首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The immunosuppressive individuals are highly prone to get afflicted with invasive opportunistic fungal infections such as Candidiasis, Aspergillosis, Histoplasmosis, Coccidioidomycosis, Blastomycosis, Penicilliosis, Cryptococcosis and Zygomycosis which are becoming a cause of concern to the mankind due to their high morbidity and mortality rates. The existing antifungal agents are not completely effective due to their severe side-effects and recurrent drug resistance in fungi. Hence, there is an urgent need to develop newer and better antifungal drugs. The enzyme Glucosamine-6-phosphate (G-6-P) synthase catalyzes the ratelimiting step of the fungal cell-wall biosynthetic pathway and targeting it can inhibit the growth of the fungus. The present study attempts to investigate the inherent variations in functional domain viz. Glutaminase (GATase II) and Sugar Isomerising (SIS) of Glucosamine-6-phosphate (G-6-P) synthase enzyme of mycoses-causing fungi. These domains may be identified as probable active site(s). Multiple sequence alignment performed using ClustalX2 and construction of phylogenetic tree of individual domains by MEGA v5.0 helped in the analyses of several variable amino acid sites within the domains suggesting their vital role in the pathogenesis of the fungi. Further, the online server ConSurf implied that mostly, the highly conserved residues of the domains were functional and exposed on the surface of the active site, making it an easy target for the drugs. Consequently, variable analysis of functional domains of target implicated the importance of target specific drug discovery for the treatment of invasive fungal infections or mycoses.  相似文献   

2.
Correlated mutation analysis (CMA) is an effective approach for predicting functional and structural residue interactions from multiple sequence alignments (MSAs) of proteins. As nearby residues may also play a role in a given functional interaction, we were interested in seeing whether covarying sites were clustered, and whether this could be used to enhance the predictive power of CMA. A large‐scale search for coevolving regions within protein domains revealed that if two sites in a MSA covary, then neighboring sites in the alignment also typically covary, resulting in clusters of covarying residues. The program PatchD( http://www.uhnres.utoronto.ca/labs/tillier/ ) was developed to measure the covariation between disconnected sequence clusters to reveal patch covariation. Patches that exhibit strong covariation identify multiple residues that are generally nearby in the protein structure, suggesting that the detection of covarying patches can be used in conjunction with traditional CMA approaches to reveal functional interaction partners. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Fares MA  Travers SA 《Genetics》2006,173(1):9-23
Protein evolution depends on intramolecular coevolutionary networks whose complexity is proportional to the underlying functional and structural interactions among sites. Here we present a novel approach that vastly improves the sensitivity of previous methods for detecting coevolution through a weighted comparison of divergence between amino acid sites. The analysis of the HIV-1 Gag protein detected convergent adaptive coevolutionary events responsible for the selective variability emerging between subtypes. Coevolution analysis and functional data for heat-shock proteins, Hsp90 and GroEL, highlight that almost all detected coevolving sites are functionally or structurally important. The results support previous suggestions pinpointing the complex interdomain functional interactions within these proteins and we propose new amino acid sites as important for interdomain functional communication. Three-dimensional information sheds light on the functional and structural constraints governing the coevolution between sites. Our covariation analyses propose two types of coevolving sites in agreement with previous reports: pairs of sites spatially proximal, where compensatory mutations could maintain the local structure stability, and clusters of distant sites located in functional domains, suggesting a functional dependency between them. All sites detected under adaptive evolution in these proteins belong to coevolution groups, further underlining the importance of testing for coevolution in selective constraints analyses.  相似文献   

4.
Recent years have seen the development of the concept of combination therapy for treating severe fungal sepsis. The advantages of this approach are a potential improvement in patient survival and a reduction in the chance of resistance developing to each of the single agents. The disadvantage is that combining drugs may increase the chance of toxicity. Mycograb is a genetically recombinant antibody against fungal heat shock protein 90 (hsp90) which is poised to become the mainstay of combination therapy. This paper presents data on how hsp90 is important to fungi and what role it might play in human disease with possible interactions with interleukin 6 and nitric oxide. There is discussion of preclinical data demonstrating synergy in vitro between Mycograb and amphotericin B and caspofungin. The progress of Mycograb through a Phase II pharmacokinetic study when used in escalating doses with a liposomal amphotericin B preparation has also been reviewed. The concepts behind a Phase II pivotal study, where Mycograb or a placebo was given in combination with a liposomal amphotericin B drug for five days for the treatment of disseminated candidiasis are discussed.  相似文献   

5.
Lipopolysaccharide (LPS) biosynthesis represents an underexploited target pathway for novel antimicrobial development to combat the emergence of multidrug‐resistant bacteria. A key player in LPS synthesis is the enzyme D ‐arabinose‐5‐phosphate isomerase (API), which catalyzes the reversible isomerization of D ‐ribulose‐5‐phosphate to D ‐arabinose‐5‐phosphate, a precursor of 3‐deoxy‐D ‐manno‐octulosonate that is an essential residue of the LPS inner core. API is composed of two main domains: an N‐terminal sugar isomerase domain (SIS) and a pair of cystathionine‐β‐synthase domains of unknown function. As the three‐dimensional structure of an enzyme is a prerequisite for the rational development of novel inhibitors, we present here the crystal structure of the SIS domain of a catalytic mutant (K59A) of E. coli D ‐arabinose‐5‐phosphate isomerase at 2.6‐Å resolution. Our structural analyses and comparisons made with other SIS domains highlight several potentially important active site residues. In particular, the crystal structure allowed us to identify a previously unpredicted His residue (H88) located at the mouth of the active site cavity as a possible catalytic residue. On the basis of such structural data, subsequently supported by biochemical and mutational experiments, we confirm the catalytic role of H88, which appears to be a generally conserved residue among two‐domain isomerases.  相似文献   

6.
7.
BackgroundStarch constitutes one of the main sources of nutrition in the human diet and is broken down through a number of stages of digestion. Small intestinal breakdown of starch-derived substrates occurs through the mechanisms of small intestinal brush border enzymes, maltase-glucoamylase and sucrase-isomaltase. These enzymes each contain two functional enzymatic domains, and though they share sequence and structural similarities due to their evolutionary conservation, they demonstrate distinct substrate preferences and catalytic efficiency. The N-terminal isomaltase domain of sucrase-isomaltase has a unique ability to actively hydrolyze isomaltose substrates in contrast to the sucrase, maltase and glucoamylase enzymes.MethodsThrough phylogenetic analysis, structural comparisons and mutagenesis, we were able to identify specific residues that play a role in the distinct substrate preference. Mutational analysis and comparison with wild-type activity provide evidence that this role is mediated in part by affecting interactions between the sucrase and isomaltase domains in the intact molecule.ResultsThe sequence analysis revealed three residues proposed to play key roles in isomaltase specificity. Mutational analysis provided evidence that these residues in isomaltase can also affect activity in the partner sucrase domain, suggesting a close interaction between the domains.Major conclusionsThe sucrase and isomaltase domains are closely interacting in the mature protein. The activity of each is affected by the presence of the other.General Significance: There has been little experimental evidence previously of the effects on activity of interactions between the sucrase-isomaltase enzyme domains. By extension, similar interactions might be expected in the other intestinal α-glucosidase, maltase-glucoamylase.  相似文献   

8.
Joel A Malek  Daniel H Haft 《Genome biology》2001,2(5):preprint00-23

Background  

Conserved domains (CD) in proteins play a crucial role in protein interactions, DNA binding, enzyme activity, and other important cellular processes. We proposed to study ratios of genes containing these domains to ratios of proteome size of different eukaryotes.  相似文献   

9.
The versatile functions of the heat shock protein 70 (Hsp70) family of molecular chaperones rely on allosteric interactions between their nucleotide-binding and substrate-binding domains, NBD and SBD. Understanding the mechanism of interdomain allostery is essential to rational design of Hsp70 modulators. Yet, despite significant progress in recent years, how the two Hsp70 domains regulate each other''s activity remains elusive. Covariance data from experiments and computations emerged in recent years as valuable sources of information towards gaining insights into the molecular events that mediate allostery. In the present study, conservation and covariance properties derived from both sequence and structural dynamics data are integrated with results from Perturbation Response Scanning and in vivo functional assays, so as to establish the dynamical basis of interdomain signal transduction in Hsp70s. Our study highlights the critical roles of SBD residues D481 and T417 in mediating the coupled motions of the two domains, as well as that of G506 in enabling the movements of the α-helical lid with respect to the β-sandwich. It also draws attention to the distinctive role of the NBD subdomains: Subdomain IA acts as a key mediator of signal transduction between the ATP- and substrate-binding sites, this function being achieved by a cascade of interactions predominantly involving conserved residues such as V139, D148, R167 and K155. Subdomain IIA, on the other hand, is distinguished by strong coevolutionary signals (with the SBD) exhibited by a series of residues (D211, E217, L219, T383) implicated in DnaJ recognition. The occurrence of coevolving residues at the DnaJ recognition region parallels the behavior recently observed at the nucleotide-exchange-factor recognition region of subdomain IIB. These findings suggest that Hsp70 tends to adapt to co-chaperone recognition and activity via coevolving residues, whereas interdomain allostery, critical to chaperoning, is robustly enabled by conserved interactions.  相似文献   

10.
While the orally-active azoles such as voriconazole and itraconazole are effective antifungal agents, they potently inhibit a broad range of off-target human cytochrome P450 enzymes (CYPs) leading to various safety issues (e.g., drug–drug interactions, liver toxicity). Herein, we describe rationally-designed, broad-spectrum antifungal agents that are more selective for the target fungal enzyme, CYP51, than related human CYP enzymes such as CYP3A4. Using proprietary methodology, the triazole metal-binding group found in current clinical agents was replaced with novel, less avid metal-binding groups in concert with potency-enhancing molecular scaffold modifications. This process produced a unique series of fungal CYP51-selective inhibitors that included the oral antifungal 7d (VT-1161), now in Phase 2 clinical trials. This series exhibits excellent potency against key yeast and dermatophyte strains. The chemical methodology described is potentially applicable to the design of new and more effective metalloenzyme inhibitor treatments for a broad array of diseases.  相似文献   

11.
For the first time, a set of experimentally reported [60] fullerene derivatives were subjected to the 3D-QSAR/CoMFA and CoMSIA studies. The aim of this study is to propose a series of novel [60] fullerene-based inhibitors with optimal binding affinity for the HIV-1 PR enzyme. The position of the template molecule at the cavity of HIV-1 PR was optimized and 3D QSAR models were developed. Relative contributions of steric/electrostatic fields of the 3D-QSAR/CoMFA and CoMSIA models have shown that steric effects govern the bioactivity of the compounds, but electrostatic interactions play also an important role.The de novo drug design Leapfrog simulations provided a series of novel compounds with predicted improved inhibition effect.  相似文献   

12.
During tomato leaf colonization, the biotrophic fungus Cladosporium fulvum secretes several effector proteins into the apoplast. Eight effectors have previously been characterized and show no significant homology to each other or to other fungal genes. To discover novel C. fulvum effectors that might play a role in virulence, we utilized two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) to visualize proteins secreted during C. fulvum –tomato interactions. Three novel C. fulvum proteins were identified: CfPhiA, Ecp6 and Ecp7. CfPhiA shows homology to proteins found on fungal sporogenous cells called phialides. Ecp6 contains lysin motifs (LysM domains) that are recognized as carbohydrate-binding modules. Ecp7 encodes a small, cysteine-rich protein with no homology to known proteins. Heterologous expression of Ecp6 significantly increased the virulence of the vascular pathogen Fusarium oxysporum on tomato. Furthermore, by RNA interference (RNAi)-mediated gene silencing we demonstrate that Ecp6 is instrumental for C. fulvum virulence on tomato. Hardly any allelic variation was observed in the Ecp6 coding region of a worldwide collection of C. fulvum strains. Although none of the C. fulvum effectors identified so far have obvious orthologues in other organisms, conserved Ecp6 orthologues were identified in various fungal species. Homology-based modelling suggests that the LysM domains of C. fulvum Ecp6 may be involved in chitin binding.  相似文献   

13.
14.
Human immunodeficiency virus type 1 (HIV-1) protease (PR) permits viral maturation by processing the gag and gag-pro-pol polyproteins. HIV-1 PR inhibitors (PIs) are used in combination antiviral therapy but the emergence of drug resistance has limited their efficacy. The rapid evolution of HIV-1 necessitates consideration of drug resistance in novel drug design. Drug-resistant HIV-1 PR variants no longer inhibited efficiently, continue to hydrolyze the natural viral substrates. Though highly diverse in sequence, the HIV-1 PR substrates bind in a conserved three-dimensional shape we termed the substrate envelope. Earlier, we showed that resistance mutations arise where PIs protrude beyond the substrate envelope, because these regions are crucial for drug binding but not for substrate recognition. We extend this model by considering the role of protein dynamics in the interaction of HIV-1 PR with its substrates. We simulated the molecular dynamics of seven PR-substrate complexes to estimate the conformational flexibility of the bound substrates. Interdependence of substrate-protease interactions might compensate for variations in cleavage-site sequences and explain how a diverse set of sequences are recognized as substrates by the same enzyme. This diversity might be essential for regulating sequential processing of substrates. We define a dynamic substrate envelope as a more accurate representation of PR-substrate interactions. This dynamic substrate envelope, described by a probability distribution function, is a powerful tool for drug design efforts targeting ensembles of resistant HIV-1 PR variants with the aim of developing drugs that are less susceptible to resistance.  相似文献   

15.
Siderophore-binding proteins play an essential role in the uptake of iron in many Gram-positive and Gram-negative bacteria. FhuD is an ATP-binding cassette-type (ABC-type) binding protein involved in the uptake of hydroxamate-type siderophores in Escherichia coli. Structures of FhuD complexed with the antibiotic albomycin, the fungal siderophore coprogen and the drug Desferal have been determined at high resolution by x-ray crystallography. FhuD has an unusual bilobal structure for a periplasmic ligand binding protein, with two mixed beta/alpha domains connected by a long alpha-helix. The binding site for hydroxamate-type ligands is composed of a shallow pocket that lies between these two domains. Recognition of siderophores primarily occurs through interactions between the iron-hydroxamate centers of each siderophore and the side chains of several key residues in the binding pocket. Rearrangements of side chains within the binding pocket accommodate the unique structural features of each siderophore. The backbones of the siderophores are not involved in any direct interactions with the protein, demonstrating how siderophores with considerable chemical and structural diversity can be bound by FhuD. For albomycin, which consists of an antibiotic group attached to a hydroxamate siderophore, electron density for the antibiotic portion was not observed. Therefore, this study provides a basis for the rational design of novel bacteriostatic agents, in the form of siderophore-antibiotic conjugates that can act as "Trojan horses," using the hydroxamate-type siderophore uptake system to actively deliver antibiotics directly into targeted pathogens.  相似文献   

16.
17.
Pang E  Tan T  Lin K 《Molecular bioSystems》2012,8(3):766-771
Domain-domain interactions are a critical type of the mechanisms mediating protein-protein interactions (PPIs). For a given protein domain, its ability to combine with distinct domains is usually referred to as promiscuity or versatility. Interestingly, a previous study has reported that a domain's promiscuity may reflect its ability to interact with other domains in human proteins. In this work, promiscuous domains were first identified from the yeast genome. Then, we sought to determine what roles promiscuous domains might play in the PPI network. Mapping the promiscuous domains onto the proteins in this network revealed that, consistent with the previous knowledge, the hub proteins were significantly enriched with promiscuous domains. We also found that the set of hub proteins were not the same set as those proteins with promiscuous domains, although there was some overlap. Analysis of the topological properties of this yeast PPI network showed that the characteristic path length of the network increased significantly after deleting proteins with promiscuous domains. This indicated that communication between two proteins was longer and the network stability decreased. These observations suggested that, as the hub proteins, proteins with promiscuous domains might play a role in maintaining network stability. In addition, functional analysis revealed that proteins with promiscuous domains mainly participated in the "Folding, Sorting, and Degradation" and "Replication and Repair" biological pathways, and that they significantly execute key molecular functions, such as "nucleoside-triphosphatase activity (GO:0017111)."  相似文献   

18.
Superficial mycoses caused by dermatophyte fungi are among the most common infections worldwide, yet treatment is restricted by limited effective drugs available, drug toxicity, and emergence of drug resistance. The stilbene fluorescent brightener calcofluor white (CFW) inhibits fungi by binding chitin in the cell wall, disrupting cell wall integrity, and thus entails a different mechanism of inhibition than currently available antifungal drugs. To identify novel therapeutic options for the treatment of skin infections, we compared the sensitivity of representative strains of the dermatophyte Trichophyton rubrum and Candida albicans to CFW and a panel of fluorescent brighteners and phytoalexin compounds. We identified the structurally related stilbene fluorescent brighteners 71, 85, 113 and 134 as fungicidal to both T. rubrum and C. albicans to a similar degree as CFW, and the stilbene phytoalexins pinosylvan monomethyl ether and pterostilbene inhibited to a lesser degree, allowing us to develop a structure-activity relationship for fungal inhibition. Given the abilities of CFW to absorb UV(365 nm) and bind specifically to fungal cell walls, we tested whether CFW combined with UV(365 nm) irradiation would be synergistic to fungi and provide a novel photodynamic treatment option. However, while both treatments individually were cytocidal, UV(365 nm) irradiation reduced sensitivity to CFW, which we attribute to CFW photoinactivation. We also tested combination treatments of CFW with other fungal inhibitors and identified synergistic interactions between CFW and some ergosterol biosynthesis inhibitors in C. albicans. Therefore, our studies identify novel fungal inhibitors and drug interactions, offering promise for combination topical treatment regimes for superficial mycoses.  相似文献   

19.
Like other microorganisms, fungi exist in populations that are adaptable. Under the selection imposed by antifungal drugs, drug-sensitive fungal pathogens frequently evolve resistance. Although the molecular mechanisms of resistance are well-characterized, there are few measurements of the impact of these mechanisms on pathogen fitness in different environments. To predict resistance before a new drug is prescribed in the clinic, the full spectrum of potential resistance mutations and the interactions among combinations of divergent mechanisms can be determined in evolution experiments. In the search for new strategies to manage drug resistance, measuring the limits of adaptation might reveal methods for trapping fungal pathogens in evolutionary dead ends.  相似文献   

20.
The first 90 amino acids of the alpha- and beta-subunits of mitochondrial F1-ATPase are folded into beta-barrel domains and were postulated to be important for stabilizing the enzyme (Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628). The role of the domains was studied by making chimeric enzymes, replacing the domains from the yeast Saccharomyces cerevisiae enzyme with the corresponding domains from the enzyme of the thermophilic bacterium Bacillus PS3. The enzymes containing the chimeric alpha-, beta-, or alpha- and beta-subunits were not functional. However, gain-of-function mutations were obtained from the strain containing the enzyme with the chimeric PS3/yeast beta-subunit. The gain-of-function mutations were all in codons encoding the beta-barrel domain of the beta-subunit, and the residues appear to map out a region of subunit-subunit interactions. Gain-of-function mutations were also obtained that provided functional expression of the chimeric PS3/yeast alpha- and beta-subunits together. Biochemical analysis of this active chimeric enzyme indicated that it was not significantly more thermostable or labile than the wild type. The results of this study indicate that the beta-barrel domains form critical contacts (distinct from those between the alpha- and beta-subunits) that are important for the assembly of the ATP synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号