pattern on these phosphorylation sites by EGF but not insulin was observed. Taken together with the inhibition of Ang II-induced p70(S6K) activation by dominant-negative Ras and the MEK inhibitor, we conclude that Ang II-initiated activation of p70(S6K) requires both ERK cascade and PI3K/Akt cascade that bifurcate at the point of EGF receptor-dependent Ras activation.  相似文献   

13.
p90 ribosomal S6 kinases (RSKs), containing two distinct kinase catalytic domains, are phosphorylated and activated by extracellular signal-regulated kinase (ERK). The amino-terminal kinase domain (NTD) of RSK phosphorylates exogenous substrates, whereas the carboxyl-terminal kinase domain (CTD) autophosphorylates Ser-386. A conserved putative autoinhibitory alpha helix is present in the carboxyl-terminal tail of the RSK isozymes ((697)HLVKGAMAATYSALNR(712) of RSK2). Here, we demonstrate that truncation (Delta alpha) or mutation (Y707A) of this helix in RSK2 resulted in constitutive activation of the CTD. In vivo, both mutants enhanced basal Ser-386 autophosphorylation by the CTD above that of wild type (WT). The enhanced Ser-386 autophosphorylation was attributed to disinhibition of the CTD because a CTD dead mutation (K451A) eliminated Ser-386 autophosphorylation even in conjunction with Delta alpha and Y707A. Constitutive activity of the CTD appears to enhance NTD activity even in the absence of ERK phosphorylation because basal phosphorylation of S6 peptide by Delta alpha and Y707A was approximately 4-fold above that of WT. A RSK phosphorylation motif antibody detected a 140-kDa protein (pp140) that was phosphorylated upon epidermal growth factor or insulin treatment. Ectopic expression of Delta alpha or Y707A resulted in increased basal phosphorylation of pp140 compared with that of WT, presenting the possibility that pp140 is a novel RSK substrate. Thus, it is clear that the CTD regulates NTD activity in vivo as well as in vitro.  相似文献   

14.
BACKGROUND: Protein kinase B (PKB), and the p70 and p90 ribosomal S6 kinases (p70 S6 kinase and p90 Rsk, respectively), are activated by phosphorylation of two residues, one in the 'T-loop' of the kinase domain and, the other, in the hydrophobic motif carboxy terminal to the kinase domain. The 3-phosphoinositide-dependent protein kinase 1 (PDK1) activates many AGC kinases in vitro by phosphorylating the T-loop residue, but whether PDK1 also phosphorylates the hydrophobic motif and whether all other AGC kinases are substrates for PDK1 is unknown. RESULTS: Mouse embryonic stem (ES) cells in which both copies of the PDK1 gene were disrupted were viable. In PDK1(-/-) ES cells, PKB, p70 S6 kinase and p90 Rsk were not activated by stimuli that induced strong activation in PDK1(+/+) cells. Other AGC kinases - namely, protein kinase A (PKA), the mitogen- and stress-activated protein kinase 1 (MSK1) and the AMP-activated protein kinase (AMPK) - had normal activity or were activated normally in PDK1(-/-) cells. The insulin-like growth factor 1 (IGF1) induced PKB phosphorylation at its hydrophobic motif, but not at its T-loop residue, in PDK1(-/-) cells. IGF1 did not induce phosphorylation of p70 S6 kinase at its hydrophobic motif in PDK1(-/-) cells. CONCLUSIONS: PDK1 mediates activation of PKB, p70 S6 kinase and p90 Rsk in vivo, but is not rate-limiting for activation of PKA, MSK1 and AMPK. Another kinase phosphorylates PKB at its hydrophobic motif in PDK1(-/-) cells. PDK1 phosphorylates the hydrophobic motif of p70 S6 kinase either directly or by activation of another kinase.  相似文献   

15.
The cyclin-dependent kinase inhibitor p27Kip1 plays an important role in cell cycle regulation. The cyclin-dependent kinase-inhibitory activity of p27Kip1 is regulated by changes in its concentration and its subcellular localization. Several reports suggest that phosphorylation of p27Kip1 at serine 10, threonine 157, and threonine 187 regulate its localization. We have previously identified that carboxyl-terminal threonine 198 (Thr198) in p27Kip1 is a novel phosphorylation site and that Akt is associated with the phosphorylation at the site (Fujita, N., Sato, S., Katayama, K., and Tsuruo, T. (2002) J. Biol. Chem. 277, 28706-28713). We show herein that activation of the Ras/Raf/mitogen-activated protein kinase kinase (MAPK kinase/MEK) pathway also regulates phosphorylation of p27Kip1 at Thr198. MAPKs were not directly associated with p27Kip1 phosphorylation at Thr198, but the p90 ribosomal protein S6 kinases (RSKs) could bind to and directly phosphorylate p27Kip1 at Thr198 in a Ras/Raf/MEK-dependent manner. RSK-dependent phosphorylation promoted the p27Kip1 binding to 14-3-3 and its cytoplasmic localization. To prove the direct relationship between 14-3-3 binding and cytoplasmic localization, we constructed a p27Kip1-R18 fusion protein in which the R18 peptide was fused to the carboxyl-terminal region of p27Kip1. The R18 peptide is known to interact with 14-3-3 independent of phosphorylation. The p27Kip1-R18 distributed mainly in the cytosol, whereas mutant p27Kip1-R18 (p27Kip1-R18-K2) that had no 14-3-3 binding capability existed mainly in the nucleus. These results indicate that RSKs play a crucial role in cell cycle progression through translocation of p27Kip1, in addition to Akt, to the cytoplasm in a phosphorylation and 14-3-3 binding-dependent manner.  相似文献   

16.
The ribosomal protein S6 kinase 1 (S6K1) is emerging as a common downstream target of signalling by hormones and nutrients such as insulin and amino acids. Here, we have investigated how amino acids signal through the S6K1 pathway. First, we found that a commercial anti-phospho-Thr389-S6K1 antibody detects an 80-90 kDa protein that is rapidly phosphorylated in response to amino acids. Unexpectedly, this phosphorylation was insensitive to both mTOR and PI-3 kinase inhibitors, and knockdown experiments showed that this protein was not S6K1. Looking for candidate targets of this phosphorylation, we found that amino acids stimulated phosphorylation of RSK and MSK kinases at residues that are homologous to Thr389 in S6K1. In turn, these phosphorylations required the activity of either p38 or ERK MAP kinases, which could compensate for each other. Moreover, we show that these MAP kinases are also needed for the amino acid-induced phosphorylation of S6K1 at Thr421/Ser424, as well as for that of S6K1 substrate, the S6 ribosomal protein. Consistent with these results, concomitant inhibition of p38 and ERK pathways also antagonised the well-known effects of amino acids on the process of autophagy. Altogether, these findings demonstrate a previously unknown role for MAP kinases in amino acid signalling.  相似文献   

17.
Protein kinase B and p70 S6 kinase are members of the cyclic AMP-dependent/cyclic GMP-dependent/protein kinase C subfamily of protein kinases and are activated by a phosphatidylinositol 3-kinase-dependent pathway when cells are stimulated with insulin or growth factors. Both of these kinases are activated in cells by phosphorylation of a conserved residue in the kinase domain (Thr-308 of protein kinase B (PKB) and Thr-252 of p70 S6 kinase) and another conserved residue located C-terminal to the kinase domain (Ser-473 of PKB and Thr-412 of p70 S6 kinase). Thr-308 of PKBalpha and Thr-252 of p70 S6 kinase are phosphorylated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) in vitro. Recent work has shown that PDK1 interacts with a region of protein kinase C-related kinase-2, termed the PDK1 interacting fragment (PIF). Interaction with PIF converts PDK1 from a form that phosphorylates PKB at Thr-308 alone to a species capable of phosphorylating Ser-473 as well as Thr-308. This suggests that PDK1 may be the enzyme that phosphorylates both residues in vivo. Here we demonstrate that PDK1 is capable of phosphorylating p70 S6 kinase at Thr-412 in vitro. We study the effect of PIF on the ability of PDK1 to phosphorylate p70 S6 kinase. Surprisingly, we find that PDK1 bound to PIF is no longer able to interact with or phosphorylate p70 S6 kinase in vitro at either Thr-252 or Thr-412. The expression of PIF in cells prevents insulin-like growth factor 1 from inducing the activation of the p70 S6 kinase and its phosphorylation at Thr-412. Overexpression of PDK1 in cells induces the phosphorylation of p70 S6 kinase at Thr-412 in unstimulated cells, and a catalytically inactive mutant of PDK1 prevents the phosphorylation of p70 S6K at Thr-412 in insulin-like growth factor 1-stimulated cells. These observations indicate that PDK1 regulates the activation of p70 S6 kinase and provides evidence that PDK1 mediates the phosphorylation of p70 S6 kinase at Thr-412.  相似文献   

18.
The key regulator of entry into mitosis is the serine/threonine kinase p34cdc2. This kinase is regulated both by association with cyclins and by phosphorylation at several sites. Phosphorylation at Tyr 15 and Thr 14 are believed to inhibit the kinase activity of cdc2. In Schizosaccharomyces pombe, the wee1 (and possibly mik1) protein kinase catalyzes phosphorylation of Tyr 15. It is not clear whether these or other, as yet unidentified, protein kinases phosphorylate Thr 14. In this report we show, using extracts of Xenopus eggs, that the Thr 14-directed kinase is tightly membrane associated. Specifically, we have shown that a purified membrane fraction, in the absence of cytoplasm, can promote phosphorylation of cdc2 on both Thr 14 and Tyr 15. In contrast, the cytoplasm can phosphorylate cdc2 only on Tyr 15, suggesting the existence of at least two distinctly localized subpopulations of cdc2 Tyr 15-directed kinases. The membrane-associated Tyr 15 and Thr 14 kinase activities behaved similarly during salt or detergent extraction and were similarly regulated during the cell cycle and by the checkpoint machinery that delays mitosis while DNA is being replicated. This suggests the possibility that a dual-specificity membrane-associated protein kinase may catalyze phosphorylation of both Tyr 15 and Thr 14.  相似文献   

19.
p44erk1 is a member of a family of tyrosyl-phosphorylated and mitogen-activated protein (MAP) kinases that participate in cell cycle control. A full-length erk1 cDNA was isolated from a human hepatoma cell line (Hep G2) library. The erk1 cDNA clone shared approximately 96% predicted amino acid identity with partial sequences of rodent erk1 cognates, and the erk1 gene was assigned to human chromosome 16 by hybrid panel analysis. Human erk1 expressed in Escherichia coli as a glutathione S-transferase fusion (GST-Erk1) protein was substantially phosphorylated on tyrosine in vivo. It underwent further autophosphorylation in vitro (up to 0.01 mol of P per mol) at the regulatory Tyr-204 site and at additional tyrosine and serine residues. Threonine autophosphorylation, presumably at the regulatory Thr-202 site, was also detected weakly when the recombinant kinase was incubated in the presence of manganese, but not in the presence of magnesium. Before and after cleavage of the GST-Erk1 protein with thrombin, it exhibited a relatively high level of myelin basic protein phosphotransferase activity, which could be reduced eightfold by treatment of the kinase with the protein-tyrosine phosphatase CD45, but not by treatment with the protein-serine/threonine phosphatase 2A. The protein-tyrosine kinase p56lck catalyzed phosphorylation of GST-Erk1 at two autophosphorylations sites, including Tyr-204, and at a novel site. A further fivefold stimulation of the myelin basic protein phosphotransferase activity of the GST-Erk1 was achieved in the presence of a partially purified MAP kinase kinase from sheep platelets. Under these circumstances, there was primarily an enhancement of the tyrosine phosphorylation of GST-Erk1. This MAP kinase kinase also similarly phosphorylated a catalytically compromised version of GST-Erk1 in which Lys-71 was converted to Ala by site-directed mutagenesis.  相似文献   

20.
It has been proposed that mechanically induced tension is the critical factor in the induction of muscle hypertrophy. However, the molecular mechanisms involved in this process are still under investigation. In the present study, the effect of mechanical stretch on intracellular signaling for protein translation initiation and elongation was studied in C2C12 myoblasts. Cells were grown on a silicone elastomer chamber and subjected to 30-min of 5 or 15% constant static or cyclic (60 cycles/min) uniaxial stretch. Western blot analyses revealed that p70 S6 kinase (p70S6K) and eukaryotic elongation factor 2 (eEF2), which are the markers for translation initiation and peptide chain elongation, respectively, were activated by both static and cyclic stretch. The magnitude of activation was greater in response to the 15% cyclic stretch. Cyclic stretch also increased the phosphorylation of MAP kinases (p38 MAPK, ERK1/2 and JNK). However, the pharmacological inhibition of MAP kinases did not block the stretch-induced activation of p70S6K and eEF2. An inhibitor of the mammalian target of rapamycin (mTOR) blocked the stretch-induced phosphorylation of p70S6K but did not affect the eEF2 activation. A broad-range tyrosine kinase inhibitor, genistein, blocked the stretch-induced activation of p70S6K and eEF2, whereas Src tyrosine kinase and Janus kinase (JAK) inhibitors did not. These results suggest that the stretch-induced activation of protein translation initiation and elongation in mouse myoblast cell lines is mediated by tyrosine kinase(s), except for Src kinase or JAK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号