首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The primary objective of this study was to test the relevance of hydrological classification and class differences to the characteristics of woody riparian vegetation in a subtropical landscape in Queensland, Australia. We followed classification procedures of the environmental flow framework ELOHA – Ecological Limits of Hydrologic Alteration. Riparian surveys at 44 sites distributed across five flow classes recorded 191 woody riparian species and 15, 500 individuals. There were differences among flow classes for riparian species richness, total abundance, and abundance of regenerating native trees and shrubs. There were also significant class differences in the occurrence of three common tree species, and 21 indicator species (mostly native taxa) further distinguished the vegetation characteristics of each flow class. We investigated the influence of key drivers of riparian vegetation structure (climate, depth to water table, stream‐specific power, substrate type, degree of hydrologic alteration, and land use) on riparian vegetation. Patterns were explained largely by climate, particularly annual rainfall and temperature. Strong covarying drivers (hydrology and climate) prevented us from isolating the independent influences of these drivers on riparian assemblage structure. The prevalence of species considered typically rheophytic in some flow classes implies a more substantial role for flow in these classes but needs further testing. No relationships were found between land use and riparian vegetation composition and structure. This study demonstrates the relevance of flow classification to the structure of riparian vegetation in a subtropical landscape, and the influence of covarying drivers on riparian patterns. Management of environmental flows to influence riparian vegetation assemblages would likely have most potential in sites dominated by rheophytic species where hydrological influences override other controls. In contrast, where vegetation assemblages are dominated by a diverse array of typical rainforest species, and other factors including broad‐scale climatic gradients and topographic variables have greater influence than hydrology, riparian vegetation is likely to be less responsive to environmental flow management.  相似文献   

3.
4.

The effects of local and regional environmental variables as well as spatial gradients on the plant species composition of two types of alder-dominated forests (riparian forests and alder carrs) with contrasting connectivity were studied across the Western Carpathians from Hungary through Slovakia to Poland. We used large vegetation (240 sampling plots) and environmental (24 variables) datasets, which were accompanied by spatial variables represented by principal coordinates of neighbour matrices. Canonical correspondence analysis (CCA) of the two datasets revealed 13 and 29 variables with significant effects on variation in species composition of alder carrs and riparian alder forests, which jointly explained 41.2% and 36.4% of the variability, respectively. Altitude was the most important factor explaining 7.7% of the variability in the species composition of alder carrs and 8.2% in riparian alder forests. Variation partitioning in CCA revealed that local variables were crucial drivers for species composition patterns in alder carrs, while spatial processes unrelated to the measured environmental variables shaped the vegetation structure of riparian forests.

  相似文献   

5.
Questions: (1) What are the most important abiotic environmental variables influencing succession in central European man‐made habitats? (2) How do these variables interact with one another and with variation in community properties? Location: Central, western and southern parts of the Czech Republic. Habitats included old fields, urban sites, spoil heaps after coal mining, sites at water reservoirs, extracted sand pit and peatland and reclaimed sites in areas deforested by air pollution. Methods: We investigated vegetation patterns on 15 succes‐sional seres, sampled by the same methods. Time of succession over which the data were available ranged from 12 to 76 years. The cover of vascular plant species (in %) was estimated in 5 m × 5 m plots. The relationships between vegetation characteristics (species composition, total cover, cover of woody species, species number and rate of dominant species turnover) and 13 abiotic site factors, including climatic and soil variables, were tested using CCA ordination and regression models. Results: Substratum pH, the only substratum characteristic, and climate were the environmental variables significantly affecting the vegetation patterns in the course of succession. The rate of succession, measured as the turnover of dominant species, was significantly more rapid in lowland than in mountain climates. On alkaline soils, species numbers in succession increased towards warmer climates. However, acid soils prevented any increase in species numbers, regardless of the climate. Surprisingly, forms of nitrogen and contents of C, P and cations did not exhibit any significant effect on the vegetation characteristics studied. Conclusions: Our approach, to compare a number of seres, can contribute not only to our understanding of succession, but also to help restoration projects to predict vegetation change because the crucial environmental variables, as identified by this study, are easy to measure.  相似文献   

6.
We assessed if the relative importance of biotic and abiotic factors for plant community composition differs along environmental gradients and between functional groups, and asked which implications this may have in a warmer and wetter future. The study location is a unique grid of sites spanning regional-scale temperature and precipitation gradients in boreal and alpine grasslands in southern Norway. Within each site we sampled vegetation and associated biotic and abiotic factors, and combined broad- and fine-scale ordination analyses to assess the relative explanatory power of these factors for species composition. Although the community responses to biotic and abiotic factors did not consistently change as predicted along the bioclimatic gradients, abiotic variables tended to explain a larger proportion of the variation in species composition towards colder sites, whereas biotic variables explained more towards warmer sites, supporting the stress gradient hypothesis. Significant interactions with precipitation suggest that biotic variables explained more towards wetter climates in the sub alpine and boreal sites, but more towards drier climates in the colder alpine. Thus, we predict that biotic interactions may become more important in alpine and boreal grasslands in a warmer future, although more winter precipitation may counteract this trend in oceanic alpine climates. Our results show that both local and regional scales analyses are needed to disentangle the local vegetation-environment relationships and their regional-scale drivers, and biotic interactions and precipitation must be included when predicting future species assemblages.  相似文献   

7.
Conservation and restoration of riparian vegetation in agricultural landscapes has had mixed success at protecting in‐stream habitat, potentially due to the mismatch between watershed‐scale impacts and reach‐scale restoration. Prioritizing contiguous placement of small‐scale restoration interventions may effectively create larger‐scale restoration projects and improve ecological outcomes. We performed a multi‐site field study to evaluate whether greater linear length of narrow riparian tree corridors resulted in measurable benefits to in‐stream condition. We collected data at 41 sites with varying upstream tree cover nested within 13 groups in rangeland streams in coastal northern California, United States. We evaluated the effect of riparian tree corridor length on benthic macroinvertebrate communities, as well as food resources, water temperature, and substrate size. Sites with longer riparian corridors had higher percentages of invertebrates sensitive to disturbance (including clingers and EPT taxa) as well as lower water temperatures and less fine sediment, two of the most important aquatic stressors. Despite marked improvement, we found no evidence that macroinvertebrate communities fully recovered, suggesting that land use continued to constrain conditions. The restoration of long riparian corridors may be an economically viable and rapidly implementable technique to improve habitat, control sediment, and counter increasing water temperatures expected with climate change within the context of ongoing land use.  相似文献   

8.
Arundo donax L. (Poaceae) is an aggressive invader in California’s riparian habitats. Field experiments were conducted to examine invader and site attributes important in early invasion. One hundred A. donax rhizomes were planted along five transects into each of three southern California riparian habitats. Pre-planting rhizome weight was recorded, along with site variables including percent bare ground, litter depth, PAR, soil moisture, soil temperature, incidence of herbivory, native canopy cover, and plant community richness and diversity. A. donax shoot emergence, survival time, and shoot height were recorded for approximately 10 months. The experiment was repeated over three years in different locations within each site. When years and sites were pooled to reveal large-scale patterns, A. donax performance was explained by rhizome weight, soil moisture, bare ground, soil temperature, and herbivory. When each site was considered singly, A. donax was positively correlated with different variables in each location. Species richness was correlated with A. donax performance in only one site. Our results indicate that A. donax establishment in riparian habitats is promoted by both vegetative reproduction and favorable abiotic environmental factors and relatively unaffected by the composition of the native community. The positive response of A. donax to disturbance (bare ground) and high resource availability (soil moisture), combined with a competitive perennial habit suggest that this species takes advantage of a competitive-ruderal life history. The ability of A. donax to respond to different conditions in each site combined with low genetic and phenotypic variation seen in other studies also suggests that a high degree of environmental tolerance contributes to invasion success.  相似文献   

9.
Questions: The early phases of primary succession are governed by chance events and dispersal‐related processes in an environment that is largely free of competition. Thus, the predictability of vegetation patterns using environmental site factors can be expected to be low and spatial autocorrelation to be high. We asked whether the match between vegetation and environment becomes better in the course of succession, and whether vegetation types shift their realized niche with time. Location: Lignite mining region in Central Germany, the post‐mining landscape “Goitzsche” (Saxony‐Anhalt). Methods: Vegetation types were mapped in a 10‐m grid (total area 4.8 ha), starting in 1995, at 3‐year intervals until 2007. We used a temporal comparison of habitat models. We applied: GLS regression to partition the variation in coverage of vegetation types into environmental (soil pH) and spatial components; logistic regression to model the presence/absence of vegetation types along a soil acidity gradient; and autologistic regression allowing for soil acidity and neighbourhood effects. Results: For most vegetation types, the proportion of variation explained by space was high but declined during succession. The outcome of autologistic models suggests that soil acidity often plays a minor role compared to neighbourhood effects in the earlier phase of succession than 12 years later. For four vegetation types, the pH range in which the type was expected to be dominant clearly became smaller with time. These trends support the view that the role of processes related to chance and dispersal decrease with time, while those related to environmental filtering mediated by biotic interactions increase. Conclusions: We conclude that temporal comparisons of spatially explicit habitat models provide insights into changing biotic community processes and their effects on habitat specificity of species or their communities. Thus, this approach may be particularly important for analysis of ecological systems that are not in equilibrium with their environmental drivers.  相似文献   

10.
Landscape and local‐scale influences are important drivers of plant community structure. However, their relative contribution and the degree to which they interact remain unclear. We quantified the extent to which landscape structure, within‐patch habitat and their confounding effects determine post‐clearing tree densities and composition in agricultural landscapes in eastern subtropical Australia. Landscape structure (incorporating habitat fragmentation and loss) and within‐patch (site) features were quantified for 60 remnant patches of Eucalyptus populnea (Myrtaceae) woodland. Tree density and species for three ecological maturity classes (regeneration, early maturity, late maturity) and local site features were assessed in one 100 × 10 m plot per patch. All but one landscape characteristic was determined within a 1.3‐km radius of plots; Euclidean nearest neighbour distance was measured inside a 5‐km radius. Variation in tree density and composition for each maturity class was partitioned into independent landscape, independent site and joint effects of landscape and site features using redundancy analysis. Independent site effects explained more variation in regeneration density and composition than pure landscape effects; significant predictors were the proportion of early and late maturity trees at a site, rainfall and the associated interaction. Conversely, landscape structure explained greater variation in early and late maturity tree density and composition than site predictors. Area of remnant native vegetation within a landscape and patch characteristics (area, shape, edge contrast) were significant predictors of early maturity tree density. However, 31% of the explained variation in early mature tree differences represented confounding influences of landscape and local variables. We suggest that within‐patch characteristics are important in influencing semi‐arid woodland tree regeneration. However, independent and confounding effects of landscape structure resulting from previous vegetation clearing may have exerted a greater historical influence on older cohorts and should be accounted for when examining woodland dynamics across a broader range of environments.  相似文献   

11.
Abstract. Livestock overgrazing and stream incision in the western USA often result in encroachment and dominance of Artemisia tridentata ssp. tridentata (Big sagebrush) in riparian areas that formerly supported meadows. To define the alternative states and thresholds for these ecosystems, we conducted a restoration experiment that included sites with high, intermediate or low water tables. We used a paired‐plot approach in which one plot on each site was burned and seeded with native grasses and forbs typical of naturally occurring dry meadow and Artemisia/Leymus cinereus ecological types, while adjacent unburned plots served as controls. Sites with high and intermediate water tables had greater initial abundances of perennial grasses typical of dry meadows, such as Leymus triticoides and Poa secunda ssp. juncifolia, and these species increased after the burn. In contrast, sites with low water tables were dominated by annual forbs such as Chenopo‐dium album and Descurainia pinnata after the burn. Biomass increased progressively from 1997 to 1999 on burned plots, while controls showed little change. Burning effects were microsite specific, with former Artemisia microsites exhibiting lower biomass than interspaces initially, but similar or higher biomass by the third year. Establishment of seeded species was low and species composition was determined largely by pre‐burn vegetation. Artemisia dominated sites with high water tables appear to represent an alternative state of the dry meadow ecological type, while sites with low water table sites have crossed an abiotic threshold governed by water tables and represent a new ecological type. Burning is an effective tool for restoring relatively high water table sites, but low water table sites will require burning and seeding with species adapted to more xeric conditions.  相似文献   

12.
Questions: Which environmental and management factors determine plant species composition in semi‐natural grasslands within a local study area? Are vegetation and explanatory factors scale‐dependent? Location: Semi‐natural grasslands in Lærdal, Sognog Fjordane County, western Norway. Methods: We recorded plant species composition and explanatory variables in six grassland sites using a hierarchically nested sampling design with three levels: plots randomly placed within blocks selected within sites. We evaluated vegetation‐environment relationships at all three levels by means of DCA ordination and split‐plot GLM analyses. Results: The most important complex gradient determining variation in grassland species composition showed a broad‐scale relationship with management. Soil moisture conditions were related to vegetation variation on block scale, whereas element concentrations in the soil were significantly related to variation in species composition on all spatial scales. Our results show that vegetation‐environment relationships are dependent on the scale of observation. We suggest that scale‐related (and therefore methodological) issues may explain the wide range of vegetation‐environment relationships reported in the literature, for semi‐natural grassland in particular but also for other ecosystems. Conclusions: Interpretation of the variation in species composition of semi‐natural grasslands requires consideration of the spatial scales on which important environmental variables vary.  相似文献   

13.
Question: What are the changes associated with the recent invasion by the non‐native legume, Cytisus scoparius? Location: Subalpine vegetation (1500 m a.s.l.) in Australia. Methods: We used multivariate techniques and regression analyses to assess vegetation and environmental changes across six study sites. Vegetation and environmental variables were investigated at three different stages of invasion: (1) recent invasion (8–10 yr), (2) mature invasion (15–16 yr) and (3) long‐term invasion (25 yr). Results: Substantial changes in floristic composition and species richness were evident after 15 yr and these changes became more pronounced after 25 yr. Changes due to invasion were associated with a dramatic loss of native species or a reduction in their abundance. No ‘new species’ were evident under invaded stands. Forbs were most affected by the establishment of C. scoparius, although all growth forms responded negatively. Dense canopy shading and an increasingly dense, homogeneous litter layer in the understorey as a result of C. scoparius were strong environmental drivers of vegetation change. Greenhouse studies confirmed the importance of these processes on the germination and growth of two native species. Conclusions: This study highlights the potential for C. scoparius to alter both vegetation and environmental processes in the subalpine region.  相似文献   

14.
1. Analysis of the distribution and abundance of water plants can be a useful tool for determining the ecological water requirements of sites in a catchment. 2. Seed‐bank and vegetation surveys of wetland and riparian sites were undertaken in the Angas River catchment in South Australia to determine the distribution and abundance of plants associated with riparian habitats. Plant species were allocated to water plant functional groups (WPFGs sensu Brock and Casanova, Frontiers in Ecology; Building the Links, 1997, Elsevier Science). In addition to the seven functional groups already recognised, three new groups containing submerged and woody growth forms were included in this study. 3. Cluster analysis of sites on the basis of species presence/absence was compared with site clustering obtained from analysis of representation of WPFGs. Functional group analysis provided a similar segregation of species‐poor sites to that resulting from analysis of species presence/absence, but provided better resolution of clusters for species‐rich sites. Three clusters of species‐rich sites were delineated: riparian sites that require year‐round permanent water but have fluctuating water levels, spatially and temporally variable riparian sites with shrubs and trees and temporary wetlands that dry annually. 4. Segregation of sites on the basis of functional group representation can provide information to managers about the water requirements of suites of species in different parts of the catchment. Knowledge of the environmental water requirements of sites within a catchment can help managers to prioritise water management options and delivery within that catchment.  相似文献   

15.
Conservation planning in the face of global change is still in its infancy. A suggested approach is to incorporate environmental gradients into conservation planning as they reflect the ecological and evolutionary processes generating and maintaining diversity. Our study provides a framework to identify the dominant environmental gradients determining floristic composition and pattern. Nonmetric multidimensional scaling was used on 2155 sampling plots in savanna and grassland habitat located across the province of KwaZulu‐Natal, South Africa (94 697 km2), a floristically rich region having steep environmental gradients, to determine the dominant gradients. Hierarchical cluster analysis was used to group similar plots which were then used in a Classification and Regression Tree analysis to determine the environmental delimiters of the identified vegetation clusters. Temperature‐related variables were the strongest delimiters of floristic composition across the province, in particular mean annual temperature. Frost duration was the primary variable in the Classification and Regression Tree analysis with important implications for savanna/grassland dynamics. Soil properties (base, pH status) and moisture variables accounted for most of the variation for the second and third axes of floristic variation. Given that climatic and edaphic variables were well correlated with floristic composition, it is anticipated that a changing climate will have a marked influence on floristic composition. We predict warmer temperatures may facilitate the spread of frost sensitive savanna species into previously cooler, grassland areas. Species associated with specific soil types will not easily be able to move up the altitudinal gradient to cooler climes because geology is aligned in an approximately north‐south direction compared with increasing altitude from east‐west. Future conservation planning should take cognisance of these gradients which are surrogates for ecological and evolutionary processes promoting persistence.  相似文献   

16.
17.
The nature of community patterns and environmental drivers in kwongan mediterranean‐type shrubland on nutrient‐poor soils occurring in Western Australia remain poorly examined. We aimed to determine whether (i) classification of the kwongan vegetation of the northern Swan Coastal Plain would be ecologically informative and (ii) which environmental drivers underpin the plant community patterns. The study area was positioned on the northern Swan Coastal Plain, locality of Cooljarloo (30°39′ S, 115°22′ E), situated 170 km north of Perth, Western Australia. Compositional (518 species × 337 relevés) and environmental data set (29 variables × 87 relevés) describing time since last fire, soil chemical and physical properties, and terrain characteristics were analysed using classification and ordination techniques. OptimClass assisted in the selection of a robust data transformation, resemblance function and clustering algorithm to identify the vegetation patterns. Major ecological drivers of the vegetation patterns were detected using distance‐based redundancy analysis (db‐RDA). Classification revealed major groupings of Wet Heath and Banksia Woodland distinguishable by the high prevalence of myrtyoid and proteoid taxa, respectively. On floristic‐sociological grounds, we recognised four Wet Heath and two Banksia Woodland communities. The Wet Heath was constrained to areas of higher litter depth (db‐RDA axis 1: 9%). Soil chemical and physical properties explained the highest proportion (17%) of the compositional variance, while the terrain‐ and fire‐related variables explained 2% and <0.001%, respectively. While fire explained little compositional variance overall, a separate db‐RDA analysis found that it may play an important pattern‐structuring role within Banksia Woodlands. Fine‐scale compositional patterns correspond only to a small extent to environmental data; the substantial unexplained variance may be due to slow‐acting neutral and stochastic processes.  相似文献   

18.
19.
20.
The controls on aboveground community composition and diversity have been extensively studied, but our understanding of the drivers of belowground microbial communities is relatively lacking, despite their importance for ecosystem functioning. In this study, we fitted statistical models to explain landscape‐scale variation in soil microbial community composition using data from 180 sites covering a broad range of grassland types, soil and climatic conditions in England. We found that variation in soil microbial communities was explained by abiotic factors like climate, pH and soil properties. Biotic factors, namely community‐weighted means (CWM) of plant functional traits, also explained variation in soil microbial communities. In particular, more bacterial‐dominated microbial communities were associated with exploitative plant traits versus fungal‐dominated communities with resource‐conservative traits, showing that plant functional traits and soil microbial communities are closely related at the landscape scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号