首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The spleen is the main organ for immune defense during infection with Plasmodium parasites and splenomegaly is one of the major symptoms of such infections. Using a rodent model of Plasmodium yoelii infection, MHC class II+CD11c? non‐T, non‐B cells in the spleen were characterized. Although the proportion of conventional dendritic cells was reduced, that of MHC II+CD11c? non‐T, non‐B cells increased during the course of infection. The increase in this subpopulation was dependent on the presence of lymphocytes. Experiments using Rag‐2?/? mice with adoptively transferred normal spleen cells indicated that these cells were non‐lymphoid cells; however, their accumulation in the spleen during infection with P. yoelii depended on lymphocytes. Functionally, these MHC II+CD11c? non‐T, non‐B cells were able to produce the proinflammatory cytokines alpha tumor necrosis factor and interleukin‐6 in response to infected red blood cells, but had only a limited ability to activate antigen‐specific CD4+ T cells. This study revealed a novel interaction between MHC II+CD11c? non‐lymphoid cells and lymphoid cells in the accumulations of these non‐lymphoid cells in the spleen during infection with P. yoelii.
  相似文献   

2.
Mucosal dendritic cells (DCs) play a key role in discriminating between dietary antigens, commensal microflora and pathogens but little is known regarding age-related changes in mucosal DC populations. We analyzed lymphoid and myeloid populations within the epithelium and lamina propria (LP) of the ileum and jejunum of weaned calves (6 months old) and compared their frequency and distribution with newborn calves (3–5 weeks old). CD4, CD8 and γδ TcR T cells and CD11cHiMHC Class II+ myeloid cell frequency were significantly different when comparing ileum and jejunum of weaned calves. In particular, the number of CD8 and γδ TcR T cells, and CD11cHiCD14+ macrophages was significantly greater in the ileum but CD11c+ and CD11b+ myeloid cell distribution was similar throughout the mucosal epithelium of the small intestine. Furthermore, significant age-related changes were apparent when comparing the frequency and abundance of mucosal leukocyte subpopulations in newborn and weaned calves. Total mucosal leukocytes (CD45+) increased significantly with age in both ileum and jejunum and much of this increase was attributed to mucosal T cells (CD3+). In particular, CD4 T cells and NK cells increased significantly in the jejunum and CD8, and γδ TcR T cells increased significantly with age throughout the small intestine. In contrast, CD11cHiMHC Class II+ myeloid cells remained numerically unchanged with age but DCs (CD13+, CD26+, CD205+) were enriched and macrophages (CD14+, CD172a+) were depleted in older animals. Therefore, regional differences between ileal and jejunal mucosal leukocytes changed with age and there was also a marked age-dependent change in the composition of mucosal myeloid cells. These observations have significant implications for host responses to both pathogens and commensal microflora.  相似文献   

3.
Background aimsHuman umbilical cord blood-derived stromal cells (hUCBDSC) comprise a novel population of CD34+ cells that has been isolated in our laboratory. They have been shown previously not only to be non-immunogenic but also to exert immunosuppressive effects on xenogenic T cells in vitro. This study investigated the role of hUCBDSC in immunomodulation in an acute graft-versus-host disease (GvHD) mouse model after haplo-identical stem cell transplantationMethodsAcute GvHD was induced in recipient (B6 × BALB/c)F1 mice by irradiation (750 cGy) followed by infusion of bone marrow cells and splenocytes from donor C57BL/6 mice. hUCBDSC were co-transplanted in the experimental group. The survival time, body weight and clinical and histopathologic scores were recorded after transplantation. The expression of surface markers [major histocompatibility complex (MHC) I, MHC II, CD80 and CD86] on CD11c+ dendritic cells (DC), and the percentage of CD4+ regulatory T cells (Treg), in the spleens of recipient mice were examined by flow cytometryResultsThe survival time was significantly prolonged, and the clinical and histopathologic scores were reduced in mice co-transplanted with hUCBDSC. The expression levels of the surface markers on DC were significantly lower in mice transplanted with hUCBDSC compared with those without. The proportion of CD4+ Treg in the spleen was also increased in mice transplanted with hUCBDSCConclusionsThese results from a GvHD mouse model are in agreement with previous in vitro findings, suggesting that hUCBDSC possess immunosuppressive properties and may act via influencing DC and CD4+ Treg.  相似文献   

4.
Dendritic cells (DC) are multi-functional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets directly ex vivo, without further in vitro manipulation. Multi-color flow cytometric analysis revealed that three DC subsets could be identified. Bovine plasmacytoid DC were phenotypically identified by a unique pattern of cell surface protein expression including CD4, exhibited an extensive endoplasmic reticulum and Golgi apparatus, efficiently internalized and degraded exogenous antigen, and were the only peripheral blood cells specialized in the production of type I IFN following activation with Toll-like receptor (TLR) agonists. Conventional DC were identified by expression of a different pattern of cell surface proteins including CD11c, MHC class II, and CD80, among others, the display of extensive dendritic protrusions on their plasma membrane, expression of very high levels of MHC class II and co-stimulatory molecules, efficient internalization and degradation of exogenous antigen, and ready production of detectable levels of TNF-alpha in response to TLR activation. Our investigations also revealed a third novel DC subset that may be a precursor of conventional DC that were MHC class II+ and CD11c. These cells exhibited a smooth plasma membrane with a rounded nucleus, produced TNF-alpha in response to TLR-activation (albeit lower than CD11c+ DC), and were the least efficient in internalization/degradation of exogenous antigen. These studies define three bovine blood DC subsets with distinct phenotypic and functional characteristics which can be analyzed during immune responses to pathogens and vaccinations of cattle.  相似文献   

5.
Invariant natural killer T (iNKT) cells can perform multiple functions characteristic of both innate and acquired immunity. Activation of iNKT cells in vivo by repeated α-GalCer injections can induce immune tolerance, but the mechanisms responsible for such immunoregulation remain unclear. We prepared α-GalCer-liposomes, a single injection of which into mice resulted in the expansion of splenic CD11clowCD45RBhigh cells, which consists of two populations, CD180+ and CD49b+. Expansion of these cells was not observed in α-GalCer-liposome-treated mice deficient in IL-10 or iNKT cells. MHC and co-stimulatory molecules were down-regulated in CD11clowCD180+ cells compared with conventional dendritic cells (cDCs), suggesting that the former possess characteristics of immature DCs. Meanwhile, the CD11clowCD49b+ cells expressed IL-10 and Ctla4, and possessed greater lytic activity than resting NK cells. These observations suggest that both immature DCs (CD11clowCD180+) and cytotoxic cells (CD11clowCD49b+) might be expanded by α-GalCer-activated iNKT cells and could therefore be involved in immune tolerance.  相似文献   

6.
In this study, we investigate the potential of peritoneal macrophages to differentiate into dendritic cell (DCs) in response to preferential uptake of oligomannose-coated liposomes (OMLs). About 30% of peritoneal cells (PECs) preferentially took up OMLs that were administered into the peritoneal cavity. The OML-ingesting cells expressed CD11b and F4/80, but lacked CD11c expression, indicating that the OML-ingesting PECs with a CD11bhighCD11c phenotype are resident peritoneal macrophages. During in vitro cultivation, CD11c+ cells arose among the PECs with ingested OMLs. CD11c+ cells also developed among enriched peritoneal CD11bhighCD11 cells from OML-treated mice, and the resulting CD11c+ cells expressed co-stimulatory molecules and MHC class II. In addition, OML-ingesting CD11bhighCD11c+ cells were found in spleen after the enriched peritoneal macrophages with ingested OMLs were transplanted in the peritoneal cavity of mice. These results show that a fraction of peritoneal macrophages can differentiate into mature DCs following uptake of OMLs.  相似文献   

7.

Background

There have been few reports on the role of Fc receptors (FcRs) and immunoglobulin G (IgG) in asthma. The purpose of this study is to clarify the role of inhibitory FcRs and antigen presenting cells (APCs) in pathogenesis of asthma and to evaluate antigen-transporting and presenting capacity by APCs in the tracheobronchial mucosa.

Methods

In FcγRIIB deficient (KO) and C57BL/6 (WT) mice, the effects of intratracheal instillation of antigen-specific IgG were analysed using the model with sensitization and airborne challenge with ovalbumin (OVA). Thoracic lymph nodes instilled with fluorescein-conjugated OVA were analysed by fluorescence microscopy. Moreover, we analysed the CD11c+ MHC class II+ cells which intaken fluorescein-conjugated OVA in thoracic lymph nodes by flow cytometry. Also, lung-derived CD11c+ APCs were analysed by flow cytometry. Effects of anti-OVA IgG1 on bone marrow dendritic cells (BMDCs) in vitro were also analysed. Moreover, in FcγRIIB KO mice intravenously transplanted dendritic cells (DCs) differentiated from BMDCs of WT mice, the effects of intratracheal instillation of anti-OVA IgG were evaluated by bronchoalveolar lavage (BAL).

Results

In WT mice, total cells and eosinophils in BAL fluid reduced after instillation with anti-OVA IgG1. Anti-OVA IgG1 suppressed airway inflammation in hyperresponsiveness and histology. In addition, the number of the fluorescein-conjugated OVA in CD11c+ MHC class II+ cells of thoracic lymph nodes with anti-OVA IgG1 instillation decreased compared with PBS. Also, MHC class II expression on lung-derived CD11c+ APCs with anti-OVA IgG1 instillation reduced. Moreover, in vitro, we showed that BMDCs with anti-OVA IgG1 significantly decreased the T cell proliferation. Finally, we demonstrated that the lacking effects of anti-OVA IgG1 on airway inflammation on FcγRIIB KO mice were restored with WT-derived BMDCs transplanted intravenously.

Conclusion

Antigen-specific IgG ameliorates allergic airway inflammation via FcγRIIB on DCs.  相似文献   

8.
Two critical functions of dendritic cells (DC) are to activate and functionally polarize T cells. Activated T cells can, in turn, influence DC maturation, although their effect on de novo DC development is poorly understood. Here we report that activation of T cells in mice, with either an anti-CD3 antibody or super antigen, drives the rapid formation of CD209+CD11b+CD11c+ MHC II+ DC from monocytic precursors (Mo-DC). GM-CSF is produced by T cells following activation, but surprisingly, it is not required for the formation of CD209+ Mo-DC. CD40L, however, is critical for the full induction of Mo-DC following T cell activation. T cell induced CD209+ Mo-DC are comparable to conventional CD209- DC in their ability to stimulate T cell proliferation. However, in contrast to conventional CD209- DC, CD209+ Mo-DC fail to effectively polarize T cells, as indicated by a paucity of T cell cytokine production. The inability of CD209+ Mo-DC to polarize T cells is partly explained by increased expression of PDL-2, since blockade of this molecule restores some polarizing capacity to the Mo-DC. These findings expand the range of signals capable of driving Mo-DC differentiation in vivo beyond exogenous microbial factors to include endogenous factors produced following T cell activation.  相似文献   

9.

Background

Nitrogen dioxide (NO2) is an air pollutant associated with poor respiratory health, asthma exacerbation, and an increased likelihood of inhalational allergies. NO2 is also produced endogenously in the lung during acute inflammatory responses. NO2 can function as an adjuvant, allowing for allergic sensitization to an innocuous inhaled antigen and the generation of an antigen-specific Th2 immune response manifesting in an allergic asthma phenotype. As CD11c+ antigen presenting cells are considered critical for naïve T cell activation, we investigated the role of CD11c+ cells in NO2-promoted allergic sensitization.

Methods

We systemically depleted CD11c+ cells from transgenic mice expressing a simian diphtheria toxin (DT) receptor under of control of the CD11c promoter by administration of DT. Mice were then exposed to 15 ppm NO2 followed by aerosolized ovalbumin to promote allergic sensitization to ovalbumin and were studied after subsequent inhaled ovalbumin challenges for manifestation of allergic airway disease. In addition, pulmonary CD11c+ cells from wildtype mice were studied after exposure to NO2 and ovalbumin for cellular phenotype by flow cytometry and in vitro cytokine production.

Results

Transient depletion of CD11c+ cells during sensitization attenuated airway eosinophilia during allergen challenge and reduced Th2 and Th17 cytokine production. Lung CD11c+ cells from wildtype mice exhibited a significant increase in MHCII, CD40, and OX40L expression 2 hours following NO2 exposure. By 48 hours, CD11c+MHCII+ DCs within the mediastinal lymph node (MLN) expressed maturation markers, including CD80, CD86, and OX40L. CD11c+CD11b- and CD11c+CD11b+ pulmonary cells exposed to NO2 in vivo increased uptake of antigen 2 hours post exposure, with increased ova-Alexa 647+ CD11c+MHCII+ DCs present in MLN from NO2-exposed mice by 48 hours. Co-cultures of ova-specific CD4+ T cells from naïve mice and CD11c+ pulmonary cells from NO2-exposed mice produced IL-1, IL-12p70, and IL-6 in vitro and augmented antigen-induced IL-5 production.

Conclusions

CD11c+ cells are critical for NO2-promoted allergic sensitization. NO2 exposure causes pulmonary CD11c+ cells to acquire a phenotype capable of increased antigen uptake, migration to the draining lymph node, expression of MHCII and co-stimulatory molecules required to activate naïve T cells, and secretion of polarizing cytokines to shape a Th2/Th17 response.  相似文献   

10.
Previous studies have shown that induction of immune tolerance by mesenchymal stem cells (MSCs) is partially mediated via monocytes or dendritic cells (DCs). The purpose of this study was to determine the role of CD11c+ cells in MSC-induced effects on ischemia/reperfusion injury (IRI). IRI was induced in wildtype (WT) mice and CD11c+-depleted mice following pretreatment with or without MSCs. In the in-vitro experiments, the MSC-treated CD11c+ cells acquired regulatory phenotype with increased intracellular IL-10 production. Although splenocytes cocultured with MSCs showed reduced T cell proliferation and expansion of CD4+FoxP3+ regulatory T cells (Tregs), depletion of CD11c+ cells was associated with partial loss of MSCs effect on T cells. In in-vivo experiment, MSCs’ renoprotective effect was also associated with induction of more immature CD11c+ cells and increased FoxP3 expression in I/R kidneys. However all these effects induced by the MSCs were partially abrogated when CD11c+ cells were depleted in the CD11c+-DTR transgenic mice. In addition, the observation that adoptive transfer of WT CD11c+ cells partially restored the beneficial effect of the MSCs, while transferring IL-10 deficient CD11c+ cells did not, strongly suggest the important contribution of IL-10 producing CD11c+ cells in attenuating kidney injury by MSCs. Our results suggest that the CD11c+ cell-Tregs play critical role in mediating renoprotective effect of MSCs.  相似文献   

11.
Dendritic cells (DCs) are involved in T cell activation via their uptake and presentation of antigens. In vivo function of DCs was analyzed using transgenic mouse models that express diphtheria toxin receptor (DTR) or the diphtheria toxin-A subunit (DTA) under the control of the CD11c/Itgax promoter. However, CD11c+ cells are heterogeneous populations that contain several DC subsets. Thus, the in vivo function of each subset of DCs remains to be elucidated. Here, we describe a new inducible DC ablation model, in which DTR expression is induced under the CD11c/Itgax promoter after Cre-mediated excision of a stop cassette (CD11c-iDTR). Crossing of CD11c-iDTR mice with CAG-Cre transgenic mice, expressing Cre recombinase under control of the cytomegalovirus immediate early enhancer-chicken beta-actin hybrid promoter, led to the generation of mice, in which DTR was selectively expressed in CD11c+ cells (iDTRΔ mice). We successfully deleted CD11c+ cells in bone marrow-derived DCs in vitro and splenic CD11c+ cells in vivo after DT treatment in iDTRΔ mice. This mouse strain will be a useful tool for generating mice lacking a specific subset of DCs using a transgenic mouse strain, in which the Cre gene is expressed by a DC subset-specific promoter.  相似文献   

12.
Toxoplasma gondii-derived heat shock protein 70 (T.g.HSP70) was proven to induce lethal anaphylactic reaction in T. gondii-infected mice through platelet-activating factor (PAF)-mediated, but not classical IgE-dependent, pathway via TLR4/MyD88 signal pathway. The effector cells generating PAF and causing T.g.HSP70-induced anaphylactic reaction were CD11b+ and CD11c+ cells, although the reaction was enhanced by marked IFN-γ production by CD11b+, CD11c+, CD4+ and CD8+ splenocytes. In the present study, the effects of T.g.HSP70 gene vaccine targeting peripheral dendritic cells were evaluated against T.g.HSP70-induced anaphylactic reaction in T. gondii-infected mice. C57BL/6 mice receiving T.g.HSP70 gene vaccine showed prolonged survival. Platelets of peripheral blood, which completely disappeared during the T.g.HSP70-induced anaphylactic reaction, were partially restored with the T.g.HSP70 gene vaccination. The T.g.HSP70-induced marked production of PAF and IFN-γ from splenocytes of infected mice during the T.g.HSP70-induced anaphylactic reaction was shown to decrease after the T.g.HSP70 gene vaccination. Thus, T.g.HSP70 gene vaccine induced protective immunity against T.g.HSP70-induced PAF-mediated lethal anaphylactic reaction in T. gondii-infected mice.  相似文献   

13.
Polyplex micelles have demonstrated biocompatibility and achieve efficient gene transfection in vivo. Here, we investigated a polyplex micelle encapsulating genes encoding the tumor-associated antigen squamous cell carcinoma antigen recognized by T cells-3 (SART3), adjuvant CD40L, and granulocyte macrophage colony-stimulating factor (GM-CSF) as a DNA vaccine platform in mouse tumor models with different types of major histocompatibility antigen complex (MHC). Intraperitoneally administrated polyplex micelles were predominantly found in the lymph nodes, spleen, and liver. Compared with mock controls, the triple gene vaccine significantly prolonged the survival of mice harboring peritoneal dissemination of CT26 colorectal cancer cells, of which long-term surviving mice showed complete rejection when re-challenged with CT26 tumors. Moreover, the DNA vaccine inhibited the growth and metastasis of subcutaneous CT26 and Lewis lung tumors in BALB/c and C57BL/6 mice, respectively, which represent different MHC haplotypes. The DNA vaccine highly stimulated both cytotoxic T lymphocyte and natural killer cell activities, and increased the infiltration of CD11c+ DCs and CD4+/CD8a+ T cells into tumors. Depletion of CD4+ or CD8a+ T cells by neutralizing antibodies deteriorated the anti-tumor efficacy of the DNA vaccine. In conclusion, a SART3/CD40L+GM-CSF gene-loaded polyplex micelle can be applied as a novel vaccine platform to elicit tumor rejection immunity regardless of the recipient MHC haplotype.  相似文献   

14.
Antigen-specific regulatory CD4+ T cells have been described but there are few reports on regulatory CD8+ T cells. We generated islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific regulatory CD8+ T cells from 8.3-NOD transgenic mice. CD8+ T cells from 8.3-NOD splenocytes were cultured with IGRP, splenic dendritic cells (SpDCs), TGF-β, and all-trans retinoic acid (ATRA) for 5 days. CD8+ T cells cultured with either IGRP alone or IGRP and SpDCs in the absence of TGF-β and ATRA had low Foxp3+ expression (1.7 ± 0.9% and 3.2 ± 4.5%, respectively). In contrast, CD8+ T cells induced by exposure to IGRP, SpDCs, TGF-β, and ATRA showed the highest expression of Foxp3+ in IGRP-reactive CD8+ T cells (36.1 ± 10.6%), which was approximately 40-fold increase compared with that before induction culture. CD25 expression on CD8+ T cells cultured with IGRP, SpDCs, TGF-β, and ATRA was only 7.42%, whereas CD103 expression was greater than 90%. These CD8+ T cells suppressed the proliferation of diabetogenic CD8+ T cells from 8.3-NOD splenocytes in vitro and completely prevented diabetes onset in NOD-scid mice in cotransfer experiments with diabetogenic splenocytes from NOD mice in vivo. Here we show that exposure to ATRA and TGF-β induces CD8+Foxp3+ T cells ex vivo, which suppress diabetogenic T cells in vitro and in vivo.  相似文献   

15.
The major histocompatibility complex (MHC) class II-associated Invariant chain (Ii) is present in professional antigen presenting cells where it regulates peptide loading onto MHC class II molecules and the peptidome presented to CD4+ T lymphocytes. Because Ii prevents peptide loading in neutral subcellular compartments, we reasoned that Ii cells may present peptides not presented by Ii+ cells. Based on the hypothesis that patients are tolerant to MHC II-restricted tumor peptides presented by Ii+ cells, but will not be tolerant to novel peptides presented by Ii cells, we generated MHC II vaccines to activate cancer patients'' T cells. The vaccines are Ii tumor cells expressing syngeneic HLA-DR and the costimulatory molecule CD80. We used liquid chromatography coupled with mass spectrometry to sequence MHC II-restricted peptides from Ii+ and Ii MCF10 human breast cancer cells transfected with HLA-DR7 or the MHC Class II transactivator CIITA to determine if Ii cells present novel peptides. Ii expression was induced in the HLA-DR7 transfectants by transfection of Ii, and inhibited in the CIITA transfectants by RNA interference. Peptides were analyzed and binding affinity predicted by artificial neural net analysis. HLA-DR7-restricted peptides from Ii and Ii+ cells do not differ in size or in subcellular location of their source proteins; however, a subset of HLA-DR7-restricted peptides of Ii cells are not presented by Ii+ cells, and are derived from source proteins not used by Ii+ cells. Peptides from Ii cells with the highest predicted HLA-DR7 binding affinity were synthesized, and activated tumor-specific HLA-DR7+ human T cells from healthy donors and breast cancer patients, demonstrating that the MS-identified peptides are bonafide tumor antigens. These results demonstrate that Ii regulates the repertoire of tumor peptides presented by MHC class II+ breast cancer cells and identify novel immunogenic MHC II-restricted peptides that are potential therapeutic reagents for cancer patients.Cancer vaccines are a promising tool for cancer treatment and prevention because of their potential for inducing tumor-specific responses in conjunction with minimal toxicity for healthy cells. Cancer vaccines are based on the concept that tumor cells synthesize multiple peptides that are potential immunogens, and that with the appropriate vaccine protocol, these peptides will activate an efficacious antitumor response in the patient. Much effort has been invested in identifying and testing tumor-encoded peptides, particularly peptides presented by major histocompatibility complex (MHC)1 class I, molecules capable of activating CD8+ T-cells that directly kill tumor cells (1, 2). Fewer studies have been devoted to identifying MHC class II-restricted peptides for the activation of tumor-reactive CD4+ T-cells despite compelling evidence that Type 1 CD4+ T helper cells facilitate the optimal activation of CD8+ T-cells and the generation of immune memory, which is likely to be essential for protection from metastatic disease.Activation of CD4+ T cells requires delivery of a costimulatory signal plus an antigen-specific signal consisting of peptide bound to an MHC II molecule. Most cells do not express MHC II or costimulatory molecules, so CD4+ T cells are typically activated by professional antigen presenting cells (APC), which endocytose exogenously synthesized antigen and process and present it in the context of their own MHC II molecules. This processing and presentation process requires Invariant chain (Ii), a molecule that is coordinately synthesized with MHC II molecules and prevents the binding and presentation of APC-encoded endogenous peptides (3, 4). As a result, tumor-reactive CD4+ T cells are activated to tumor peptides generated by the antigen processing machinery of professional APC, rather than peptides generated by the tumor cells. Because of the potential discrepancy in peptide generation between professional APC and tumor cells, and the critical role of Ii in preventing the presentation of endogenous peptides, we have generated “MHC II cancer vaccines” that consist of Ii tumor cells transfected with syngeneic MHC class II and CD80 genes. We reasoned that MHC II+IiCD80+ tumor cells may present a novel repertoire of MHC II-restricted tumor peptides that are not presented by professional APC, and therefore may be highly immunogenic. Once activated, CD4+ T cells produce IFNγ and provide help to CD8+ T cells and do not need to react with native tumor cells. Therefore, the MHC II vaccines have the potential to activate CD4+ Th1 cells that facilitate antitumor immunity. In vitro (5) and in vivo (57) studies with mice support this conclusion. In vitro studies with human MHC II vaccines further demonstrate that the absence of Ii facilitates the activation of MHC II-restricted tumor-specific CD4+ type 1 T cells of HLA-DR-syngeneic healthy donors and cancer patients, and that the vaccines activate CD4+ T cells with a distinct repertoire of T cell receptors (812). A critical negative role for Ii is also supported by studies of human acute myelogenous leukemia (AML). High levels of class II-associated invariant chain peptide (CLIP), a degradation product of Ii, by leukemic blasts is associated with poor patient prognosis (13, 14), whereas down-modulation of CLIP on AML cells increases the activation of tumor-reactive human CD4+ T cells (14, 15).We have now used mass spectrometry to identify MHC II-restricted peptides from MHC II+Ii and MHC II+Ii+ human breast cancer cells to test the concept that the absence of Ii facilitates the presentation of unique immunogenic MHC II-restricted peptides. We report here that a subset of MHC II-restricted peptides from HLA-DR7+ breast cancer cells are unique to Ii cells and are derived from source proteins not used by Ii+ cells. Ii peptides have high binding affinity for HLA-DR7 and activate tumor-specific T-cells from the peripheral blood of healthy donors and breast cancer patients. This is the first study to compare the human tumor cell MHC II peptidome in the absence or presence of Ii and to demonstrate that MHC II+Ii tumor cells present novel immunogenic MHC II-restricted peptides that are potential therapeutic reagents for cancer patients.  相似文献   

16.
Bacillus subtilis-derived poly-γ-glutamic acid (γPGA) stimulates dendritic cells (DCs) to produce IL12, leading to CD4+ T cell differentiation toward the Th1 phenotype, but DCs consist of heterogeneous subpopulations with a variety of immune functions. Among these, natural killer dendritic cells (NKDCs) play an important role in anti-tumor immune responses. Herein, we demonstrate the role of NKDCs in γPGA-meditated anti-tumor immune responses. NK1.1+ CD11c+ NKDCs were stimulated upon γPGA stimulation in vitro and in vivo to up-regulate lymphocyte activation markers, MHC class I and II, and co-stimulatory molecules. In particular, NKDCs were activated by γPGA to produce IFNγ and TNFα, like NK cells, as well as IL12, like DCs, implying that NKDCs have unique and multifunctional roles. Importantly, NKDCs stimulated by γPGA conferred stronger anti-tumor effects in mice and showed increased cytotoxicity against various tumor cell lines in vitro. In conclusion, NKDCs are one of the key players in anti-tumor immunity induced by γPGA.  相似文献   

17.
Previous studies have shown that intrabronchial administration of antibodies (Abs) to MHC class I resulted in development of obliterative airway disease (OAD), a correlate of chronic human lung allograft rejection. Since development of Abs specific to mismatched donor HLA class II have also been associated with chronic human lung allograft rejection, we analyzed the role of Abs to MHC class II in inducing OAD. Administration of MHC class II Abs (M5/114) to C57BL/6 mice induced the classical features of OAD even though MHC class II expression is absent de novo on murine lung epithelial and endothelial cells. The induction of OAD was accompanied by enhanced cellular and humoral immune responses to self-antigens (Collagen V and K- α1Tubulin). Further, lung-infiltrating macrophages demonstrated a switch in their phenotype predominance from MΦ1 (F4/80+CD11c+) to MΦ2 (F4/80+CD206+) following administration of Abs and prior to development of OAD. Passive administration of macrophages harvested from animals with OAD but not from naïve animals induced OAD lesions. We conclude that MHC class II Abs induces a phenotype switch of lung infiltrating macrophages from MΦ1 (F4/80+CD11c+) to MΦ2 (F4/80+CD206+) resulting in the breakdown of self-tolerance along with an increase in autoimmune Th17 response leading to OAD.  相似文献   

18.

Background

The integrin CD11c is known as a marker for dendritic cells and has recently been described on T cells following lymphotropic choriomeningitis virus infection, a systemic infection affecting a multitude of organs. Here, we characterise CD11c bearing T cells in a murine model of localised pulmonary infection with respiratory syncytial virus (RSV).

Methods

Mice were infected intranasally with RSV and expression of β2 integrins and T lymphocyte activation markers were monitored by flow cytometry. On day 8 post RSV infection CD11c+ CD8+ and CD11c- CD8+ T cells were assessed for cytokine production, cytotoxic activity and migration. Expression of CD11c mRNA in CD8+ T cells was assessed by quantitative PCR.

Results

Following RSV infection CD11c+ CD8+ T cells were detectable in the lung from day 4 onwards and accounted for 45.9 ± 4.8% of CD8+ T cells on day 8 post infection, while only few such cells were present in mediastinal lymph nodes, spleen and blood. While CD11c was virtually absent from CD8+ T cells in the absence of RSV infection, its mRNA was expressed in CD8+ T cells of both naïve and RSV infected mice. CD11c+, but not CD11c-, CD8+ T cells showed signs of recent activation, including up-regulation of CD11a and expression of CD11b and CD69 and were recruited preferentially to the lung. In addition, CD11c+ CD8+ T cells were the major subset responsible for IFNγ production, induction of target cell apoptosis in vitro and reduction of viral titres in vivo.

Conclusion

CD11c is a useful marker for detection and isolation of pulmonary antiviral cytotoxic T cells following RSV infection. It identifies a subset of activated, virus-specific, cytotoxic T cells that exhibit potent antiviral effects in vivo.  相似文献   

19.
In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) 2 mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) 3 cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8+ T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B+ CD8+ T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a+ CD8+ T cells in the splenocytes of KO mice may affect the loss of CD8+ T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B+ CD8+ T-cells and CD107a+ CD8+ T-cells, thus transiently regulating in vivo anti-tumor immunity.  相似文献   

20.
Two critical periods of maximum exposure to antigens occur in young mammals, immediately after birth and at weaning, as a result of colonization by commensal bacteria and the ingestion of new diets. At weaning, active immune responses of antibody production against dietary proteins are known to occur, but simultaneously, oral tolerance is acquired for harmless food proteins. However, regulated mechanisms of the immune system at weaning remain to be elucidated although its immune responses may be somewhat similar to those in adulthood. Considering that tolerogenic antigen-presenting cells (APCs) are likely to be a key factor in the acquisition of oral tolerance, in the present study, we examined the changes of dendritic cells (DCs) in the lamina propria (LP) on exposure to food proteins at weaning. C57BL/6 female mice were weaned at the age of 3 weeks and orally administered 10 mg of ovalbumin (OVA) for ten consecutive days after weaning. The administration led to a decrease in the plasma level of immunoglobulin specific for OVA, suggesting the acquisition of oral tolerance. The uptake of fluorescence-labeled OVA was significantly observed for CD11c+LPDCs. When we analyzed the changes of two types of LPDCs, PDCA-1+ MHC II+ DCs and CD103+ MHC II+ DCs, ten consecutive gavages of OVA marginally, but not significantly, augmented only the frequency of PDCA-1+ MHC II+ DCs. Considering that the change of APCs likely appears immediately on the response to antigen intake, we found the statistically significant increase in the frequency of PDCA-1+ DCs, but not in that of CD103+ DCs, even after two treatments, indicating PDCA-1+ DCs to be recruited in the LP within 2 days of exposure to food proteins. These results suggest that the behavior of tolerogenic PDCA-1+ DCs may change at weaning with the removal of the immunoprotective components of maternal milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号