首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Quantitative trait locus (QTL) analyses are used by geneticists to characterize the genetic architecture of quantitative traits, provide a foundation for marker-aided-selection (MAS), and provide a framework for positional selection of candidate genes. The most useful QTL for breeding applications are those that have been verified in time, space, and/or genetic background. In this study, spring cold-hardiness of Douglas-fir foliar tissues was evaluated in two clonally replicated (n=170 and 383 clones) full-sib cohorts derived from the same parental cross in two different years (made 5 years apart). The cohorts were established in widely separated forest test sites and tissues were artificially freeze tested using different cold injury assessment methods. Four of six unique QTL detected for spring cold-hardiness in needles of Cohort 1 were tentatively verified in the second cohort. Four additional QTL were detected in Cohort 2, two on linkage groups (LGs) not previously represented in the smaller cohort. In total, 10 unique QTL were identified across both cohorts. Seventeen of twenty-nine putative cold-hardiness candidate genes (Douglas-fir ESTs) placed on the Douglas-fir linkage map locate within the 95% confidence intervals of spring needle cold-hardiness QTL from the two cohorts and thus represent priority targets for initiating association mapping in Douglas-fir.  相似文献   

2.
Thirty three unique quantitative trait loci (QTLs) affecting the timing of spring bud flush have been identified in an intraspecific mapping population of coastal Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii]. Both terminal and lateral bud flush were measured over a 4-year period on clonal replicates at two test sites, allowing for the repeated estimation of QTLs. QTLs were detected on 12 linkage groups and, in general, each explained a small proportion of the total phenotypic variance and were additive in effect. Several QTLs influence the timing of bud flush over multiple years, supporting earlier evidence that the timing of bud flush through developmental stages is under moderate to strong genetic control by the same suite of genes through developmental stages. However, only a few QTLs controlling the timing of bud flush were detected at both test sites, suggesting that geographic location plays a major role in the phenology of spring growth. A small number of QTLs with year and site interactions were also estimated. Received: 20 July 2000 / Accepted: 19 October 2000  相似文献   

3.
The objective of this study was to dissect the genetic control of days to flowering (DTF) and photoperiod sensitivity (PS) into the various components including the main-effect quantitative trait loci (QTLs), epistatic QTLs and QTL-by-environment interactions (QEs). Doubled haploid (DH) lines were produced from an F1 between two spring Brassica napus cultivars Hyola 401 and Q2. DTF of the DH lines and parents were investigated in two locations, one location with a short and the other with a long photoperiod regime over two years. PS was calculated by the delay in DTF under long day as compared to that under short day. A genetic linkage map was constructed that comprised 248 marker loci including SSR, SRAP, and AFLP markers. Further QTL analysis resolved the genetic components of flowering time and PS into the main-effect QTLs, epistatic QTLs, and QEs. A total of 7 main-effect QTLs and 11 digenic interactions involving 21 loci located on 13 out of the 19 linkage groups were detected for the two traits. Three main-effect QTLs and four pairs of epistatic QTLs were involved in QEs conferring DTF. One QTL on linkage group (LG) 18 was revealed to simultaneously affect DTF and PS and explain for the highest percentage of the phenotypic variation. The implications of the results for B. napus breeding have been discussed. The text was submitted by the authors in English.  相似文献   

4.
Genetic variation of bud burst and early growth components was estimated in a full-sib family of Quercus robur L. comprising 278 offspring. The full sibs were vegetatively propagated, and phenotypic assessments were made in three field tests. This two-generation pedigree was also used to construct a genetic linkage map (12 linkage groups, 128 markers) and locate quantitative trait loci (QTLs) controlling bud burst and growth components. In each field test, the date of bud burst extended over a period of 20 days from the earliest to the latest clone. Bud burst exhibited higher heritability (0.15–0.51) than growth components (0.04–0.23) and also higher correlations across field tests. Over the three tests there were 32 independent detected QTLs (P5% at the chromosome level) controlling bud burst, which likely represent at least 12 unique genes or chromosomal regions controlling this trait. QTLs explained from 3% to 11% of the variance of the clonal means. The number of QTLs controlling height growth components was lower and varied between two and four. However the contribution of each QTL to the variance of the clonal mean was higher (from 4% to 19%). These results indicate that the genetic architecture of two important fitness-related traits are quite different. On the one hand, bud burst is controlled by several QTLs with rather low to moderate effects, but contributing to a high genetic (additive) variance. On the other hand, height growth depends on fewer QTLs with moderate to strong effects, resulting in lower heritabilities of the trait.  相似文献   

5.
A population of recombinant inbred lines (RIL) derived from a cross between the Watermelon mosaic virus (WMV) resistant genotype TGR-1551 and the susceptible Spanish cultivar ‘Bola de Oro’ has been evaluated for WMV resistance in spring, fall and growth chamber conditions. The quantitative trait loci (QTL) analyses detected one major QTL (wmv) on linkage group (LG) XI close to the microsatellite marker CMN04_35. This QTL controls the resistance to WMV in the three environmental conditions evaluated. Other minor QTLs affecting the severity of viral symptoms were identified, but they were not detected in all the assayed environments. The screening of the marker CMN04_35 in an F2 progeny, derived from the same cross, confirmed the effect of this QTL on the expression of WMV resistance also in early generations, which evidences the usefulness of this marker for a marker assisted selection program.  相似文献   

6.
Grain yield of Sorghum bicolor (L.) Moench is significantly influenced by genetically controlled variation in the number of tillers, plant height, time of anthesis, and various other morphological and physiological characters. In this study, a minimum of 27 unique QTLs that control variation in nine morphological traits, including the presence versus the absence and the height of basal tillers, were mapped, and the percentage of additive genetic variance explained by the QTLs was determined in a population of 137 recombinant inbred lines in two environments. Four QTLs explained from 86.3% to 48.9% (depending upon the environment) of the additive genetic variance in the number of basal tillers with heads, and seven QTLs explained from 85.9% to 47.9% of the additive genetic variance in panicle width. It is unlikely that different alleles were segregating in the mapping population at any of the major dwarfing loci, but five QTLs that explained from 65.8% to 52.0% of the additive genetic variance in main-culm height were mapped. QTLs controlling variation in height of the tallest basal tiller, number of basal tillers per basal-tillered plant, panicle length, leaf angle, maturity, and awn length also were mapped. Three or more QTLs were mapped in linkage groups A, E, G, and I, while none were mapped in linkage groups B and D. Several of the QTLs mapped in this study are likely candidates for marker-assisted selection in breeding programs. Received: 20 September 2000 / Accepted: 26 October 2000  相似文献   

7.
 Quantitative traits, including juvenile growth, flower bearing and rooting ability, of a woody plant species, Cryptomeria japonica D. Don, were analyzed in a three-generation pedigree with 73 F2 progenies using a linkage map with 85 genetic markers (72 RFLP, 11 RAPD, one isozyme and one morphological loci). A cluster of quantitative trait loci (QTLs) related to juvenile growth and female flower bearing was detected on linkage group 2. Some of the influence of this cluster could be attributed to pleiotropic effects of a dwarf locus located in its vicinity. QTLs related to male and female flower bearing were detected at different locations and showed different effects from each other, suggesting that the genetic systems controlling male and female flowering are different. No large QTL affecting rooting ability was detected in the material analyzed in this study. Received: 15 December 1997 / Accepted: 4 February 1998  相似文献   

8.
 Stay green in sorghum (Sorghum bicolor L. Moench) is characterized by the plant’s ability to tolerate post-flowering drought stress, thereby delaying the premature leaf and plant death. It contributes to normal grain filling and reduces the incidence of stalk lodging and charcoal rot disease during the late stages of grain development. Breeding for improving post-flowering drought tolerance in sorghum hybrids remains an important objective of sorghum breeders. Since evaluation of the stay green response is difficult and unreliable under field conditions, due to the timing and intensity of moisture stress and large environmental interaction, progress in improving drought tolerance by conventional breeding methods has been slow. The objective of the present study was to determine the consistency of quantitative trait loci (QTLs) controlling stay green in sorghum. We re-evaluated the Recombinant Inbred Line (RIL)-mapping population from the cross B35 x Tx7000 in two locations over 2 years and compared it with earlier reports. Analysis using the combined stay green-rating means of seven environments and the expanded molecular map reconfirmed all four stay green QTLs (Stg1, Stg2, Stg3 and Stg4) that were identified earlier by Xu et al. (2000). Similarly, comparison of the stay green QTL locations with earlier reported results indicated that all four stay green QTLs showed consistency across different genetic backgrounds. Examination of the stay green QTL profiles of the best and poorest stay-green lines indicated that three stay green QTLs, Stg1, Stg2 and Stg3, appear to be important for the expression of this trait when the percent phenotypic variation, and the consistency in different backgrounds and different environments, are considered. A significant epistatic interaction involving Stg2 and a region on linkage group C was also identified for the stay green and chlorophyll content. We concluded that Stg2 is the most important QTL controlling stay green, explaining the maximum amount of phenotypic variation. This report further strengthens our view to target the Stg2 QTL region for gene discovery in order to improve the basic understanding of the stay green phenomenon, which might be helpful in manipulating this trait not only in sorghum but also in other cereal crop species. Received: 12 January 2000 / Accepted: 12 February 2000  相似文献   

9.
Typical linkage and quantitative trait locus (QTL) analyses in forest trees have been conducted in single pedigrees with sex-averaged linkage maps. The results of a QTL analysis for wood quality and growth traits of coastal Douglas-fir using eight full-sib families, each consisting of 40 progeny, replicated on four sites are presented. The resulting map of segregating genetic markers consisted of 120 amplified fragment length polymorphism (AFLP) loci distributed across 19 linkage groups. The wood quality traits represent the widest suite of traits yet examined for QTL analysis in a tree species in a single study. Wood fiber traits showed the lowest number of QTLs (3) with relatively small effect (ca. 4%); wood density traits also showed just three QTLs but with slightly larger effect; wood chemistry traits showed more QTLs (7), while ring density traits showed many QTLs with large numbers of QTLs (78) and interesting patterns of temporal variation. Growth traits gave just five QTLs but of major effect (10–16%). Trees, with their long generation times, provide a rich resource for studies of temporal variation of QTL expression.  相似文献   

10.
Seed storability is especially important in the tropics due to high temperature and relative humidity of storage environment that cause rapid deterioration of seeds in storage. The objective of this study was to use SSR markers to identify genomic regions associated with quantitative trait loci (QTLs) controlling seed storability based on relative germination rate in the F2:3 population derived from a cross between vegetable soybean line (MJ0004-6) with poor longevity and landrace cultivar from Myanmar (R18500) with good longevity. The F2:4 seeds harvested in 2011 and 2012 were used to investigate seed storability. The F2 population was genotyped with 148 markers and the genetic map consisted of 128 SSR loci which converged into 38 linkage groups covering 1664.3 cM of soybean genome. Single marker analysis revealed that 13 markers from six linkage groups (C1, D2, E, F, J and L) were associated with seed storability. Composite interval mapping identified a total of three QTLs on linkage groups C1, F and L with phenotypic variance explained ranging from 8.79 to 13.43%. The R18500 alleles increased seed storability at all of the detected QTLs. No common QTLs were found for storability of seeds harvested in 2011 and 2012. This study agreed with previous reports in other crops that genotype by environment interaction plays an important role in expression of seed storability.  相似文献   

11.
A genetic linkage map of Japanese flounder was constructed using 165 doubled haploids (DHs) derived from a single female. A total of 574 genomic microsatellites (type II SSRs) and expressed sequence tag (EST)-derived markers (EST-SSRs) were mapped to 24 linkage groups. The length of linkage map was estimated as 1270.9 centiMorgans (cM), with an average distance between markers of 2.2 cM. The EST-SSRs were used together with type II SSR markers to construct the Japanese flounder genetic linkage map which will facilitate identify quantitative trait locus (QTL) controlling important economic traits in Japanese flounder. Thus, twelve skeletal traits at 2 years of age were measured for all DHs. Forty-one QTLs were detected on 14 linkage groups and totally account for a small proportion of phenotypic variation (4.5 to 17.3%). Most of QTLs detected distribute on linkage groups 5 (9 QTLs), 8 (9 QTLs), 9 (5 QTLs) and 20 (4 QTLs), in which, some QTLs perform the pleiotropy.  相似文献   

12.
Evaluation of root traits in rainfed lowland rice is very difficult. Molecular genetic markers could be used as an alternative strategy to phenotypic selection for the improvement of rice root traits. This research was undertaken to map QTLs associated with five root traits using RFLP and AFLP markers. Recombinant inbred lines (RILs) were developed from two indica parents, IR58821–23-B-1–2-1 and IR52561-UBN-1–1-2, that were adapted to rainfed lowland production systems. Using wax-petrolatum layers to simulate a hardpan in the soil, 166 RILs were evaluated for total root number (TRN), penetrated root number (PRN), root penetration index (RPI, the ratio of PRN to TRN), penetrated root thickness (PRT) and penetrated root length (PRL) under greenhouse conditions during the summer and the fall of 1997. A genetic linkage map of 2022 cM length was constructed comprising 303 AFLP and 96 RFLP markers with an average marker space of 5.0 cM. QTL analysis via interval mapping detected 28 QTLs for these five root traits, which were located on chromosomes 1, 2, 3, 4, 6, 7, 10 and 11. Individual QTLs accounted for between 6 and 27% of the phenotypic variation. Most of the favorable alleles were derived from the parent IR58821–23-B-1–2-1, which was phenotypically superior in root traits related to drought resistance. Three out of six QTLs for RPI were detected in both summer and fall experiments and they also were associated with PRN in both experiments. Out of eight QTLs for RPT, five were common in both seasons. Two genomic regions on chromosome 2 were associated with three root traits (PRN, PRT and RPI), whereas three genomic regions on chromosomes 2 and 3 were associated with two root traits (PRT and RPI). Two QTLs affecting RPI and two QTLs affecting PRT were also found in similar genomic regions in other rice populations. The consistent QTLs across genetic backgrounds and the common QTLs detected in both experiments should be good candidates for marker-assisted selection toward the incorporation of root traits in a drought resistance breeding program, especially for rainfed lowland rice. Received: 17 November 1999 / Accepted: 19 March 2000  相似文献   

13.
A double-haploid (DH) population and a recombinant inbred (RI) line population, derived from a cross between a tropical japonica variety, Azucena, as male parent and two indica varieties, IR64 and IR1552, as female parents respectively, were used in both field and pot experiments for detecting QTLs and epistasis for rice panicle number in different genetic backgrounds and different environments. Panicle number (PN) was measured at maturity. A molecular map with 192 RFLP markers for the DH population and a molecular map with 104 AFLP markers and 103 RFLP markers for the RI population were constructed, in which 70 RFLP markers were the same. Six QTLs were identified in the DH population, including two detected from field experiments and four from pot experiments. The two QTLs, mapped on chromosomes 1 and 12, were identical in both field and pot experiments. In the RI population, nine QTLs were detected, five QTLs from field conditions and four from the pot experiments. Three of these QTLs were identical in both experimental conditions. Only one QTL, linked to CDO344 on chromosome 12, was detected across the populations and experiments. Different epistasitic interaction loci on PN were found under different populations and in different experimental conditions. One locus, flanked by RG323 and RZ801 on chromosome 1, had an additive effect in the DH population, but epistatic effects in the RI population. These results indicate that the effect of genetic background on QTLs is greater than that of environments, and epistasis is more sensitive to genetic background and environments than main-effect QTLs. QTL and epistatic loci could be interchangeable depending on the genetic backgrounds and probably on the environments where they are identified. Received: 26 May 2000 / Accepted: 19 October 2000  相似文献   

14.
Recombinant chromosome substitution lines (RCSLs) were developed in BC3 generation to introduce segments of a wild barley strain ‘H602’ (Hordeum vulgare ssp. spontaneum) into a barley cultivar ‘Haruna Nijo’ (H. vulgare ssp. vulgare) genetic background. One hundred thirty four RCSLs were genotyped by 25 SSR and 60 EST markers, which were localized on a linkage map of doubled haploid lines (DHLs) derived from the same cross combination. Graphical genotyping revealed that the observed average substitution ratio of H602 segment (12.9%) agreed with the expected substitution ratio (12.5%), and a minimum set of 19 RCSLs represented the entire H602 genome. Phenotypes of five qualitative and nine quantitative traits were scored in both the RCSLs and DHLs. Five qualitative traits were localized as morphological markers on the linkage map of the DHLs, and these molecular markers were aligned on the respective chromosomal regions in the RCSLs. Simple and composite interval mapping procedures detected a total of 18 and 24 QTLs for nine qualitative traits on the RCSLs and DHLs, respectively. Several QTLs were localized at coincident or very close regions on both linkage maps. In spite of general inferior agronomic performances in wild barley, several H602 QTL alleles showed agronomically positive effects. These RCSLs should contribute to substitution of favorable alleles from wild barley into cultivated barley. These RCSLs are also available as sources of near isogenic lines, with which we can apply advanced genetic analysis methods such as isolation of QTLs and detection of epistatic interactions among QTLs.  相似文献   

15.
We have detected quantitative trait loci (QTLs) affecting vegetative propagation traits in Eucalyptus tereticornis and Eucalyptus globulus. Using amplified fragment length polymorphism (AFLP) genetic linkage maps, the inheritance of 199 markers was assessed in 94 F1 individuals with extreme adventitious rooting response, and in 221 randomly chosen F1 individuals. Phenotypes were scored in 1995 and 1996. QTL analyses were performed using chi-square tests (χ2), single-marker analysis (SMA), interval mapping (IM) and composite interval mapping (CIM). All approaches yielded similar QTL detection results. Three QTLs are hypothesized for mortality (MORT=% dead cuttings), nine for adventitious rooting (ROOT, RCT=% rooted cuttings relative to the surviving or total cuttings, respectively), four for petrification (PETR=% surviving unrooted cuttings), one for sprouting ability (SPR=number of stump sprout cuttings harvested in 1995) and four for the stability of adventitious rooting (STAB=absolute value of the difference ROOT95-ROOT96). All putative QTLs for MORT and PETR were located on the E. tereticornis map, and for SPR and STAB on the E. globulus map. We found different QTLs for MORT, ROOT, RCT, SPR and STAB. Putative QTLs accounted for 2.6–17.0% of the phenotypic variance of a trait (R2). Estimated standardized gene substitution effects varied between 0.13 and 0.49 phenotypic standard deviations (σp). These results indicate that the phenotypic variation in these traits has a meaningful genetic component and that stable QTLs can be found in a family of reasonable size where no previous knowledge of the trait was available. Received: 1 September 1998 / Accepted: 24 February 1999  相似文献   

16.
Amylose content (AC), gel consistency (GC) and gelatinazation temperature (GT) are three important traits that influence the cooking and eating quality of rice. The objective of this study was to characterize the genetic components, including main-effect quantitative trait loci (QTLs), epistatic QTLs and QTL-by-environment interactions (QEs), that are involved in the control of these three traits. A population of doubled haploid (DH) lines derived from a cross between two indica varieties Zhenshan 97 and H94 was used, and data were collected from a field experiment conducted in two different environments. A genetic linkage map consisting of 218 simple sequence repeat (SSR) loci was constructed, and QTL analysis performed using qtlmapper 1.6 resolved the genetic components into main-effect QTLs, epistatic QTLs and QEs. The analysis detected a total of 12 main-effect QTLs for the three traits, with a QTL corresponding to the Wx locus showing a major effect on AC and GC, and a QTL corresponding to the Alk locus having a major effect on GT. Ten digenic interactions involving 19 loci were detected for the three traits, and six main-effect QTLs and two pairs of epistatic QTLs were involved in QEs. While the main-effect QTLs, especially the ones corresponding to known major loci, apparently played predominant roles in the genetic basis of the traits, under certain conditions epistatic effects and QEs also played important roles in controlling the traits. The implications of the findings for rice quality improvement are discussed.  相似文献   

17.
Oat genotypes vary for photoperiod and vernalization responses. Vernalization often promotes earlier flowering in fall-sown but not spring-sown cultivars. Longer photoperiods also promote earlier flowering, and the response to longer photoperiods tends to be greater in cultivars from higher latitudes. To investigate the genetic basis of photoperiod and vernalization responses in oat, we mapped QTLs for flowering time under four combinations of photoperiod and vernalization treatments in the Ogle 2 TAM O-301 mapping population in growth chambers. We also mapped QTLs for flowering time in early spring and late-spring field plantings to determine the genetic basis of response to early spring planting in oat. Three major flowering-time QTLs (on linkage groups OT8, OT31 and OT32) were detected in most conditions. QTLs with smaller effects on flowering were less-consistently observed among treatments. Both vernalization-sensitive and insensitive QTLs were discovered. Longer photoperiod or vernalization alone tended to decrease the effects of flowering-time QTLs. Applied together, longer photoperiod and vernalization interacted synergistically, often on the same genomic regions. Earlier spring planting conferred an attenuated vernalization treatment on seeds. The major flowering-time QTLs mapped in this study matched those mapped previously in the Kanota 2 Ogle oat mapping population. Between these two studies, we found a concordance of flowering-time QTLs, segregation distortion, and complex genetic linkages. These effects may all be related to chromosomal rearrangements in hexaploid oat. Comparative mapping between oat and other grasses will facilitate molecular analysis of vernalization response in oat.  相似文献   

18.
Quantitative trait loci (QTLs) controlling the plant-regeneration ability of Brassica oleracea protoplasts were mapped in a population of 128 F2 plants derived from a cross between the high-responding, rapid-cycling line and a low-responding, broccoli breeding line of B. oleracea. A modified bulked segregant analysis with AFLP markers identified two QTLs for plant regeneration. In a multiple regression analysis, the two QTLs explained 83% of the total genetic variation for regeneration recorded 15 weeks after initial transfer of microcalli to regeneration medium. Both QTLs showed additive effects, and the alleles contributing to the high regeneration frequencies were derived from the high-responding, rapid-cycling line. Using microsatellites with known location, the two QTLs were mapped to linkage groups O2 and O9 on the map published by Sebastian et al. [(2000) Theor Appl Genet 100:75–81] or to chromosomes C8 and C7 on the map published by Saal et al. [(2001) Theor Appl Genet 102:695–699]. QTLs for the early flowering trait of the rapid-cycling parent have previously been mapped to the same two linkage groups. Association between flowering time and regeneration ability was, however, not found in the present material, indicating that plant-regeneration ability can be transferred between cultivars independently of the early flowering trait. The detection of two major QTLs for plant regeneration in B. oleracea may provide the initial step towards the identification of markers suitable for marker-assisted selection of regeneration ability.  相似文献   

19.
 Domesticated rice differs from the wild progenitor in large arrays of morphological and physiological traits. The present study was conducted to identify the genetic factors controlling the differences between cultivated rice and its wild progenitor, with the intention to assess the genetic basis of the changes associated with the processes of rice domestication. A total of 19 traits, including seven qualitative and 12 quantitative traits, that are related to domestication were scored in an F2 population from a cross between a variety of the Asian cultivated rice (Oryza sativa) and an accession of the common wild rice (O. rufipogon). Loci controlling the inheritance of these traits were determined by making use of a molecular linkage map consisting of 348 molecular-marker loci (313 RFLPs, 12 SSRs and 23 AFLPs) based on this F2 population. All seven qualitative traits were each controlled by a single Mendelian locus. Analysis of the 12 quantitative traits resolved a total of 44 putative QTLs with an average of 3.7 QTLs per trait. The amount of variation explained by individual QTLs ranged from a low of 6.9% to a high of 59.8%, and many of the QTLs accounted for more than 20% of the variation. Thus, genes of both major and minor effect were involved in the differences between wild and cultivated rice. The results also showed that most of the genetic factors (qualitative or QTLs) controlling the domestication-related traits were concentrated in a few chromosomal blocks. Such a clustered distribution of the genes may provide explanations for the genetic basis of the “domestication syndrome” observed in evolutionary studies and also for the “linkage drag” that occurs in many breeding programs. The information on the genetic basis of some desirable traits possessed by the wild parent may also be useful for facilitating the utilization of these traits in rice-breeding programs. Received: 1 June 1998 / Accepted: 28 July 1998  相似文献   

20.
 Quantitative trait loci (QTLs) for annual height- and diameter-increment growth were estimated in each of two three-generation loblolly pine pedigrees. Annual height-increment was measured in three consecutive years in the BASE pedigree and in four consecutive years in the QTL pedigree. Annual diameter-increment was measured only in the QTL pedigree for two consecutive years. An interval mapping-approach was used to estimate the number of QTLs, the magnitude of QTL effects, and their position on genetic linkage maps. Thirteen different height-increment and eight different diameter-increment QTLs were detected, suggesting that the these traits are, at least in part, controlled by a few genes of large effect. Little evidence was found for the expression of individual QTLs in multiple years or in multiple genetic backgrounds. These results were discussed in terms of the power of the experiment and their consequences for marker-assisted breeding. Received: 12 July 1998/Accepted: 5 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号