首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The ability of plant communities to recover after non-native species invasion will depend upon the nature of their soil seed bank and seed rain characteristics. This study assessed changes in the soil seed bank and seed rain associated with the invasion of the non-native shrub Cytisus scoparius in subalpine vegetation. Soil seed bank and seed rain composition, density and richness were investigated at three areas of different stages of invasion: (i) recent (8–10 years), (ii) mature (15–16 years) and (iii) long-term (25 years). There were few changes in seed bank composition or richness regardless of invasion stage. By contrast, the seed rain composition, richness and density was substantially different within long-invaded areas. Very few seeds were able to colonise the dense barrier characteristic of larger, more mature C. scoparius stands. Some prominent herbs from the native vegetation were under-represented or absent from the seed bank, both in invaded and uninvaded areas. Laboratory germination experiments demonstrated that most native species germinate easily, which may imply a transient seed bank, rather than a persistent one. The majority of herbaceous and shrub species were capable of resprouting vegetatively. Therefore, regeneration appeared more reliant on the bud and tuber bank than a persistent soil seed bank. The dominance of graminoid species and C. scoparius rather than other herbaceous, shrub or tree species suggests that the regenerating vegetation will be dominated by grass species and/or C. scoparius. Hence, in areas where long-invaded C.␣scoparius stands are present the recovery of native subalpine vegetation maybe difficult. Recovery may only be possible through wind dispersal from the surrounding intact vegetation or through actively reseeding the area. This study highlights the importance of early intervention in invasive species management.  相似文献   

2.
Abstract. Questions: This paper examines the long‐term change in the herbaceous layer of semi‐arid vegetation since grazing ceased. We asked whether (1) there were differences in the temporal trends of abundance among growth forms of plants; (2) season of rainfall affected the growth form response; (3) the presence of an invasive species influenced the abundance and species richness of native plants relative to non‐invaded plots, and (4) abundance of native plants and/or species richness was related to the time it took for an invasive species to invade a plot. Location: Alice Springs, Central Australia. Methods: Long‐term changes in the semi‐arid vegetation of Central Australia were measured over 28 years (1976–2004) to partition the effects of rainfall and an invasive perennial grass. The relative abundance (biomass) of all species was assessed 25 times in each of 24 plots (8 m × 1 m) across two sites that traversed floodplains and adjacent foot slopes. Photo‐points, starting in 1972, were also used to provide a broader overview of a landscape that had been intensively grazed by cattle and rabbits prior to the 1970s. Species’abundance data were amalgamated into growth forms to examine their relationship with environmental variation in space and time. Environmental variables included season and amount of rainfall, fire history, soil variability and the colonization of the plots by the exotic perennial grass Cenchrus ciliaris (Buffel grass). Results: Constrained ordination showed that season of rainfall and landscape variables relating to soil depth strongly influenced vegetation composition when Cenchrus was used as a covariate. When Cenchrus was included in constrained ordination, it was strongly related to the decline of all native growth forms over time. Univariate comparisons of non‐invaded vs impacted plots over time revealed unequivocal evidence that Cenchrus had caused the decline of all native growth form groups and species richness. They also revealed a contrasting response of native plants to season of rainfall, with a strong response of native grasses to summer rainfall and forbs to winter rainfall. In the presence of Cenchrus these responses were strongly attenuated. Discussion: Pronounced changes in the composition of vegetation were interpreted as a response to removal of grazing pressure, fluctuations in rainfall and, most importantly, invasion of an exotic grass. Declines in herbaceous species abundance and richness in the presence of Cenchrus appear to be directly related to competition for resources. Indirect effects may also be causing the declines of some woody species from changed fire regimes as a result of increased fuel loads. We predict that Cenchrus will begin to alter landscape level processes as a result of the direct and indirect effects of Cenchrus on the demography of native plants when there is a switch from resource limited (rainfall) establishment of native plants to seed limited recruitment.  相似文献   

3.
Question: Can wild ungulates efficiently maintain and restore open habitats? Location: Brandenburg, NE Germany. Methods: The effect of wild ungulate grazing and browsing was studied in three successional stages: (1) Corynephorus canescens‐dominated grassland; (2) ruderal tall forb vegetation dominated by Tanacetum vulgare; and (3) Pinus sylvestris‐pioneer forest. The study was conducted over 3 yr. In each successional stage, six paired 4 m2‐monitoring plots of permanently grazed versus ungrazed plots were arranged in three random blocks. Removal of grazing was introduced de novo for the study. In each plot, percentage cover of each plant and lichen species and total cover of woody plants was recorded. Results: Wild ungulates considerably affected successional pathways and species composition in open habitats but this influence became evident in alteration of abundances of only a few species. Grazing effects differed considerably between successional stages: species richness was higher in grazed versus ungrazed ruderal and pioneer forest plots, but not in the Corynephorus sites. Herbivory affected woody plant cover only in the Pioneer forest sites. Although the study period was too short to observe drastic changes in species richness and woody plant cover, notable changes in species composition were still detected in all successional stages. Conclusion: Wild ungulate browsing is a useful tool to inhibit encroachment of woody vegetation and to conserve a species‐rich, open landscape.  相似文献   

4.
Question: Does the understorey vegetation of Norwegian boreal forests change in relation to broad‐scale, long‐term changes? Location: Norway. Methods: Permanently marked 1‐m2 vegetation plots from 17 monitoring reference areas in forests dominated by Picea abies (11 areas, 620 plots) and Betula spp. (six areas, 300 plots) were analysed twice, at the start in 1988–1997 and 5 yr later (1993–2002). Species subplot frequency data were analysed separately for each area by univariate and multivariate statistical methods; 5‐yr changes in single species abundances, species number per plot and species composition were tested. Results: Two distinct patterns of change were found: 1. Abundance of several vascular plant species decreased in SE Norwegian Picea forests, most noticeably of species with a preference for richer soils, such as Oxalis acetosella. 2. Abundance of many bryophyte species as well as bryophyte species number per plot increased in forests of both types over most of Norway. Conclusions: The pattern of vascular plant changes is probably a time‐delayed response of long‐lived, mainly clonal, populations to acidified soils resulting from deposition of long‐distance airborne pollutants. The pattern bryophyte changes, with reference to the close link between climatic conditions for growth and abundance changes for Hylocomium splendens established in previous demographic studies, is related to climatic conditions favourable for bryophyte growth. We conclude that many forest understorey plants are sensitive indicators of environmental change, and that the concept used for intensive monitoring of Norwegian forests enables early detection of changes in vegetation brought about by broad‐scale, regional, impact factors.  相似文献   

5.
Aim To reconstruct the history of vegetation and environments using pollen, charcoal and sediment analysis, and to identify the timing and nature of climate change and human impact on the vegetation of a remote Pacific island. Location Cerro de Los Inocentes, 1000 m above sea level, Alexander Selkirk Island (33°45′S, 80°45′W), Chile. The westernmost island of the Juan Fernandez Archipelago, south‐east Pacific Ocean. Methods A 150‐cm long sediment core comprising 87 cm dark brown peat overlying 63 cm of yellow grey clay was extracted from a shallow depression on the southern slopes of Cerro de Los Inocentes. Pollen, charcoal, sediment and accelerator mass spectrometry radiocarbon analyses were used to construct a record of vegetation change through time. Numerical analysis of multispecies data allowed the classification of fossil assemblages into distinct pollen zones. Results Pollen and spores are preserved throughout the sediment with high concentrations coinciding with the beginning of organic sediment accumulation at around 8000 14C yr BP. Prior to 8000 14C yr BP, the deposition of clays, presumably from upslope erosion, occurred in a landscape sparsely vegetated by grasses, ferns and Pernettya rigida heath, including several plants that are only found 100–200 m above the site today (Zone CI‐1). After 8000 14C yr BP, a P. rigida heath was the dominant vegetation (Zone CI‐2). A shift to a wet heath–shrubland (Zone CI‐3) occurred at 6000 14C yr BP and was followed by a transition to a treefern–shrubland mosaic accompanied by periodic burning (Zone CI‐4) after 4500 14C yr BP. The impact of human occupation is evident in Zone CI‐5 at 450 14C yr BP with the loss of forest species, increased burning and invasion of the exotic plant Rumex. Main conclusions The pollen and charcoal record provides the first evidence of vegetation changes spanning at least the last 8000 14C yr BP from the high altitude environment of Alexander Selkirk Island. Prior to 8000 14C yr BP, the altitudinal ranges of different plant species may have been suppressed by a cooler and drier climate. Increasing precipitation and temperatures at the end of the last glacial period may have mobilized exposed sediments in a sparsely vegetated upland environment, altering local drainage patterns, eventually leading to slope stabilization and deposition of organic detritus under an increasing density of heath and shrub vegetation. The subalpine heath–shrubland persisted until 4500 14C yr BP when first evidence for sustained burning is found in association with the establishment of a more open treefern–shrubland vegetation pattern. In the absence of human occupation at this time, the influence of increased climatic variability associated with more frequent El Niño‐Southern Oscillation events during the mid to late Holocene is considered one of the main driving forces behind increased vegetation disturbance during this period. The record provides evidence that island vegetation patterns have been highly dynamic over millennial to decadal time‐scales and that the flora has persisted through periods of rapid and major climate change. This changed with the discovery of the island by European explorers in the late sixteenth century and the subsequent introduction of goats and exploitation and burning of forests, which resulted in the progressive destruction of native vegetation and the invasion of introduced plants. There is evidence that reduced burning and control of the goat population within the last 50 years has resulted in marginal recovery of some high altitude native plant species.  相似文献   

6.
Understanding how plant communities respond to plant invasions is important both for understanding community structure and for predicting future ecosystem change. In a system undergoing intense plant invasion for 25 years, we investigated patterns of community change at a regional scale. Specifically, we sought to quantify how tussock grassland plant community structure had changed and whether changes were related to increases in plant invasion. Frequency data for all vascular plants were recorded on 124, permanent transects in tussock grasslands across the lower eastern South Island of New Zealand measured three times over a period of 25 years. Multivariate analyses of species richness were used to describe spatial and temporal patterns in the vegetation. Linear mixed‐effects models were used to relate temporal changes in community structure to the level and rate of invasion of three dominant invasive species in the genus Hieracium while accounting for relationships with other biotic and abiotic variables. There was a strong compositional gradient from exotic‐ to native‐dominated plant communities that correlated with increasing elevation. Over the 25 years, small‐scale species richness significantly decreased and then increased again; however, these changes differed in different plant communities. Exotic species frequency consistently increased on some transects and consistently declined on others. Species richness changes were correlated with the level of Hieracium invasion and abiotic factors, although the relationship with Hieracium changed from negative to positive over time. Compositional changes were not related to measured predictors. Our results suggest that observed broad‐scale fluctuations in species richness and community composition dynamics were not driven by Hieracium invasion. Given the relatively minor changes in community composition over time, we conclude that there is no evidence for widespread degradation of these grasslands over the last 25 years. However, because of continuing weed invasion, particularly at lower elevations, impacts may emerge in the longer term.  相似文献   

7.
Nitrogen-limited ecosystems are threatened by extensive spread of broom (Cytisus scoparius (L.) Link), a European leguminous shrub that is invasive in several countries. The establishment of invading species may, however, be suppressed by competition from native vegetation. The neighbor impact of the grass Festuca rubra subsp. commutata Gaudin on the performance of C. scoparius was studied in a greenhouse experiment with different arrival order, under low and high nitrogen supply, and with or without inoculation of nitrogen-fixing bacteria. Aboveground biomass of both species was measured after a six-months establishment period, and after a five-months regrowth period. In both periods, presence of F. rubra reduced the performance of C. scoparius as indicated by negative neighbor-effect intensity indices (NIntA).During the establishment period the competitive impact of F. rubra was highest, when planted before C. scoparius, followed by synchronous and late planting. Inoculation with rhizobia and low fertilization decreased the competitive impact of F. rubra. After cutting and regrowth priority effects of F. rubra were still visible. Interaction between the two study species was not affected anymore by inoculation, but strongly by fertilization, with highest competitive impact of F. rubra on C. scoparius under high nitrogen fertilization. In both study periods biomass of C. scoparius was negatively correlated with biomass of F. rubra. Our study provides knowledge about competition processes, which help to improve conservation and restoration measures regarding the spread of C. scoparius. Early sowing of a native grass can help to suppress the invasive species at an early stage. Competitive impact of the grass might be strengthened by high nitrogen availability.  相似文献   

8.
Scotch broom, Cytisus scoparius (Fabaceae), is a shrub native to Europe that is invasive in the USA, New Zealand and Australia. The psyllid Arytainilla spartiophila has been purposely introduced to Australia and New Zealand as a biological control agent of C. scoparius, but is an accidental introduction to California. Lupines (Lupinus spp.) are the closest native taxon to Cytisus in North America, and are therefore considered to be at the highest risk for non-target damage. However, because no lupines are native to Australia or New Zealand, only one imported forage species was evaluated during prior host specificity testing. We conducted a laboratory nymphal transfer experiment, a field choice experiment and a field survey to assess risk to three lupine species (Lupinus albifrons, Lupinus bicolor and Lupinus formosus). In the laboratory, 20% of third-instar nymphs were able to develop to adulthood on L. formosus but not on the other lupine species, while 40% completed development on C. scoparius. In the field experiment, potted lupine and C. scoparius plants were placed beside large infested C. scoparius plants; oviposition occurred on all the potted C. scoparius plants, but on none of the lupines. In the field survey, no A. spartiophila eggs or nymphs were found on naturally occurring lupines growing adjacent to infested C. scoparius. The results indicate that A. spartiophila is not likely to damage or reproduce on lupines in the field. This study provides an example of how field studies can help clarify the host specificity of biological control agents.  相似文献   

9.
Invasive plant impacts vary widely across introduced ranges. We tested the hypothesis that differences in the eco‐evolutionary experience of native communities with the invader correspond with the impacts of invasive species on native vegetation, with impacts increasing with ecological novelty. We compared plant species richness and composition beneath Pinus contorta to that in adjacent vegetation and other P. contorta stands across a network of sites in its native (Canada and USA) and non‐native (Argentina, Chile, Finland, New Zealand, Scotland, Sweden) ranges. At sites in North America and Europe, within the natural distribution of the genus Pinus, P. contorta was not associated with decreases in diversity. In the Southern Hemisphere, where there are no native Pinaceae, plant communities beneath P. contorta were less diverse than in other regions and compared to uninvaded native vegetation. Effects on native vegetation were particularly pronounced where P. contorta was a more novel life form and exhibited higher growth rates. Our results support the hypothesis that the eco‐evolutionary experience of the native vegetation, and thus the novelty of the invader, determines the magnitude of invader impacts on native communities. Understanding the eco‐evolutionary context of invasions will help to better understand and predict where invasion impacts will be greatest and to prioritize invasive species management.  相似文献   

10.
Summary Plant succession was investigated on sand waste heaps produced by kaolin mining in central Cornwall. It was found that relatively even aged, monospecific stands of vegetation were frequently present. The principal colonists were woody leguminous plants which, in some situations, were superceded by a massive growth of rhododendrons (Rhododendron ponticum) or native woodland species. Where legumes were absent, the waste was slowly colonised by Calluna vulgaris and other heathland species.The age structure of the vegetation was negatively and significantly correlated (r=–0.71) with the moisture deficit (evapotranspiration minus rainfall) during the spring and early summer. Drought, limited seed availability, and low nitrogen levels in the waste material are factors which contribute to the development of monospecific, even-aged legume communities of Ulex europaeus, Sarothamnus scoparius and Lupinus arboreus.Measurements were made of biomass and litter in five plant communities and nitrogen levels were determined in the soil/plant system within these communities and also in the soil of a woodland which had developed on sand waste. The low productivity and low rate of nitrogen accumulation in a stand of Calluna vulgaris contrasted with stands of the three woody legumes. Gorse (Ulex europaeus) accumulated nitrogen most rapidly and appeared to have preceded invasion by Rhododendron ponticum and transition to native woodland. Within the woodland and rhododendron thicket the soil nitrogen levels approached those characteristic of temperate climax woodland.The data indicate that the course of plant succession and the rate of soil development are strongly influenced by the biological properties of the colonising species. These processes are accelerated considerably following the invasion of woody legumes. re]19760512Department of Botany Liverpool University  相似文献   

11.
The role of mutualisms in contributing to species invasions is rarely considered, inhibiting effective risk analysis and management options. Potential ecological consequences of invasion of non‐native pollinators include increased pollination and seed set of invasive plants, with subsequent impacts on population growth rates and rates of spread. We outline a quantitative approach for evaluating the impact of a proposed introduction of an invasive pollinator on existing weed population dynamics and demonstrate the use of this approach on a relatively data‐rich case study: the impacts on Cytisus scoparius (Scotch broom) from proposed introduction of Bombus terrestris. Three models have been used to assess population growth (matrix model), spread speed (integrodifference equation), and equilibrium occupancy (lattice model) for C. scoparius. We use available demographic data for an Australian population to parameterize two of these models. Increased seed set due to more efficient pollination resulted in a higher population growth rate in the density‐independent matrix model, whereas simulations of enhanced pollination scenarios had a negligible effect on equilibrium weed occupancy in the lattice model. This is attributed to strong microsite limitation of recruitment in invasive C. scoparius populations observed in Australia and incorporated in the lattice model. A lack of information regarding secondary ant dispersal of C. scoparius prevents us from parameterizing the integrodifference equation model for Australia, but studies of invasive populations in California suggest that spread speed will also increase with higher seed set. For microsite‐limited C. scoparius populations, increased seed set has minimal effects on equilibrium site occupancy. However, for density‐independent rapidly invading populations, increased seed set is likely to lead to higher growth rates and spread speeds. The impacts of introduced pollinators on native flora and fauna and the potential for promoting range expansion in pollinator‐limited ‘sleeper weeds’ also remain substantial risks.  相似文献   

12.
Hager HA 《Oecologia》2004,140(1):140-149
Non-native plants can have adverse effects on ecosystem structure and processes by invading and out-competing native plants. I examined the hypothesis that mature plants of non-native and native species exert differential effects on the growth of conspecific and heterospecific seedlings by testing predictions that (1) invasive vegetation has a stronger suppressive effect on seedlings than does native vegetation, (2) seedlings of invasive species are better able to grow in established vegetation than are native seedlings, and (3) invasive species facilitate conspecific and inhibit heterospecific seedling growth. I measured growth rates and interaction intensities for seedlings of four species that were transplanted into five wetland monoculture types: invasive Lythrum salicaria; native L. alatum, Typha angustifolia, T. latifolia; unvegetated control. Invasive L. salicaria had the strongest suppressive effect on actual and per-individual bases, but not on a per-gram basis. Seedlings of T. latifolia were better able to grow in established vegetation than were those of L. salicaria and T. angustifolia. These results suggest that L. salicaria is not a good invader of established vegetation, but once established, it is fairly resistant to invasion. Thus, it is likely that disturbance of established vegetation facilitates invasion by L. salicaria, allowing it to compete with other species in even-aged stands where its high growth rate and consequent production of aboveground biomass confer a competitive advantage.  相似文献   

13.
14.
Question : This paper studies the establishment and performance of Cortaderia selloana (Pampas grass), an alien South American ornamental species that is invading many parts of the world. We asked whether (1) early successional stages were the most susceptible to C. selloana invasion; (2) soil microdisturbances increased invasion at any point of succession, and (3) C. selloana invasion of later successional stages was modulated by vegetation type Location : Delta del Llobregat (Catalonia, NE Spain). Methods : We monitored survival and growth of transplanted C. selloana seedlings in disturbed and non‐disturbed plots throughout a successional gradient with an age range of < 1 to > 10 years in different vegetation types and within the area of influence of coexisting species with similar growth form. Results : Although seedling survival was extremely low in all treatments, our results revealed that early successional stages were not the most easily invaded since we found no significant differences in the percentage survival of C. selloana along the successional gradient. However, survival and seedling bio‐mass were enhanced by soil disturbance at any seral stage. This result suggested that inhibition ruled C. selloana invasion. Invasibility neither depended on the invaded vegetation type nor on the co‐existing species with similar growth form. Finally, C. selloana invasion was not enhanced by decreasing competition with Phragmites australis, a native coexisting species because survival rates after a year were not significantly different. However, Phragmites increased C. selloana leaf length probably due to shading. Conclusions : C. selloana recruitment appears to be positively affected by soil disturbance but it is independent of successional stage or vegetation type.  相似文献   

15.
Cytisus scoparius is a global invasive species that affects local flora and fauna at the intercontinental level. Its natural distribution spans across Europe, but seeds have also been moved among countries, mixing plants of native and non‐native genetic origins. Hybridization between the introduced and native gene pool is likely to threaten both the native gene pool and the local flora. In this study, we address the potential threat of invasive C. scoparius to local gene pools in vulnerable heathlands. We used nuclear single nucleotide polymorphic (SNP) and simple sequence repeat (SSR) markers together with plastid SSR and indel markers to investigate the level and direction of gene flow between invasive and native heathland C. scoparius. Analyses of population structures confirmed the presence of two gene pools: one native and the other invasive. The nuclear genome of the native types was highly introgressed with the invasive genome, and we observed advanced‐generation hybrids, suggesting that hybridization has been occurring for several generations. There is asymmetrical gene flow from the invasive to the native gene pool, which can be attributed to higher fecundity in the invasive individuals, measured by the number of flowers and seed pods. Strong spatial genetic structure in plastid markers and weaker structure in nuclear markers suggest that seeds spread over relatively short distances and that gene flow over longer distances is mainly facilitated by pollen dispersal. We further show that the growth habits of heathland plants become more vigorous with increased introgression from the invaders. Implications of the findings are discussed in relation to future management of invading C. scoparius.  相似文献   

16.
Plantations of exotic fast‐growing tree species have been widely used for maintaining or restoring ecosystem functions. Despite this, in tropical countries with high biodiversity, these plantations have been the subject of heated debate. We evaluated the long‐term effect of coniferous tree plantations (Cupressus lusitanica, Pinus patula, Pinus elliottii) on the ecological rehabilitation of the Andean highlands in Colombia. To determine degree of rehabilitation, we assessed whether there were differences in the structure or density of native understory vegetation or soil ecological properties between plots established within tree plantations and plots established within other vegetation cover types (secondary forests, ferns, pastures, and abandoned mining areas). Measured variables were combined to create an index of ecological rehabilitation (ERI). We found significant differences in the ERI values among vegetation cover types: secondary forest (11.78) > conifer plantations (P. elliottii: 6.23, P. patula: 5.33, C. lusitanica: 5.24) > ferns (4.16) > pasture (2.50) > abandoned mining areas (0.43). The results obtained showed that, from the structure of native understory vegetation and soil ecological properties, conifer plantations favored the rehabilitation process. However, among them, it was highlighted that the P. elliotii plantations showed significant differences in the density of native understory species, their values being 1.7 and 2.1 times higher than those corresponding to P. patula and C. lusitanica, respectively. Thus, unlike these plantations that could represent an ecological barrier over time, P. elliottii plantations have enabled the advancement of natural succession, showing a high diversity of native species.  相似文献   

17.
The processes underlying plant invasions have been the subject of much ecological research. Understanding mechanisms of plant invasions are difficult to elucidate from observations, yet are crucial for ecological management of invasions. Hieracium lepidulum, an asteraceous invader in New Zealand, is a species for which several explanatory mechanisms can be raised. Alternative mechanisms, including competitive dominance, disturbance of resident vegetation allowing competitive release or nutrient resource limitation reducing competition with the invader are raised to explain invasion. We tested these hypotheses in two field experiments which manipulated competitive, disturbance and nutrient environments in pre‐invasion and post‐invasion vegetation. H. lepidulum and resident responses to environmental treatments were measured to allow interpretation of underlying mechanisms of establishment and persistence. We found that H. lepidulum differed in functional response profile from native species. We also found that other exotic invaders at the sites were functionally different to H. lepidulum in their responses. These data support the hypothesis that different invaders use different invasion mechanisms from one another. These data also suggest that functional differentiation between invaders and native resident vegetation may be an important contributing factor allowing invasion. H. lepidulum appeared to have little direct competitive effect on post‐invasion vegetation, suggesting that competition was not a dominant mechanism maintaining its persistence. There was weak support for disturbance allowing initial establishment of H. lepidulum in pre‐invasion vegetation, but disturbance did not lead to invader dominance. Strong support for nutrient limitation of resident species was provided by the rapid competitive responses with added nutrients despite presence of H. lepidulum. Rapid competitive suppression of H. lepidulum once nutrient limitation was alleviated suggests that nutrient limitation may be an important process allowing the invader to dominate. Possible roles of historical site degradation and/or invader‐induced soil chemical/microbial changes in nutrient availability are discussed.  相似文献   

18.
Invasive plants can alter community dynamics and the successional trajectories of ecosystems they colonize. We explore how interactions between disturbance and invasion govern successional trajectories in the case of Casuarina equisetifolia invading lava flows on La Réunion Island. Surveys from 1972 and 1990 were compared with results of a survey in 2012 to detail progression of the invasion over time. General additive models were used to estimate the influence of altitude, distance to putative source of introduction, and lava flow age on the abundance of C. equisetifolia. Based on the predictions, we estimated the likely rate and eventual extent of spread of the species in the area through time. We placed our findings in the context of a conceptual model of successional processes in the area to highlight how the invasion of Cequisetifolia and natural and human‐mediated disturbances are changing natural vegetation dynamics. The extent of invasion by Cequisetifolia has increased twentyfold over the past 40 yr from 110 ha in 1972 to 2373 ha in 2012. Lava flows have facilitated this spread, and in turn C. equisetifolia has started to radically change successional trajectories, increasing the rate of succession sevenfold. The continued spread of this species poses a major threat to the small area of remaining native lowland rain forests on La Réunion Island, which cover <2 percent of their original extent.  相似文献   

19.
Trophic niche overlap in native and alien fish species can lead to competitive interactions whereby non‐native fishes outcompete indigenous individuals and eventually affect the viability of natural populations. The species Erythroculter mongolicus and Erythroculter ilishaeformis (belonging to the Culterinae), which are two commercially important fish species in the backwater bay of the Pengxi River in the Three Gorges Reservoir (TGR), were threatened by competition from the non‐native Coilia ectenes (lake anchovy). The latter is an alien species introduced into the lower reaches of the Yangtze River in China and now widespread in the TGR. The trophic consequences of non‐native lake anchovy invasion for E. mongolicus and E. ilishaeformis were assessed using stable isotope analysis (δ13C and δ15N) and associated metrics including the isotopic niche, measured as the standard ellipse area. The trophic niche of native E. mongolicus had little overlap (<15%) with the alien fish species and was significantly reduced in size after invasion by lake anchovy. This suggests that E. mongolicus shifted to a more specialized diet after invasion by lake anchovy. In contrast, the trophic niche overlap of native fish E. ilishaeformis with the alien fish species was larger (>50%) and the niche was obviously increased, implying that fish in this species exploited a wider dietary base to maintain their energetic requirements. Thus, marked changes for the native E. mongolicus and E. ilishaeformis were detected as the trophic consequences of invasion of non‐native lake anchovy.  相似文献   

20.
The introduction of an exotic species usually modifies parasite–host dynamics by the import of new parasites or the exotic species' acquiral of local parasites. The loss of parasites may determine the outcome of an invasion if the introduced species is liberated from co‐evolved parasites in its range of invasion. In addition, an introduced species may pose sanitary risks to humans and other mammals if it serves as a reservoir of pathogens or carries arthropod vectors. The red‐bellied squirrel, Callosciurus erythraeus (Pallas) (Rodentia: Sciuridae), was introduced into Argentina in 1970, since when several foci of invasion have been closely associated with humans. Investigation of the parasitological fauna of C. erythraeus in Argentina will generate new information about novel parasite–host dynamics and may provide new insight into the reasons for the successful invasion of this species. The objective of this study was to describe the arthropod parasites of C. erythraeus in Argentina in comparison with previous studies of parasites of this species in its native habitat and in the ranges of its invasion. Occasional host–parasite associations with local arthropod parasites not previously described for C. erythraeus are reported; these include the mites Androlaelaps fahrenholzi (Ewing) (Mesostigmata: Laelapidae) and Ornithonyssus cf. bacoti (Mesostigmata: Macronyssidae), the flea Polygenis (Polygenis) rimatus Jordan (Siphonaptera: Rhopalopsyllidae) and the botfly Cuterebra Clark (Diptera: Oestridae: Cuterebrinae). Cheyletus sp. mites (Trombidiformes: Cheyletidae) were also found. The low prevalence and mean intensity of ectoparasite species may influence invasion dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号