首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The HIV-1 gp41 envelope (Env) membrane proximal external region (MPER) is an important vaccine target that in rare subjects can elicit neutralizing antibodies. One mechanism proposed for rarity of MPER neutralizing antibody generation is lack of reverted unmutated ancestor (putative naive B cell receptor) antibody reactivity with HIV-1 envelope. We have studied the effect of partial deglycosylation under non-denaturing (native) conditions on gp140 Env antigenicity for MPER neutralizing antibodies and their reverted unmutated ancestor antibodies. We found that native deglycosylation of clade B JRFL gp140 as well as group M consensus gp140 Env CON-S selectively increased the reactivity of Env with the broad neutralizing human mAbs, 2F5 and 4E10. Whereas fully glycosylated gp140 Env either did not bind (JRFL), or weakly bound (CON-S), 2F5 and 4E10 reverted unmutated ancestors, natively deglycosylated JRFL and CON-S gp140 Envs did bind well to these putative mimics of naive B cell receptors. These data predict that partially deglycoslated Env would bind better than fully glycosylated Env to gp41-specific naïve B cells with improved immunogenicity. In this regard, immunization of rhesus macaques demonstrated enhanced immunogenicity of the 2F5 MPER epitope on deglyosylated JRFL gp140 compared to glycosylated JRFL gp140. Thus, the lack of 2F5 and 4E10 reverted unmutated ancestor binding to gp140 Env may not always be due to lack of unmutated ancestor antibody reactivity with gp41 peptide epitopes, but rather, may be due to glycan interference of binding of unmutated ancestor antibodies of broad neutralizing mAb to Env gp41.  相似文献   

2.
We have studied the induction of neutralizing antibodies by in vivo expression of the human immunodeficiency virus type 1 (HIV-1) envelope by using a Venezuelan equine encephalitis virus (VEE) replicon system with mice and rabbits. The HIV-1 envelope, clone R2, has broad sensitivity to cross-reactive neutralization and was obtained from a donor with broadly cross-reactive, primary virus-neutralizing antibodies (donor of reference serum, HIV-1-neutralizing serum 2 [HNS2]). It was expressed as gp160, as secreted gp140, and as gp160deltaCT with the cytoplasmic tail deleted. gp140 was expressed in vitro at a high level and was predominantly uncleaved oligomer. gp160deltaCT was released by cells in the form of membrane-bound vesicles. gp160deltaCT induced stronger neutralizing responses than the other forms. Use of a helper plasmid for replicon particle packaging, in which the VEE envelope gene comprised a wild-type rather than a host range-adapted sequence, also enhanced immunogenicity. Neutralizing activity fractionated with immunoglobulin G. This activity was cross-reactive among a panel of five nonhomologous primary clade B strains and a Chinese clade C strain and minimally reactive against a Chinese clade E (circulating recombinant form 1) strain. The comparative neutralization of these strains by immune mouse sera was similar to the relative neutralizing effects of HNS2, and responses induced in rabbits were similar to those induced in mice. Together, these results demonstrate that neutralizing antibody responses can be induced in mice within 2 to 3 months that are similar in potency and cross-reactivity to those found in the chronically infected, long-term nonprogressive donor of HNS2. These findings support the expectation that induction of highly cross-reactive HIV-1 primary virus-neutralizing activity by vaccination may be realized.  相似文献   

3.
The antibody responses elicited in rhesus macaques immunized with soluble human immunodeficiency virus (HIV) Env gp140 proteins derived from the R5-tropic HIV-1 SF162 virus were analyzed and compared to the broadly reactive neutralizing antibody responses elicited during chronic infection of a macaque with a simian/human immunodeficiency virus (SHIV) expressing the HIV-1 SF162 Env, SHIV(SF162P4), and humans infected with heterologous HIV-1 isolates. Four gp140 immunogens were evaluated: SF162gp140, DeltaV2gp140 (lacking the crown of the V2 loop), DeltaV3gp140 (lacking the crown of the V3 loop), and DeltaV2DeltaV3gp140 (lacking both the V2 and V3 loop crowns). SF162gp140 and DeltaV2gp140 have been previously evaluated by our group in a pilot study, but here, a more comprehensive analysis of their immunogenic properties was performed. All four gp140 immunogens elicited stronger anti-gp120 than anti-gp41 antibodies and potent homologous neutralizing antibodies (NAbs) that primarily targeted the first hypervariable region (V1 loop) of gp120, although SF162gp140 also elicited anti-V3 NAbs. Heterologous NAbs were elicited by SF162gp140 and DeltaV2gp140 but were weak in potency and narrow in specificity. No heterologous NAbs were elicited by DeltaV3gp140 or DeltaV2DeltaV3gp140. In contrast, the SHIV(SF162P4)-infected macaque and HIV-infected humans generated similar titers of anti-gp120 and anti-gp41 antibodies and NAbs of significant breadth against primary HIV-1 isolates, which did not target the V1 loop. The difference in V1 loop immunogenicity between soluble gp140 and virion-associated gp160 Env proteins derived from SF162 may be the basis for the observed difference in the breadth of neutralization in sera from the immunized and infected animals studied here.  相似文献   

4.
Antibodies that neutralize primary isolates of human immunodeficiency virus type 1 (HIV-1) appear during HIV-1 infection but are difficult to elicit by immunization with current vaccine products comprised of monomeric forms of HIV-1 envelope glycoprotein gp120. The limited neutralizing antibody response generated by gp120 vaccine products could be due to the absence or inaccessibility of the relevant epitopes. To determine whether neutralizing antibodies from HIV-1-infected patients bind to epitopes accessible on monomeric gp120 and/or oligomeric gp140 (ogp140), purified total immunoglobulin from the sera of two HIV-1-infected patients as well as pooled HIV immune globulin were selectively depleted of antibodies which bound to immobilized gp120 or ogp140. After passage of each immunoglobulin preparation through the respective columns, antibody titers against gp120 and ogp140 were specifically reduced at least 128-fold. The gp120- and gp140-depleted antibody fraction from each serum displayed reduced neutralization activity against three primary and two T-cell line-adapted (TCLA) HIV-1 isolates. Significant residual neutralizing activity, however, persisted in the depleted sera, indicating additional neutralizing antibody specificities. gp120- and ogp140-specific antibodies eluted from each column neutralized both primary and TCLA viruses. These data demonstrate the presence and accessibility of epitopes on both monomeric gp120 and ogp140 that are specific for antibodies that are capable of neutralizing primary isolates of HIV-1. Thus, the difficulties associated with eliciting neutralizing antibodies by using current monomeric gp120 subunit vaccines may be related less to improper protein structure and more to ineffective immunogen formulation and/or presentation.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) isolates from India mainly belong to clade C and are quite distinct from clade C isolates from Africa in terms of their phylogenetic makeup, serotype, and sensitivity to known human broadly neutralizing monoclonal antibodies. Because many of these properties are associated with the envelope proteins of HIV-1, it is of interest to study the envelope proteins of Indian clade C isolates as part of the ongoing efforts to develop a vaccine against HIV-1. To this end, we purified trimeric uncleaved gp145 of a CCR5 tropic Indian clade C HIV-1 (93IN101) from the conditioned medium of 293 cells. The purified protein was shown to be properly folded with stable structure by circular dichroism. Conformational integrity was further demonstrated by its high affinity binding to soluble CD4, CD4 binding site antibodies such as b12 and VRC01, quaternary epitope-specific antibody PG9, and CD4-induced epitope-specific antibody 17b. Sera from rabbits immunized with gp145 elicited high titer antibodies to various domains of gp120 and neutralized a broad spectrum of clade B and clade C HIV-1 isolates. Similar to other clade B and clade C envelope immunogens, most of the Tier 1 neutralizing activity could be absorbed with the V3-specific peptide. Subsequent boosting of these rabbits with a clade B HIV-1 Bal gp145 resulted in an expanded breadth of neutralization of HIV-1 isolates. The present study strongly supports the inclusion of envelopes from Indian isolates in a future mixture of HIV-1 vaccines.  相似文献   

6.
The human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein gp120 tightly binds CD4 as its principal cellular receptor, explaining the tropism of HIV-1 for CD4+ cells. Nevertheless, reports documenting HIV infection or HIV binding in cells lacking CD4 surface expression have raised the possibility that cellular receptors in addition to CD4 may interact with HIV envelope. Moreover, the lymphocyte adhesion molecule LFA-1 appears to play an important role in augmenting HIV-1 viral spread and cytopathicity in vitro, although the mechanism of this function is still not completely defined. In the course of characterizing a human anti-HIV gp41 monoclonal antibody, we transfected a CD4-negative, LFA-1-negative B-cell line to express an anti-gp41 immunoglobulin receptor (surface immunoglobulin [sIg]/gp41). Despite acquiring the ability to bind HIV envelope, such transfected B cells could not be infected by HIV-1. These cells were not intrinsically defective for supporting HIV-1 infection, because when directed to produce surface CD4 by using retroviral constructs, they acquired the ability to replicate HIV-1. Interestingly, transfected cells expressing both surface CD4 and sIg/gp41 receptors replicated HIV much better than cells expressing only CD4. The enhancement resided specifically in sIg/gp41, because isotype-specific, anti-IgG1 antibodies directed against sIg/gp41 blocked the enhancement. These data directly establish the ability of a cell surface anti-gp41 receptor to enhance HIV-1 replication.  相似文献   

7.
Induction of broadly cross-reactive neutralizing antibodies is a high priority for AIDS vaccine development but one that has proven difficult to be achieved. While most immunogens generate antibodies that neutralize a subset of T-cell-line-adapted strains of human immunodeficiency virus type 1 (HIV-1), none so far have generated a potent, broadly cross-reactive response against primary isolates of the virus. Even small increments in immunogen improvement leading to increases in neutralizing antibody titers and cross-neutralizing activity would accelerate vaccine development; however, a lack of uniformity in target strains used by different investigators to assess cross-neutralization has made the comparison of vaccine-induced antibody responses difficult. Thus, there is an urgent need to establish standard panels of HIV-1 reference strains for wide distribution. To facilitate this, full-length gp160 genes were cloned from acute and early subtype B infections and characterized for use as reference reagents to assess neutralizing antibodies against clade B HIV-1. Individual gp160 clones were screened for infectivity as Env-pseudotyped viruses in a luciferase reporter gene assay in JC53-BL (TZM-bl) cells. Functional env clones were sequenced and their neutralization phenotypes characterized by using soluble CD4, monoclonal antibodies, and serum samples from infected individuals and noninfected recipients of a recombinant gp120 vaccine. Env clones from 12 R5 primary HIV-1 isolates were selected that were not unusually sensitive or resistant to neutralization and comprised a wide spectrum of genetic, antigenic, and geographic diversity. These reference reagents will facilitate proficiency testing and other validation efforts aimed at improving assay performance across laboratories and can be used for standardized assessments of vaccine-elicited neutralizing antibodies.  相似文献   

8.
The envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) is composed of two noncovalently associated subunits: an extracellular subunit (gp120) and a transmembrane subunit (gp41). The functional unit of Env on the surface of infectious virions is a trimer of gp120/gp41 heterodimers. Env is the target of anti-HIV neutralizing antibodies. A considerable effort has been invested in the engineering of recombinant soluble forms of the virion-associated Env trimer as vaccine candidates to elicit anti-HIV neutralizing antibody responses. These soluble constructs contain three gp120 subunits and the extracellular segments of the corresponding gp41 subunits. The individual gp120/gp41 protomers on these soluble trimers are identical in amino acid sequence (homotrimers). Here, we engineered novel soluble trimeric gp140 proteins that are formed by the association of gp140 protomers that differ in amino acid sequence and glycosylation patterns (heterotrimers). Specifically, we engineered soluble heterotrimeric proteins composed of clade A and clade B Env protomers. The clade A gp140 protomers were derived from viruses isolated during acute infection (Q168a2, Q259d2.17, and Q461e2), whereas the clade B gp140 protomers were derived from a virus isolated during chronic infection (SF162). The amino acid sequence divergence between the clade A and the clade B Envs is approximately 24%. Neutralization epitopes in the CD4 binding sites and coreceptor binding sites, as well as the membrane-proximal external region (MPER), were differentially expressed on the heterotrimeric and homotrimeric proteins. The heterotrimeric gp140s elicited broader anti-tier 1 isolate neutralizing antibody responses than did the homotrimeric gp140s.  相似文献   

9.
Attempts to elicit broadly neutralizing antibody responses by human immunodeficiency virus type 1 (HIV-1) vaccine antigens have been met with limited success. To better understand the requirements for cross-neutralization of HIV-1, we have characterized the neutralizing antibody specificities present in the sera of three asymptomatic individuals exhibiting broad neutralization. Two individuals were infected with clade B viruses and the third with a clade A virus. The broadly neutralizing activity could be exclusively assigned to the protein A-reactive immunoglobulin G (IgG) fraction of all three donor sera. Neutralization inhibition assays performed with a panel of linear peptides corresponding to the third hypervariable (V3) loop of gp120 failed to inhibit serum neutralization of a panel of HIV-1 viruses. The sera also failed to neutralize chimeric simian immunodeficiency virus (SIV) and HIV-2 viruses displaying highly conserved gp41-neutralizing epitopes, suggesting that antibodies directed against these epitopes likely do not account for the broad neutralizing activity observed. Polyclonal IgG was fractionated on recombinant monomeric clade B gp120, and the neutralization capacities of the gp120-depleted samples were compared to that of the original polyclonal IgG. We found that the gp120-binding antibody population mediated neutralization of some isolates, but not all. Overall, the data suggest that broad neutralization results from more than one specificity in the sera but that the number of these specificities is likely small. The most likely epitope recognized by the monomeric gp120 binding neutralizing fraction is the CD4 binding site, although other epitopes, such as the glycan shield, cannot be excluded.  相似文献   

10.
Partial deletion of the second hypervariable region from the envelope of the primary-like SF162 virus increases the exposure of certain neutralization epitopes and renders the virus, SF162DeltaV2, highly susceptible to neutralization by clade B and non-clade B human immunodeficiency virus (HIV-positive) sera (L. Stamatatos and C. Cheng-Mayer, J. Virol. 78:7840-7845, 1998). This observation led us to propose that the modified, SF162DeltaV2-derived envelope may elicit higher titers of cross-reactive neutralizing antibodies than the unmodified SF162-derived envelope. To test this hypothesis, we immunized rabbits and rhesus macaques with the gp140 form of these two envelopes. In rabbits, both immunogens elicited similar titers of binding antibodies but the modified immunogen was more effective in eliciting neutralizing antibodies, not only against the SF162DeltaV2 and SF162 viruses but also against several heterologous primary HIV type 1 (HIV-1) isolates. In rhesus macaques both immunogens elicited potent binding antibodies, but again the modified immunogen was more effective in eliciting the generation of neutralizing antibodies against the SF162DeltaV2 and SF162 viruses. Antibodies capable of neutralizing several, but not all, heterologous primary HIV-1 isolates tested were elicited only in macaques immunized with the modified immunogen. The efficiency of neutralization of these heterologous isolates was lower than that recorded against the SF162 isolate. Our results strongly suggest that although soluble oligomeric envelope subunit vaccines may elicit neutralizing antibody responses against heterologous primary HIV-1 isolates, these responses will not be broad and potent unless specific modifications are introduced to increase the exposure of conserved neutralization epitopes.  相似文献   

11.
A component to the problem of inducing broad neutralizing HIV-1 gp41 membrane proximal external region (MPER) antibodies is the need to focus the antibody response to the transiently exposed MPER pre-hairpin intermediate neutralization epitope. Here we describe a HIV-1 envelope (Env) gp140 oligomer prime followed by MPER peptide-liposomes boost strategy for eliciting serum antibody responses in rhesus macaques that bind to a gp41 fusion intermediate protein. This Env-liposome immunization strategy induced antibodies to the 2F5 neutralizing epitope 664DKW residues, and these antibodies preferentially bound to a gp41 fusion intermediate construct as well as to MPER scaffolds stabilized in the 2F5-bound conformation. However, no serum lipid binding activity was observed nor was serum neutralizing activity for HIV-1 pseudoviruses present. Nonetheless, the Env-liposome prime-boost immunization strategy induced antibodies that recognized a gp41 fusion intermediate protein and was successful in focusing the antibody response to the desired epitope.  相似文献   

12.
A small proportion of HIV-infected individuals generate a neutralizing antibody (NAb) response of exceptional magnitude and breadth. A detailed analysis of the critical epitopes targeted by broadly neutralizing antibodies should help to define optimal targets for vaccine design. HIV-1-infected subjects with potent cross-reactive serum neutralizing antibodies were identified by assaying sera from 308 subjects against a multiclade panel of 12 "tier 2" viruses (4 each of subtypes A, B, and C). Various neutralizing epitope specificities were determined for the top 9 neutralizers, including clade A-, clade B-, clade C-, and clade A/C-infected donors, by using a comprehensive set of assays. In some subjects, neutralization breadth was mediated by two or more antibody specificities. Although antibodies to the gp41 membrane-proximal external region (MPER) were identified in some subjects, the subjects with the greatest neutralization breadth targeted gp120 epitopes, including the CD4 binding site, a glycan-containing quaternary epitope formed by the V2 and V3 loops, or an outer domain epitope containing a glycan at residue N332. The broadly reactive HIV-1 neutralization observed in some subjects is mediated by antibodies targeting several conserved regions on the HIV-1 envelope glycoprotein.  相似文献   

13.
Broadly cross-reactive human immunodeficiency virus (HIV)-neutralizing antibodies are infrequently elicited in infected humans. The two best-characterized gp41-specific cross-reactive neutralizing human monoclonal antibodies, 4E10 and 2F5, target linear epitopes in the membrane-proximal external region (MPER) and bind to cardiolipin and several other autoantigens. It has been hypothesized that, because of such reactivity to self-antigens, elicitation of 2F5 and 4E10 and similar antibodies by vaccine immunogens based on the MPER could be affected by tolerance mechanisms. Here, we report the identification and characterization of a novel anti-gp41 monoclonal antibody, designated m44, which neutralized most of the 22 HIV type 1 (HIV-1) primary isolates from different clades tested in assays based on infection of peripheral blood mononuclear cells by replication-competent virus but did not bind to cardiolipin and phosphatidylserine in an enzyme-linked immunosorbent assay and a Biacore assay nor to any protein or DNA autoantigens tested in Luminex assays. m44 bound to membrane-associated HIV-1 envelope glycoproteins (Envs), to recombinant Envs lacking the transmembrane domain and cytoplasmic tail (gp140s), and to gp41 structures containing five-helix bundles and six-helix bundles, but not to N-heptad repeat trimers, suggesting that the C-heptad repeat is involved in m44 binding. In contrast to 2F5, 4E10, and Z13, m44 did not bind to any significant degree to denatured gp140 and linear peptides derived from gp41, suggesting a conformational nature of the epitope. This is the first report of a gp41-specific cross-reactive HIV-1-neutralizing human antibody that does not have detectable reactivity to autoantigens. Its novel conserved conformational epitope on gp41 could be helpful in the design of vaccine immunogens and as a target for therapeutics.  相似文献   

14.
Host cell-mediated proteolytic cleavage of the human immunodeficiency virus type 1 (HIV-1) gp160 precursor glycoprotein into gp120 and gp41 subunits is required to generate fusion-competent envelope glycoprotein (Env) spikes. The gp120-directed broadly neutralizing monoclonal antibodies (bNabs) isolated from HIV-infected individuals efficiently recognize fully cleaved JRFL Env spikes; however, nonneutralizing gp120-directed monoclonal antibodies isolated from infected or vaccinated subjects recognize only uncleaved JRFL spikes. Therefore, as an immunogen, cleaved spikes that selectively present desired neutralizing epitopes to B cells may elicit cross-reactive neutralizing antibodies. Accordingly, we inoculated nonhuman primates (NHPs) with plasmid DNA encoding transmembrane-anchored, cleaved JRFL Env or by electroporation (EP). Priming with DNA expressing soluble, uncleaved gp140 trimers was included as a comparative experimental group of NHPs. DNA inoculation was followed by boosts with soluble JRFL gp140 trimers, and control NHPs were inoculated with soluble JRFL protein trimers without DNA priming. In the TZM-bl assay, elicitation of neutralizing antibodies against HIV-1 tier 1 isolates was robust following the protein boost. Neutralization of tier 2 isolates was detected, but only in animals primed with plasmid DNA and boosted with trimeric protein. Using the more sensitive A3R5 assay, consistent neutralization of both clade B and C tier 2 isolates was detected from all regimens assessed in the current study, exceeding levels achieved by our previous vaccine regimens in primates. Together, these data suggest a potential advantage of B cell priming followed by a rest interval and protein boosting to present JRFL Env spikes to the immune system to better generate HIV-1 cross-clade neutralizing antibodies.  相似文献   

15.
We previously reported that soluble, stable YU2 gp140 trimeric human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein immunogens could elicit improved breadth of neutralization against HIV-1 isolates compared to monomeric YU2 gp120 proteins. In this guinea pig immunization study, we sought to extend these data and determine if adjuvant could quantitatively or qualitatively alter the neutralizing response elicited by trimeric or monomeric immunogens. Consistent with our earlier studies, the YU2 gp140 immunogens elicited higher-titer neutralizing antibodies against homologous and heterologous isolates than those elicited by monomeric YU2 gp120. Additionally, the GlaxoSmithKline family of adjuvants AS01B, AS02A, and AS03 induced higher levels of neutralizing antibodies compared to emulsification of the same immunogens in Ribi adjuvant. Further analysis of vaccine sera indicated that homologous virus neutralization was not mediated by antibodies to the V3 loop, although V3 loop-directed neutralization could be detected for some heterologous isolates. In most gp120-inoculated animals, the homologous YU2 neutralization activity was inhibited by a peptide derived from the YU2 V1 loop, whereas the neutralizing activity elicited by YU2 gp140 trimers was much less sensitive to V1 peptide inhibition. Consistent with a less V1-focused antibody response, sera from the gp140-immunized animals more efficiently neutralized heterologous HIV-1 isolates, as determined by two distinct neutralization formats. Thus, there appear to be qualitative differences in the neutralizing antibody response elicited by YU2 gp140 compared to YU2 monomeric gp120. Further mapping analysis of more conserved regions of gp120/gp41 may be required to determine the neutralizing specificity elicited by the trimeric immunogens.  相似文献   

16.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) complex comprises three gp120 exterior glycoproteins each noncovalently linked to a gp41 transmembrane glycoprotein. Monomeric gp120 proteins can elicit antibodies capable of neutralizing atypically sensitive test viruses in vitro, but these antibodies are ineffective against representative primary isolates and the gp120 vaccines failed to provide protection against HIV-1 transmission in vivo. Alternative approaches to raising neutralizing antibodies are therefore being pursued. Here we report on the antibody responses generated in rabbits against a soluble, cleaved, trimeric form of HIV-1(JR-FL) Env. In this construct, the gp120 and gp41 moieties are covalently linked by an intermolecular disulfide bond (SOS gp140), and an I559P substitution has been added to stabilize gp41-gp41 interactions (SOSIP gp140). We investigated the value of DNA priming and compared the use of membrane-bound and soluble priming antigens and of repeat boosting with soluble and particulate protein antigen. Compared to monomeric gp120, SOSIP gp140 trimers elicited approximately threefold lower titers of anti-gp120 antibodies. Priming with DNA encoding a membrane-bound form of the SOS gp140 protein, followed by several immunizations with soluble SOSIP gp140 trimers, resulted in antibodies capable of neutralizing sensitive strains at high titers. A subset of these sera also neutralized, at lower titers, HIV-1(JR-FL) and some other primary isolates in pseudovirus and/or whole-virus assays. Neutralization of these viruses was immunoglobulin mediated and was predominantly caused by antibodies to gp120 epitopes, but not the V3 region.  相似文献   

17.
HIV neutralizing antibodies (nAbs) represent an important tool in view of prophylactic and therapeutic applications for HIV-1 infection. Patients chronically infected by HIV-1 represent a valuable source for nAbs. HIV controllers, including long-term non-progressors (LTNP) and elite controllers (EC), represent an interesting subgroup in this regard, as here nAbs can develop over time in a rather healthy immune system and in the absence of any therapeutic selection pressure. In this study, we characterized two particular antibodies that were selected as scFv antibody fragments from a phage immune library generated from an LTNP with HIV neutralizing antibodies in his plasma. The phage library was screened on recombinant soluble gp140 envelope (Env) proteins. Sequencing the selected peptide inserts revealed two major classes of antibody sequences. Binding analysis of the corresponding scFv-Fc derivatives to various trimeric and monomeric Env constructs as well as to peptide arrays showed that one class, represented by monoclonal antibody (mAb) A2, specifically recognizes an epitope localized in the pocket binding domain of the C heptad repeat (CHR) in the ectodomain of gp41, but only in the trimeric context. Thus, this antibody represents an interesting tool for trimer identification. MAb A7, representing the second class, binds to structural elements of the third variable loop V3 and neutralizes tier 1 and tier 2 HIV-1 isolates of different subtypes with matching critical amino acids in the linear epitope sequence. In conclusion, HIV controllers are a valuable source for the selection of functionally interesting antibodies that can be selected on soluble gp140 proteins with properties from the native envelope spike.  相似文献   

18.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein interacts with the viral receptor (CD4) and with the gp41 transmembrane envelope glycoprotein. To study the interaction of the gp120 and gp41 envelope glycoproteins, we compared the abilities of anti-gp120 monoclonal antibodies to bind soluble gp120 and a soluble glycoprotein, sgp140, that contains gp120 and gp41 exterior domains. The occlusion or alteration of a subset of gp120 epitopes on the latter molecule allowed the definition of a gp41 "footprint" on the gp120 antibody competition map. The occlusion of these epitopes on the sgp140 glycoprotein was decreased by the binding of soluble CD4. The gp120 epitopes implicated in the interaction with the gp41 ectodomain were disrupted by deletions of the first (C1) and fifth (C5) conserved gp120 regions. These deletions did not affect the integrity of the discontinuous binding sites for CD4 and neutralizing monoclonal antibodies. Thus, the gp41 interface on the HIV-1 gp120 glycoprotein, which elicits nonneutralizing antibodies, can be removed while retaining immunologically desirable gp120 structures.  相似文献   

19.

Background

The isolation of human monoclonal antibodies (mAbs) that neutralize a broad spectrum of primary HIV-1 isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals that are central to the design of an effective antibody-based vaccine.

Methods and Findings

We immortalized IgG+ memory B cells from individuals infected with diverse clades of HIV-1 and selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants were screened using various recombinant forms of the envelope glycoproteins (Env) in multiple parallel assays. We isolated 58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular (HJ16) specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194) bound a conserved epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A third mAb (HK20) with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity.

Conclusions

This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-based vaccine design.  相似文献   

20.
A key barrier against developing preventive and therapeutic human immunodeficiency virus (HIV) vaccines is the inability of viral envelope glycoproteins to elicit broad and potent neutralizing antibodies. However, in the presence of fusion inhibitor enfuvirtide, we show that the nonneutralizing antibodies induced by the HIV type 1 (HIV-1) gp41 N-terminal heptad repeat (NHR) domain (N63) exhibit potent and broad neutralizing activity against laboratory-adapted HIV-1 strains, including the drug-resistant variants, and primary HIV-1 isolates with different subtypes, suggesting the potential of developing gp41-targeted HIV therapeutic vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号