首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 576 毫秒
1.

Aims

Climate, soil water potential (SWP), leaf relative water content (RWC), stomatal conductance (gs), fruit and shoot growth, and carbohydrate levels were monitored during the 2008 and 2009 growing seasons to study the responses of ‘Gala’ and ‘Fuji’ apple trees to irrigation placement or volume.

Methods

Three irrigation treatments were imposed, conventional irrigation (CI), partial root-zone drying (PRD, 50% of CI water on one side of the root-zone, which was alternated periodically), and continuous deficit irrigation (DI, 50% of CI water on both sides of the root-zone).

Results

After each irrigation season, DI generated twice the soil water deficit (SWDint) than PRD (average of dry and wet sides) and a greater integrated leaf water deficit (LWDint) than PRD and CI. Both PRD and DI reduced gs by 9 and 15% over the irrigation period. RWC of both PRD and DI was directly related to SWP and inversely related (non-linear) to vapor pressure deficit (VPD), whereas it was unrelated to gs. Considering individual sampling days, gs of ‘Gala’ leaves was inversely related to VPD mainly until early August (fruit at cell expansion phase and high VPD), while it was directly related to VPD in September (no fruit and low VPD). On the contrary, gs of ‘Fuji’ leaves was inversely related to VPD from late August until mid October (low VPD and fruit at cell expansion phase). Fruit growth was not affected by irrigation, whereas shoot and trunk growth was reduced by DI. Irrigation induced sporadic and inconsistent changes in carbohydrate contents or partitioning, with a general tendency of DI leaves to degrade and PRD to accumulate sorbitol and sucrose in dry periods.

Conclusions

‘Gala’ trees exhibited a more conservative water use than ‘Fuji’ trees due primarily to different timing of fruit growth and crop loads. Different levels of SWDint, rather than changes in stomatal control and carbohydrate partitioning, seem to play a major role in determining a better water status in PRD than in DI trees.  相似文献   

2.
  • Cold‐adapted trees display acclimation in both carbon source and carbon sink capacity to low‐temperature stress at their upper elevational range limits. Hence a balanced carbon source–sink capacity might be required for their persistence and survival at the elevational tree limits.
  • The present study examined the spatial dynamics of carbon source–sink relationship in subalpine fir (Abies fargesii) trees along elevational gradients in the northern slope of the temperate region and in the southern slope of the subtropics in terms of climate in the Qinling Mountain range, north‐central China.
  • The results showed that non‐structural carbohydrate (NSC) concentrations in both the source and sink tissues increased with the increase in elevation. The ratio of carbon source–sink displayed a consistent decreasing trend with the increase in elevation and during growing season, showing that it was lowest at a ratio of 2.93 in the northern slope and at a ratio of 2.61 in the southern slope at the upper distribution elevations in the late growing season. Such variations of carbon source–sink ratio might be attributable to the balance between carbon source and sink activities, which changed seasonally across the elevational distribution range.
  • We concluded that a ratio of carbon source–sink of at least 2.6 might be essential for subalpine fir trees to persist at their upper range limits. Therefore, a sufficient source–sink ratio and a balanced source–sink relationship might be required for subalpine fir trees to survive and develop at their upper elevational distribution limits.
  相似文献   

3.
Intracanopy plasticity in tree leaf form is a major determinant of whole-plant function and potentially of forest understory ecology. However, there exists little systematic information for the full extent of intracanopy plasticity, whether it is linked with height and exposure, or its variation across species. For arboretum-grown trees of six temperate deciduous species averaging 13-18 m in height, we quantified intracanopy plasticity for 11 leaf traits across three canopy locations (basal-interior, basal-exterior, and top). Plasticity was pronounced across the canopy, and maximum likelihood analyses indicated that plasticity was primarily linked with irradiance, regardless of height. Intracanopy plasticity (the quotient of values for top and basal-interior leaves) was often similar across species and statistically indistinguishable across species for several key traits. At canopy tops, the area of individual leaves was on average 0.5-0.6 times that at basal-interior, stomatal density 1.1-1.5 times higher, sapwood cross-sectional area up to 1.7 times higher, and leaf mass per area 1.5-2.2 times higher; guard cell and stomatal pore lengths were invariant across the canopy. Species differed in intracanopy plasticity for the mass of individual leaves, leaf margin dissection, ratio of leaf to sapwood areas, and stomatal pore area per leaf area; plasticity quotients ranged only up to ≈2. Across the six species, trait plasticities were uncorrelated and independent of the magnitude of the canopy gradient in irradiance or height and of the species' light requirements for regeneration. This convergence across species indicates general optimization or constraints in development, resulting in a bounded plasticity that improves canopy performance.  相似文献   

4.
5.
Blossom-end rot is generally considered a calcium-related physiological disorder. The results of the previous studies show that several factors such as plant conditions can be effective on the blossom-end rot incidence. Therefore, the present study was undertaken to investigate the effect of the sink/source ratio on the incidence of the blossom-end rot of two greenhouse tomato (Solanum lycopersicum L.) cultivars: ‘Grandella’ and ‘Isabella’. To this end, four treatments were applied: saving one fruit per truss (1F), two fruits per truss (2F), three fruits per truss (3F), and no fruit pruning (control). The results showed that the tomato cultivar ‘Isabella’ was more susceptible to the blossom-end rot than ‘Grandella’. Decreasing the sink/source ratio increased the incidence of the blossom-end rot and the relative fruit growth rate. The correlation between the blossom-end rot incidence and the relative fruit growth rate showed that the fruit growth rate could be regarded as an important factor in the incidence of this disorder. Endogenous auxin and cytokinin concentrations acted as the regulators of the fruit growth rate and influenced it. Slowing down the relative growth rate by keeping proper sink/source ratio based on tomato cultivar is, therefore, an effective, cheap and healthy way to control the incidence of the blossom-end rot, especially in organic farming.  相似文献   

6.

Background and Aims

Fruit set in indeterminate plant species largely depends on the balance between source and sink strength. Plants of these species show fluctuations in fruit set during the growing season. It was tested whether differences in fruit sink strength among the cultivars explained the differences in fruit-set patterns.

Methods

Capsicum was chosen as a model plant. Six cultivars with differences in fruit set, fruit size and plant growth were evaluated in a greenhouse experiment. Fruit-set patterns, generative and vegetative sink strength, source strength and the source : sink ratio at fruit set were determined. Sink strength was quantified as potential growth rate. Fruit set was related to total fruit sink strength and the source : sink ratio. The effect of differences observed in above-mentioned parameters on fruit-set patterns was examined using a simple simulation model.

Key Results

Sink strengths of individual fruits differed greatly among cultivars. Week-to-week fruit set in large-fruited cultivars fluctuated due to large fluctuations in total fruit sink strength, but in small-fruited cultivars, total fruit sink strength and fruit set were relatively constant. Large variations in week-to-week fruit set were correlated with a low fruit-set percentage. The source : sink threshold for fruit set was higher in large-fruited cultivars. Simulations showed that within the range of parameter values found in the experiment, fruit sink strength and source : sink threshold for fruit set had the largest impact on fruit set: an increase in these parameters decreased the average percentage fruit set and increased variation in weekly fruit set. Both were needed to explain the fruit-set patterns observed. The differences observed in the other parameters (e.g. source strength) had a lower effect on fruit set.

Conclusions

Both individual fruit sink strength and the source : sink threshold for fruit set were needed to explain the differences observed between fruit-set patterns of the six cultivars.  相似文献   

7.
陈娟  张小晶  李巧玉  陶建平 《生态学报》2022,42(5):1788-1797
表型可塑性是植物生长响应外界环境变化的重要表现形式,体现了植物个体在环境胁迫下的适合度。但是关于植物表型可塑性的驱动机制仍然存在很多争议。为了探讨植物表型可塑性的影响因素,以四川省阿坝藏族羌族自治州位于同一海拔梯度但坡向相反的天然次生林为研究对象,分析了不同坡向竞争强度与10种树木叶片功能性状表型可塑性的关系的差异。研究发现:(1)研究样地中阴坡水分和养分资源优于阳坡;(2)阴坡上林木平均种内和种间竞争强度高于阳坡,阴坡上林木种内竞争强度随着树木个体大小的增加而显著性减少,阳坡上林木种内竞争强度却随着个体大小的增加而增加;(3)阴坡上叶片表型可塑性高于阳坡,表型可塑性随着个体大小的增加而增加,在阳坡上却随着个体大小增加而降低。这些结果表明阴坡上水分等资源环境条件优于阳坡,林木生长受到环境资源限制较少。在林木生长过程中,较高的竞争强度引起的资源重叠加剧,尤其是种内竞争强度的变化,从而导致了阴坡上较高的叶片表型可塑性。因为较高的竞争强度,随着林木个体大小的增加,树木需要更高的可塑性赢得竞争优势来获取更多的资源支持生长。但是在阳坡上,资源相对缺乏,环境资源对树木生长的限制降低了叶片表型的可塑...  相似文献   

8.
We describe an approach for determining the degree of sink and source limitations on peach ( Prunus persica L. Batsch) fruit growth during several growth periods. Source limitations on fruit growth may be due to either a shortfall in assimilate supply within the tree (supply limitation) or to a deficiency in the capacity of the translocation system to deliver assimilates in sufficient quantity to support the maximum fruit growth rate (transport/competition limitation). To ascertain the potential maximum rate of fruit growth, fruit thinning treatments were used. One month after bloom, the number of fruits per tree was adjusted to between 50 and 700 on an early and a late maturing peach cultivar (cvs Spring Lady and Cal Red, respectively). Rates of potential sink demand, potential source supply and actual fruit growth were estimated from sequential harvests of all fruits on 42 trees on two (Spring Lady) and three (Cal Red) dates. These values were used to estimate the proportion of potential growth achieved, and the supply and transport/competition limitations on fruit growth. The results indicated that source limitations were significant on trees with moderate to high fruit numbers. These source limitations were due to supply limitations during all harvest intervals and to transport/competition limitations during the early harvest intervals. Sink limitations occurred to the greatest extent during the mid-period of fruit growth on the later maturing cultivar.  相似文献   

9.
Phenotypic plasticity and developmental instability in leaf traits are common in oak species but the role of environmental factors is not well understood. To decipher possible correlations between different leaf traits and effects of the position of leaves within the tree canopy, we quantified the plasticity of three leaf traits of 30 trees of Quercus alba L., Quercus palustris Muench and Quercus velutina Lam. We hypothesized that trees could modify the shape of their leaves for better adaptation to the variable microclimate within the canopy. Our results demonstrated that the south and north outer leaves were significantly smaller, more lobed and denser than those situated in the inner canopy. The order of leaves on the branch accounted for the plasticity of leaf traits in Q. alba only. Plasticity of lobing in Q. alba and Q. velutina depended on the height of the trees. We detected fluctuating asymmetry (FA) in all three species, but the source of variation depended on branch position in Q. velutina only. FA was more pronounced in north-facing leaves. Plasticity of the leaf traits ranged from small to medium. Plasticity of leaf area and leaf mass per area (LMA) depended on the branch position. However, the plasticity of lobation was not affected by the location of a branch within the tree canopy. Quercus alba and Q. palustris had similar plastic responses but the plasticity of Q. velutina was significantly smaller. We concluded that individual plants detect and cope with environmental stress through vegetative organ modification.  相似文献   

10.
Demand for large fruit of uniform size is increasing in the market; thinning is a means to achieve consistently large fruit and to overcome possible alternate (biennial) bearing for the small-fruited European plum (Prunus domestica L.). However, chemical thinning agents for stone fruits are scarce and/or often ineffective. Hence, the objective of this work was to study possibilities of enhancing fruit growth and to improve fruit quality, viz size using plum as a model crop. Nine-year-old ‘Ortenauer’ plum trees, trained to spindles, with maximum flowering intensity (score value 9) near Bonn, Germany were mechanically, chemically or hand-thinned. Un-thinned plum trees in the same rows served as control. Trees were either mechanically thinned at full bloom on 20 April 2009 with a rotor speed of either 300, 400 or 500 rpm, and half of those trees additionally treated with ATS (15 L/ha) and an ethylene releasing compound 35 days after full bloom or manually thinned. The objective of 1/3 flower removal was successfully achieved even with the slowest rotor speed of 300 rpm. The number of fruit per branch was significantly reduced from 152 to 67–76, equivalent to a (source: sink) leaf: fruit ratio of 5:1. Mechanical thinning significantly enlarged fruit mass from 28 g in the un-thinned control to 30–32 g with rotor speeds of 400 or 500 rpm. Additional chemical thinning with ATS and an ethylene-releasing compound resulted in no further increase in fruit mass. Inner fruit quality (sugar) of the plums appeared unaffected by either mechanical or chemical thinning, except for fruit firmness: Plums thinned with an ethylene releasing compound were softer and ripened earlier than respective control fruit. The most efficient method of flower removal and fruit mass enlargement was mechanical blossom thinning with 400 rpm, which may provide a suitable replacement for chemical and/or manual thinning. Alternatively, the mechanical thinning can be combined with either of those options. Mechanical blossom thinning was as effective to overcome or avoid alternate/biennial bearing as the ethylene releasing compound in the previous year. The results are discussed with respect to stone fruit being more difficult to thin than pome fruit, because the former do not exhibit leaves at the time of blossom thinning. Stone fruits develop within a shorter time and a larger number of (smaller) leaves (source) are required for the same fruit growth and final fruit size (sink). A lower threshold of fruit removal has to be exceeded before the remaining stone fruit grow faster and final fruit mass and sugar (and possibly fruit firmness) increase, while acidity remains unaffected by fruit set. An upper saturation threshold is reached fairly quickly without further effects.  相似文献   

11.
Phenotypic plasticity, the ability to adjust phenotype to the exposed environment, is often advantageous for organisms living in heterogeneous environments. Although the degree of plasticity appears limited in nature, many studies have reported low costs of plasticity in various species. Existing studies argue for ecological, genetic, or physiological costs or selection eliminating plasticity with high costs, but have not considered costs arising from sexual selection. Here, we show that sexual selection caused by mate choice can impede the evolution of phenotypic plasticity in a trait used for mate choice. Plasticity can remain low to moderate even in the absence of physiological or genetic costs, when individuals phenotypically adapted to contrasting environments through plasticity can mate with each other and choose mates based on phenotypic similarity. Because the non-choosy sex (i.e., males) with lower degrees of plasticity are more favored in matings by the choosy sex (i.e., females) adapted to different environments, directional selection toward higher degrees of plasticity is constrained by sexual selection. This occurs at intermediate strengths of female choosiness in the range of the parameter value we examined. Our results demonstrate that mate choice is a potential source of an indirect cost to phenotypic plasticity in a sexually selected plastic trait.  相似文献   

12.
This study aimed to understand the response of photosynthesis and growth to e-CO2 conditions (800 vs. 400 μmol mol−1) of rice genotypes differing in source–sink relationships. A proxy trait called local C source–sink ratio was defined as the ratio of flag leaf area to the number of spikelets on the corresponding panicle, and five genotypes differing in this ratio were grown in a controlled greenhouse. Differential CO2 resources were applied either during the 2 weeks following heading (EXP1) or during the whole growth cycle (EXP2). Under e-CO2, low source–sink ratio cultivars (LSS) had greater gains in photosynthesis, and they accumulated less nonstructural carbohydrate in the flag leaf than high source–sink ratio cultivars (HSS). In EXP2, grain yield and biomass gain was also greater in LSS probably caused by their strong sink. Photosynthetic capacity response to e-CO2 was negatively correlated across genotypes with local C source–sink ratio, a trait highly conserved across environments. HSS were sink-limited under e-CO2, probably associated with low triose phosphate utilization (TPU) capacity. We suggest that the local C source–sink ratio is a potential target for selecting more CO2-responsive cultivars, pending validation for a broader genotypic spectrum and for field conditions.  相似文献   

13.
Two-year-old potted peach ‘Zaojiubao’ (Prunus persica L. Batsch) trees on wild P. persica rootstock were subjected either to regulated deficit irrigation (RDI), in which trees were water stressed during fruit pit hardening (stage II) followed by rewatering during the final rapid fruit growth stage (stage III), or to half-root stress (HRS) treatments during the same two stages. To investigate the allocation of carbon assimilates among sink organs, shoots were fed with 14CO2 twice, either during stage II or stage III. The distribution coefficient (K) represented the competitive sink strength. RDI and HRS induced an altered allocation pattern of 14C-assimilates. The import to shoot apexes was reduced. However, there were no significant reduction in fruit diameter and weight. Moreover, the Ks of the fruit subparts of RDI and HRS treated trees were similar to or sometimes higher than those of CK trees. There were more 14C-assimilates and higher K values of seeds from RDI trees during stage III compared with CK. In addition, stressed roots seemed to have stronger abilities to attract 14C-assimilates. It is concluded that RDI and HRS resulted in a decreased sink activity in the shoot and a change of carbon allocation toward stressed roots and seeds without negative effects on fruit growth.  相似文献   

14.
We tested whether the degree of shade-induced plasticity in petiole length and leaf area is related to the mean trait value expressed under high-light conditions, and to what extent trait values expressed under high-light and shaded conditions affect plant performance. Thirty-four Trifolium repens genotypes were used with a wide range of petiole lengths and leaf areas. Plants were subjected to a high-light environment and two shading regimes: homogeneous shading and a vertical light gradient. Absolute petiole elongation in response to both shading treatments and absolute leaf area expansion in response to homogeneous shading were independent of the trait values expressed in high light. Consequently, relative plasticity was higher for genotypes with lower high-light trait values. Plasticity was associated with enhanced plant performance in a vertical light gradient but not in homogeneously shaded conditions. We also found costs associated with the ability to express plasticity. Our results suggest that selection can act separately on trait values expressed under high-light conditions and on the degree of plasticity.  相似文献   

15.
BACKGROUND AND AIMS: Growth in trunk height in canopy openings is important for saplings. How saplings increase height growth in canopy openings may relate to crown architectural constraints. Responses of crown development to canopy openings in relation to trunk height growth were studied for saplings (0.2-2.5 m tall) of eight tropical submontane forest tree species in Indonesia. The results of this study were also compared with those of temperate trees in northern Japan. METHODS: The crown architecture differed among the eight tropical species, i.e. they had sparsely to highly developed branching structures. Crown allometry was compared among the eight species in each canopy condition (closed canopy or canopy openings), and between closed canopy and canopy openings within a species. A general linear regression model was used to analyse how each species increases height growth rate in canopy openings. Crown allometry and its plasticity were compared between tropical and temperate trees by a nested analysis of covariance. KEY RESULTS: Tropical submontane trees had responses similar to cool-temperate trees, showing an increase in height in canopy openings, i.e. taller saplings of sparsely branched species increase height growth rates by increasing the sapling leaf area. Cool-temperate trees have a wider crown projection area and a smaller leaf area per crown projection area to avoid self-shading within a crown compared with tropical submontane trees. Plasticity of the crown projection area is greater in cool-temperate trees than in tropical submontane trees, probably because of the difference in leaf longevity. CONCLUSIONS: This study concluded that interspecific variation in the responses of crown development to canopy openings in regard to increasing height related to the species' branching structure, and that different life-forms, such as evergreen and deciduous trees, had different crown allometry and plasticity.  相似文献   

16.
No single hypothesis or theory has been widely accepted for explaining the functional mechanism of global alpine/arctic treeline formation. The present study tested whether the alpine treeline is determined by (1) the needle nitrogen content associated with photosynthesis (carbon gain); (2) a sufficient source-sink ratio of carbon; or (3) a sufficient C-N ratio. Nitrogen does not limit the growth and development of trees studied at the Himalayan treelines. Levels of non-structural carbohydrates (NSC) in trees were species-specific and site-dependent; therefore, the treeline cases studied did not show consistent evidence of source/carbon limitation or sink/growth limitation in treeline trees. However, results of the combined three treelines showed that the treeline trees may suffer from a winter carbon shortage. The source capacity and the sink capacity of a tree influence its tissue NSC concentrations and the carbon balance; therefore, we suggest that the persistence and development of treeline trees in a harsh alpine environment may require a minimum level of the total NSC concentration, a sufficiently high sugar:starch ratio, and a balanced carbon source-sink relationship.  相似文献   

17.
18.

Background and Aims

Despite its simple architecture and small phenotypic plasticity, oil palm has complex phenology and source–sink interactions. Phytomers appear in regular succession but their development takes years, involving long lag periods between environmental influences and their effects on sinks. Plant adjustments to resulting source–sink imbalances are poorly understood. This study investigated oil palm adjustments to imbalances caused by severe fruit pruning.

Methods

An experiment with two treatments (control and complete fruit pruning) during 22 months in 2006–2008) and six replications per treatment was conducted in Indonesia. Phenology, growth of above-ground vegetative and reproductive organs, leaf morphology, inflorescence sex differentiation, dynamics of non-structural carbohydrate reserves and light-saturated net photosynthesis (Amax) were monitored.

Key Results

Artificial sink limitation by complete fruit pruning accelerated development rate, resulting in higher phytomer, leaf and inflorescence numbers. Leaf size and morphology remained unchanged. Complete fruit pruning also suppressed the abortion of male inflorescences, estimated to be triggered at about 16 months before bunch maturity. The number of female inflorescences increased after an estimated lag of 24–26 months, corresponding to time from sex differentiation to bunch maturity. The most important adjustment process was increased assimilate storage in the stem, attaining nearly 50 % of dry weight in the stem top, mainly as starch, whereas glucose, which in controls was the most abundant non-structural carbohydrate stored in oil palm, decreased.

Conclusions

The development rate of oil palm is in part controlled by source–sink relationships. Although increased rate of development and proportion of female inflorescences constituted observed adjustments to sink limitation, the low plasticity of plant architecture (constant leaf size, absence of branching) limited compensatory growth. Non-structural carbohydrate storage was thus the main adjustment process.Key words: Carbon allocation, non-structural carbohydrates, source–sink relationships, Elaeis guineensis, phenotypic plasticity, photosynthesis  相似文献   

19.
Aims Changes in the phenotype of crops (phenotypic plasticity) are known to play an important role in determining responses to nutrient availability, with the direction and magnitude of plasticity of individual traits being crucial for grain yields. Our study analysed the direction, magnitude and hierarchy of plastic responses of yield-related traits (i.e. biomass allocation and yield components) of rice (Oryza sativa L.) to nutrient availability. We estimated the effect of inoculation with arbuscular mycorrhizal fungi (AMF) on these characteristics of phenotypic plasticity.Methods A field experiment was carried out in northeast China, providing rice with six NPK fertilizer levels with or without inoculation with Glomus mosseae. At maturity, we quantified biomass allocation traits (shoot:root ratio and panicle:shoot ratio) and yield component traits (panicle number per hill, spikelet number per panicle, percentage of filled spikelets and seed weight). We also assessed the direction of change in each trait and the magnitude of trait plasticity.Important findings In non-inoculated plants, we found that biomass allocation and seed-number traits (i.e. panicle number per hill, spikelet number per panicle and percentage of filled spikelets) responded to fertilization in the same direction, increasing with rising fertilization. Panicle formation was the most plastic trait, while seed mass was the least plastic trait. AMF inoculation nullified the relationship between most biomass allocation and seed-number traits (except for that between panicle:shoot ratio and the percentage of filled spikelets) but increased the magnitude of plasticity in biomass allocation traits without altering the hierarchy of traits' plasticity. These results underscore the importance of plasticity of yield-related traits per se, and the impact of AMF on plasticity, for maintaining rice yields under low fertilization regimes.  相似文献   

20.
Most of the classical theory on species coexistence has been based on species‐level competitive trade‐offs. However, it is becoming apparent that plant species display high levels of trait plasticity. The implications of this plasticity are almost completely unknown for most coexistence theory. Here, we model a competition–colonisation trade‐off and incorporate trait plasticity to evaluate its effects on coexistence. Our simulations show that the classic competition–colonisation trade‐off is highly sensitive to environmental circumstances, and coexistence only occurs in narrow ranges of conditions. The inclusion of plasticity, which allows shifts in competitive hierarchies across the landscape, leads to coexistence across a much broader range of competitive and environmental conditions including disturbance levels, the magnitude of competitive differences between species, and landscape spatial patterning. Plasticity also increases the number of species that persist in simulations of multispecies assemblages. Plasticity may generally increase the robustness of coexistence mechanisms and be an important component of scaling coexistence theory to higher diversity communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号