首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The voltage-gated H+ channel (Hv) is a voltage sensor domain-like protein consisting of four transmembrane segments (S1–S4). The native Hv structure is a homodimer, with the two channel subunits functioning cooperatively. Here we show that the two voltage sensor S4 helices within the dimer directly cooperate via a π-stacking interaction between Trp residues at the middle of each segment. Scanning mutagenesis showed that Trp situated around the original position provides the slow gating kinetics characteristic of the dimer''s cooperativity. Analyses of the Trp mutation on the dimeric and monomeric channel backgrounds and analyses with tandem channel constructs suggested that the two Trp residues within the dimer are functionally coupled during Hv deactivation but are less so during activation. Molecular dynamics simulation also showed direct π-stacking of the two Trp residues. These results provide new insight into the cooperative function of voltage-gated channels, where adjacent voltage sensor helices make direct physical contact and work as a single unit according to the gating process.  相似文献   

2.
The kinetics of voltage-dependent inactivation of the rapidly activating delayed rectifier, I Kr, are unique among K+ channels. The human ether-a-gogo-related gene (HERG) encodes the pore-forming subunit of I Kr and shares a high degree of homology with ether-a-gogo (EAG) channels that do not inactivate. Within those segments thought to contribute to the channel pore, HERG, possesses several serine residues that are not present in EAG channels. Two of these serines, S620 and S631, are known to be required for inactivation. We now show that a third serine, S641, which resides in the outer portion of the sixth transmembrane segment, is also critical for normal inactivation. As with the other serines, S641 is also involved in maintaining ion selectivity of the HERG channel and alters sensitivity to block by E4031. Larger charged or polar substitutions (S641D and S641T) disrupted C-type inactivation in HERG. Smaller aliphatic and more conservative substitutions (S641A and S641C) facilitated C-type inactivation. Our data show that, like S620 and S631, S641 is another key residue for the rapid inactivation. The altered inactivation of mutations at S620, S631, and S641 were dominant, suggesting that a network of hydroxyl side chains is required for the unique inactivation, permeation, and rectification of HERG channels.  相似文献   

3.
4.
5.
电压门控型钠离子通道(Voltage-gated sodium channel,VGSC)广泛分布于兴奋性细胞,是电信号扩大和传导的主要介质,在神经细胞以及心肌细胞兴奋传导等方面发挥重要作用。钠离子通道结构和功能的异常会改变细胞的兴奋性,从而导致多种疾病的发生,如神经性疼痛、癫痫,以及心律失常等。目前临床上多采用钠离子通道抑制剂治疗上述疾病。近些年,研究人员陆续从动物的毒液中分离纯化出具有调控钠离子通道功能的神经毒素。这些神经毒素多为化合物或小分子多肽。现已有医药研发公司将这些天然的神经毒素进行定向设计改造成钠离子通道靶向药物用于临床疾病的治疗。此外,来源于七鳃鳗Lampetra japonica口腔腺的富含半胱氨酸分泌蛋白(Cysteine-rich buccal gland protein,CRBGP)也首次被证明能够抑制海马神经元和背根神经元的钠离子电流。以下针对钠离子通道疾病及其抑制剂生物学功能的最新研究进展进行分析归纳。  相似文献   

6.
The three-dimensional structure of the skeletal muscle voltage-gated L-type calcium channel (Ca(v)1.1; dihydropyridine receptor, DHPR) was determined using electron cryo-microscopy and single-particle averaging. The structure shows a single channel complex with an approximate total molecular mass of 550 kDa, corresponding to the five known subunits of the DHPR, and bound detergent and lipid. Features visible in our structure together with antibody labeling of the beta and alpha(2) subunits allowed us to assign locations for four of the five subunits within the structure. The most striking feature of the structure is the extra-cellular alpha(2) subunit that protrudes from the membrane domain in close proximity to the alpha(1) subunit. The cytosolic beta subunit is located close to the membrane and adjacent to subunits alpha(1), gamma and delta. Our structure correlates well with the functional and biochemical data available for this channel and suggests a three-dimensional model for the excitation-contraction coupling complex consisting of DHPR tetrads and the calcium release channel.  相似文献   

7.
RNA editing at four sites in eag, a Drosophila voltage-gated potassium channel, results in the substitution of amino acids into the final protein product that are not encoded by the genome. These sites and the editing alterations introduced are K467R (Site 1, top of the S6 segment), Y548C, N567D and K699R (sites 2–4, within the cytoplasmic C-terminal domain). We mutated these residues individually and expressed the channels in Xenopus oocytes. A fully edited construct (all four sites) has the slowest activation kinetics and a paucity of inactivation, whereas the fully unedited channel exhibits the fastest activation and most dramatic inactivation. Editing Site 1 inhibits steady-state inactivation. Mutating Site 1 to the neutral residues resulted in intermediate inactivation phenotypes and a leftward shift of the peak current-voltage relationship. Activation kinetics display a Cole-Moore shift that is enhanced by RNA editing. Normalized open probability relationships for 467Q, 467R and 467K are superimposable, indicating little effect of the mutations on steady-state activation. 467Q and 467R enhance instantaneous inward rectification, indicating a role of this residue in ion permeation. Intracellular tetrabutylammonium blocks 467K significantly better than 467R. Block by intracellular, but not extracellular, tetraethylammonium interferes with inactivation. The fraction of inactivated current is reduced at higher extracellular Mg+2 concentrations, and channels edited at Site 1 are more sensitive to changes in extracellular Mg+2 than unedited channels. These results show that even a minor change in amino acid side-chain chemistry and size can have a dramatic impact on channel biophysics, and that RNA editing is important for fine-tuning the channel’s function.  相似文献   

8.
9.
Familial hemiplegic migraine type 1 (FMH-1) is a rare form of migraine with aura, which is characterized by transient hemiparesis, sensory loss and visual disturbances. This monogenic disease shares many common features with classic migraine, suggesting a similar molecular pathophysiology. Migraine is triggered by activation and sensitization of the trigeminovascular system, specifically the trigeminal nociceptive afferents innervating the meninges. Aura migraine is associated with cortical spreading depression (CSD), which is a short-lasting intense wave of neuronal and glial cell depolarization that slowly progresses over the cortex and is followed by long-lasting neuronal activity depression.  相似文献   

10.
beta-Spectrin and ankyrin are major components of the membrane cytoskeleton. We have generated mice carrying a null mutation in the betaIV-spectrin gene using gene trapping in embryonic stem cells. Mice homozygous for the mutation exhibit tremors and contraction of hindlimbs. betaIV-spectrin expression is mostly restricted to neurons, where it colocalizes with and binds to ankyrin-G at axon initial segments (AISs) and nodes of Ranvier (NR). In betaIV-spectrin-null neurons, neither ankyrin-G nor voltage-gated sodium channels (VGSC) are correctly clustered at these sites, suggesting that impaired action potential caused by mislocalization of VGSC leads to the phenotype. Conversely, in ankyrin-G-null neurons, betaIV-spectrin is not localized to these sites. These results indicate that betaIV-spectrin and ankyrin-G mutually stabilize the membrane protein cluster and the linked membrane cytoskeleton at AIS and NR.  相似文献   

11.
Voltage-gated sodium (NaV) channels are a family of transmembrane ion channel proteins. They function by forming a gated, water-filled pore to help establish and control cell membrane potential via control of the flow of ions between the intracellular and the extracellular environments. Blockade of NaVs has been successfully accomplished in the clinic to enable control of pathological firing patterns that occur in a diverse range of conditions such as chronic pain, epilepsy, and cardiac arrhythmias. First generation sodium channel modulator drugs, despite low inherent subtype selectivity, preferentially act on over-excited cells which reduces undesirable side effects in the clinic. However, the limited therapeutic indices observed with the first generation demanded a new generation of sodium channel inhibitors. The structure, function and the state of the art in sodium channel modulator drug discovery are discussed in this chapter.  相似文献   

12.
Identifying monoclonal antibodies that block human voltage-gated ion channels (VGICs) is a challenging endeavor exacerbated by difficulties in producing recombinant ion channel proteins in amounts that support drug discovery programs. We have developed a general strategy to address this challenge by combining high-level expression of recombinant VGICs in Tetrahymena thermophila with immunization of phylogenetically diverse species and unique screening tools that allow deep-mining for antibodies that could potentially bind functionally important regions of the protein. Using this approach, we targeted human Kv1.3, a voltage-gated potassium channel widely recognized as a therapeutic target for the treatment of a variety of T-cell mediated autoimmune diseases. Recombinant Kv1.3 was used to generate and recover 69 full-length anti-Kv1.3 mAbs from immunized chickens and llamas, of which 10 were able to inhibit Kv1.3 current. Select antibodies were shown to be potent (IC50<10 nM) and specific for Kv1.3 over related Kv1 family members, hERG and hNav1.5.  相似文献   

13.
Diverse subtypes of voltage-gated sodium channels (VGSCs) have been found throughout tissues of the brain, muscles and the heart. Neurotoxins extracted from the venom of the Asian scorpion Buthus martensi Karsch (BmK) act as sodium channel-specific modulators and have therefore been widely used to study VGSCs. α-type neurotoxins, named BmK I, BmK αIV and BmK abT, bind to receptor site-3 on VGSCs and can strongly prolong the inactivation phase of VGSCs. In contrast, β-type neurotoxins, named BmK AS, BmK AS-1, BmK IT and BmK IT2, occupy receptor site-4 on VGSCs and can suppress peak currents and hyperpolarize the activation kinetics of sodium channels. Accumulating evidence from binding assays of scorpion neurotoxins on VGSCs, however, indicate that pharmacological sensitivity of VGSC subtypes to different modulators is much more complex than that suggested by the simple α-type and β-type neurotoxin distinction. Exploring the mechanisms of possible dynamic interactions between site 3-/4-specific modulators and region- and/or species-specific subtypes of VGSCs would therefore greatly expand our understanding of the physiological and pharmacological properties of diverse VGSCs. In this review, we discuss the pharmacological and structural diversity of VGSCs as revealed by studies exploring the binding properties and cross-competitive binding of site 3- or site 4-specific modulators in VGSC subtypes in synaptosomes from distinct tissues of diverse species.  相似文献   

14.
Scorpion alpha-like toxins are proteins that act on mammalian and insect voltage-gated Na+ channels. Therefore, these toxins constitute an excellent target for examining the foundations that underlie their target specificity. With this motive we dissected the role of six critical amino acids located in the five-residue reverse turn (RT) and C-tail (CT) of the scorpion alpha-like toxin BmK M1. These residues were individually substituted resulting in 11 mutants and were subjected to a bioassay on mice, an electrophysiological characterization on three cloned voltage-gated Na+ channels (Nav1.2, Nav1.5 and para), a CD analysis and X-ray crystallography. The results reveal two molecular sites, a couplet of residues (8-9) in the RT and a hydrophobic surface consisting of residues 57 and 59-61 in the CT, where the substitution with specific residues can redirect the alpha-like characteristics of BmK M1 to either total insect or much higher mammal specificity. Crystal structures reveal that the pharmacological ramification of these mutants is accompanied by the reshaping of the 3D structure surrounding position 8. Furthermore, our results also reveal that residues 57 and 59-61, located at the CT, enclose the critical residue 58 in order to form a hydrophobic "gasket". Mutants of BmK M1 that interrupt this hydrophobic surface significantly gain insect selectivity.  相似文献   

15.
The gustatory system of channel catfish is widely studied for its sensitivity to amino acids. As a first step in identifying the molecular components that play a role in taste transduction in catfish, we cloned the full-length cDNA for Kv2-catfish, a novel K(+) channel that is expressed in taste buds. The deduced amino acid sequence is 816 residues, and shares a 56-59% sequence identity with Kv2.1 and Kv2.2, the other members of the vertebrate Kv2 subfamily of voltage-gated K(+) channels. The Kv2-catfish RNA was expressed in taste buds, brain, skeletal muscle, kidney, intestine and gills, and its gene is represented as a single copy in the catfish genome. Recombinant channels expressed in XENOPUS: oocytes were selective for K(+), and were inhibited by tetraethylammonium applied to the extracellular side of the membrane during two-electrode voltage clamp analysis with a 50% inhibitory constant of 6.1 mM. The channels showed voltage-dependent activation, and did not inactivate within 200 ms. Functionally, Kv2-catfish is a voltage-gated, delayed rectifier K(+) channel, and its primary structure is the most divergent sequence identified among the vertebrate members of the Kv2 subfamily of K(+) channels, being related equally well to Kv2.1 and Kv2.2.  相似文献   

16.
Photoreceptors are non-spiking neurons, and their synapses mediate the continuous release of neurotransmitters under the control of L-type voltage-gated calcium channels (VGCCs). Photoreceptors express endogenous circadian oscillators that play important roles in regulating photoreceptor physiology and function. Here, we report that the L-type VGCCs in chick cone photoreceptors are under circadian control. The L-type VGCC currents are greater when measured during the subjective night than during the subjective day. Using antibodies against the VGCCalpha1C and VGCCalpha1D subunits, we found that the immunofluorescence intensities of both VGCCalpha1C and VGCCalpha1D in photoreceptors are higher during the subjective night. However, the mRNA levels of VGCCalpha1D, but not VGCCalpha1C, are rhythmic. Nocturnal increases in L-type VGCCs are blocked by manumycin A, PD98059, and KN93, which suggest that the circadian output pathway includes Ras, Erk, and calcium-calmodulin dependent kinase II. In summary, four independent lines of evidence show that the L-VGCCs in cone photoreceptors are under circadian control.  相似文献   

17.
Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.  相似文献   

18.
1. Synchronous oscillation of intracellular Ca2+ in the central nervous system is essential for neural development. We previously reported that endogenous dopamine was involved with synchronous Ca2+ oscillation of primary cultured midbrain neurons, and that regulation of dopamine in synchronous oscillation was distinctly different through dopamine receptor 1 (D1R) and 2 (D2R): the action of dopamine through D1R or D2R was facilitative or suppressive, respectively, to the Ca2+ influx of synchronous oscillation.2. In the present study, we confirmed that the suppressive effects of D2R were mediated by the regulation of the L-type voltage-gated Ca2+ channel, not by the regulation of NMDA receptor on the Ca2+ influx in the midbrain neural network showing synchronous oscillation.3. This evidence promotes better understanding of the regulation of neural activity by endogenous dopamine in networked neurons.  相似文献   

19.
Knockdown resistance (kdr) mutations in the voltage-gated sodium channel (VGSC) of mosquitoes confer resistance to insecticides. Although insecticide resistance has been suspected to be widespread in the natural population of Aedes aegypti in Myanmar, only limited information is currently available. The overall prevalence and distribution of kdr mutations was analyzed in Ae. aegypti from Mandalay areas, Myanmar. Sequence analysis of the VGSC in Ae. aegypti from Myanmar revealed amino acid mutations at 13 and 11 positions in domains II and III of VGSC, respectively. High frequencies of S989P (68.6%), V1016G (73.5%), and F1534C (40.1%) were found in domains II and III. T1520I was also found, but the frequency was low (8.1%). The frequency of S989P/V1016G was high (55.0%), and the frequencies of V1016G/F1534C and S989P/V1016G/F1534C were also high at 30.1% and 23.5%, respectively. Novel mutations in domain II (L963Q, M976I, V977A, M994T, L995F, V996M/A, D998N, V999A, N1013D, and F1020S) and domain III (K1514R, Y1523H, V1529A, F1534L, F1537S, V1546A, F1551S, G1581D, and K1584R) were also identified. These results collectively suggest that high frequencies of kdr mutations were identified in Myanmar Ae. aegypti, indicating a high level of insecticide resistance.  相似文献   

20.
Ji YH  Liu T 《生理学报》2008,60(5):628-634
Voltage-gated sodium channels(VGSCs) are transmembrane proteins responsible for generation and conduction of action potentials in excitable cells.Physiological and pharmacological studies have demonstrated that VGSCs play a critical role in chronic pain associated with tissue or nerve injury.Many long-chain peptide toxins(60-76 amino acid residues) purified from the venom of Asian scorpion Buthus martensii Karsch(BmK) are investigated to be sodium channel-specific modulators.The α-like neurotoxins that can ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号