首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The flux of energetic and nutrient resources across habitat boundaries can exert major impacts on the dynamics of the recipient food web. Competition for these resources can be a key factor structuring many ecological communities. Competition theory suggests that competing species should exhibit some partitioning to minimize competitive interactions. Species should partition both in situ (autochthonous) resources and (allochthonous) resources that enter the food web from outside sources. Allochthonous resources are important sources of energy and nutrients in many low productivity systems and can significantly influence community structure. The focus of this paper is on: (i) the influence of resource partitioning on food web stability, but concurrently we examine the compound effects of; (ii) the trophic level(s) that has access to allochthonous resources; (iii) the amount of allochthonous resource input; and (iv) the strength of the consumer–resource interactions. We start with a three trophic level food chain model (resource–consumer–predator) and separate the higher two trophic levels into two trophospecies. In the model, allochthonous resources are either one type available to both consumers and predators or two distinct types, one for consumers and one for predators. The feeding preferences of the consumer and predator trophospecies were varied so that they could either be generalists or specialists on allochthonous and/or autochthonous resources. The degree of specialization influenced system persistence by altering the structure and, therefore, the indirect effects of the food web. With regard to the trophic level(s) that has access to allochthonous resources, we found that a single allochthonous resource available to both consumers and predators is more unstable than two allochthonous resources. The results demonstrate that species populating food webs that experience low to moderate allochthonous resources are more persistent. The results also support the notion that strong links destabilize food web dynamics, but that weak to moderate strength links stabilize food web dynamics. These results are consistent with the idea that the particular structure, resource availability, and relative strength of links of food webs (such as degree of specialization) can influence the stability of communities. Given that allochthonous resources are important resources in many ecosystems, we argue that the influence of such resources on species and community persistence needs to be examined more thoroughly to provide a clearer understanding of food web dynamics.  相似文献   

2.
Much research has focused on identifying species that are susceptible to extinction following ecosystem fragmentation, yet even those species that persist in fragmented habitats may have fundamentally different ecological roles than conspecifics in unimpacted areas. Shifts in trophic role induced by fragmentation, especially of abundant top predators, could have transcendent impacts on food web architecture and stability, as well as ecosystem function. Here we use a novel measure of trophic niche width, based on stable isotope ratios, to assess effects of aquatic ecosystem fragmentation on trophic ecology of a resilient, dominant, top predator. We demonstrate collapse in trophic niche width of the predator in fragmented systems, a phenomenon related to significant reductions in diversity of potential prey taxa. Collapsed niche width reflects a homogenization of energy flow pathways to top predators, likely serving to destabilize remnant food webs and render apparently resilient top predators more susceptible to extinction through time.  相似文献   

3.
The role and prevalence of omnivory, defined as feeding on more than one trophic level, are critical to understand food web structure and dynamics. Whether omnivory stabilizes or destabilizes food webs depends on the assumptions of theoretical models. Recently, Tanabe and Namba [Tanabe, K., Namba, T., 2005. Omivory creates chaos in simple food web models. Ecology 86, 3411–3414] found that omnivory can create chaos in a simple food web model with linear functional responses and 12 model parameters. In this paper, first we numerically examined bifurcation diagrams with all the parameters as bifurcation parameters, including self-limitation of the intermediate consumer and predator. Chaos spontaneously appears when the intraguild predator’s consumption rates are low for nutrient-rich intraguild prey and high for nutrient-poor basal resource and the intraguild prey reproduces efficiently feeding on the basal resource. Second, we investigated effects of the addition of a species into the basic model food web which exhibits chaos. The additional species is assumed to consume only one of the basal resource, intermediate consumer, or omnivorous predator. Consequences of the addition greatly depend on the trophic level on which the additional species feeds. While the increased diversity of predators feeding on the intermediate consumer stabilizes the web, the increased diversity of prey feeding on the basal resource induces collapse of the food web through exploitative competition for the basal resource. The food chain with the top predator feeding on the omnivorous predator is highly unstable unless the mortality of the top predator is extremely low. We discuss the possibility of real-world chaos and the reason why stability of food webs strongly depends on the topological structure of the webs. Finally, we consider the implications of our results for food web theory and resource management.  相似文献   

4.
Understanding the dependence of species interaction strengths on environmental factors and species diversity is crucial to predict community dynamics and persistence in a rapidly changing world. Nontrophic (e.g. predator interference) and trophic components together determine species interaction strengths, but the effects of environmental factors on these two components remain largely unknown. This impedes our ability to fully understand the links between environmental drivers and species interactions. Here, we used a dynamical modelling framework based on measured predator functional responses to investigate the effects of predator diversity, prey density, and temperature on trophic and nontrophic interaction strengths within a freshwater food web. We found that (i) species interaction strengths cannot be predicted from trophic interactions alone, (ii) nontrophic interaction strengths vary strongly among predator assemblages, (iii) temperature has opposite effects on trophic and nontrophic interaction strengths, and (iv) trophic interaction strengths decrease with prey density, whereas the dependence of nontrophic interaction strengths on prey density is concave up. Interestingly, the qualitative impacts of temperature and prey density on the strengths of trophic and nontrophic interactions were independent of predator identity, suggesting a general pattern. Our results indicate that taking multiple environmental factors and the nonlinearity of density‐dependent species interactions into account is an important step towards a better understanding of the effects of environmental variations on complex ecological communities. The functional response approach used in this study opens new avenues for (i) the quantification of the relative importance of the trophic and nontrophic components in species interactions and (ii) a better understanding how environmental factors affect these interactions and the dynamics of ecological communities.  相似文献   

5.
Detritus, trophic dynamics and biodiversity   总被引:11,自引:1,他引:10  
Traditional approaches to the study of food webs emphasize the transfer of local primary productivity in the form of living plant organic matter across trophic levels. However, dead organic matter, or detritus, a common feature of most ecosystems plays a frequently overlooked role as a dynamic heterogeneous resource and habitat for many species. We develop an integrative framework for understanding the impact of detritus that emphasizes the ontogeny and heterogeneity of detritus and the various ways that explicit inclusion of detrital dynamics alters generalizations about the structure and functioning of food webs. Through its influences on food web composition and dynamics, detritus often increases system stability and persistence, having substantial effects on trophic structure and biodiversity. Inclusion of detrital heterogeneity in models of food web dynamics is an essential new direction for ecological research.  相似文献   

6.
Predicting climate change impacts on animal communities requires knowledge of how physiological effects are mediated by ecological interactions. Food‐dependent growth and within‐species size variation depend on temperature and affect community dynamics through feedbacks between individual performance and population size structure. Still, we know little about how warming affects these feedbacks. Using a dynamic stage‐structured biomass model with food‐, size‐ and temperature‐dependent life history processes, we analyse how temperature affects coexistence, stability and size structure in a tri‐trophic food chain, and find that warming effects on community stability depend on ecological interactions. Predator biomass densities generally decline with warming – gradually or through collapses – depending on which consumer life stage predators feed on. Collapses occur when warming induces alternative stable states via Allee effects. This suggests that predator persistence in warmer climates may be lower than previously acknowledged and that effects of warming on food web stability largely depend on species interactions.  相似文献   

7.
Plankton communities account for at least half of global primary production and play a key role in the global carbon cycle. Warming and acidification may alter the interaction chains in these communities from the bottom and top of the food web. Yet, the relative importance of these potentially complex interactions has not yet been quantified. Here, we examine the isolated and combined effects of warming, acidification, and reductions in phytoplankton and predator abundances in a series of factorial experiments. We find that warming directly impacts the top of the food web, but that the intermediate trophic groups are more strongly influenced by indirect effects mediated by altered top‐down interactions. Direct manipulations of predator and phytoplankton abundance reveal similar strong top‐down interactions following top predator decline. A meta‐analysis of published experiments further supports the conclusion that warming has stronger direct impacts on the top and bottom of the food web rather than the intermediate trophic groups, with important differences between freshwater and marine plankton communities. Our results reveal that the trophic effect of warming cascading down from the top of the plankton food web is a powerful agent of global change.  相似文献   

8.
Diatoms are important primary producers in shallow water environments. Few studies have assessed the importance of biological interactions in structuring these communities. In the present study, benthic diatom community structure in relation to manipulated food webs was assessed using in situ mesocosms, whereby predator‐free environments and environments comprising two different fish species were assessed. Zooplankton abundance, settled algal biomass and the diatom community were monitored over a 12‐day period across each of the three trophic scenarios. Differences among treatments over time were observed in zooplankton abundances, particularly copepods. Similarly, the benthic diatom community structure changed significantly over time across the three trophic treatments. However, no differences in total algal biomass were found among treatments. This was likely the result of non‐diatom phytoplankton contributions. We propose that the benthic diatom community structure within the mesocosms was influenced by trophic cascades and potentially through direct consumption by the fish. The study highlights that not only are organisms at the base of the food web affected by predators at the top of the food web, but that predator identity is potentially an important consideration for predator–prey interaction outcomes with consequences for multiple trophic levels.  相似文献   

9.
Male and female parents often provide different type and amount of care to their offspring. Three major drivers have been proposed to explain parental sex roles: (1) differential gametic investment by males and females that precipitates into sex difference in care, (2) different intensity of sexual selection acting on males and females, and (3) biased social environment that facilitates the more common sex to provide more care. Here, we provide the most comprehensive assessment of these hypotheses using detailed parental care data from 792 bird species covering 126 families. We found no evidence for the gametic investment hypothesis: neither gamete sizes nor gamete production by males relative to females was related to sex difference in parental care. However, sexual selection correlated with parental sex roles, because the male share in care relative to female decreased with both extra‐pair paternity and frequency of male polygamy. Parental sex roles were also related to social environment, because male parental care increased with male‐biased adult sex ratios (ASRs). Taken together, our results are consistent with recent theories suggesting that gametic investment is not tied to parental sex roles, and highlight the importance of both sexual selection and ASR in influencing parental sex roles.  相似文献   

10.
The importance of intraspecific variation has emerged as a key question in community ecology, helping to bridge the gap between ecology and evolution. Although much of this work has focused on plant species, recent syntheses have highlighted the prevalence and potential importance of morphological, behavioral, and life history variation within animals for ecological and evolutionary processes. Many small‐bodied consumers live on the plant that they consume, often resulting in host plant‐associated trait variation within and across consumer species. Given the central position of consumer species within tritrophic food webs, such consumer trait variation may play a particularly important role in mediating trophic dynamics, including trophic cascades. In this study, we used a series of field surveys and laboratory experiments to document intraspecific trait variation in a key consumer species, the marsh periwinkle Littoraria irrorata, based on its host plant species (Spartina alterniflora or Juncus roemerianus) in a mixed species assemblage. We then conducted a 12‐week mesocosm experiment to examine the effects of Littoraria trait variation on plant community structure and dynamics in a tritrophic salt marsh food web. Littoraria from different host plant species varied across a suite of morphological and behavioral traits. These consumer trait differences interacted with plant community composition and predator presence to affect overall plant stem height, as well as differentially alter the density and biomass of the two key plant species in this system. Whether due to genetic differences or phenotypic plasticity, trait differences between consumer types had significant ecological consequences for the tritrophic marsh food web over seasonal time scales. By altering the cascading effects of the top predator on plant community structure and dynamics, consumer differences may generate a feedback over longer time scales, which in turn influences the degree of trait divergence in subsequent consumer populations.  相似文献   

11.
How species richness is distributed across trophic levels determines several dimensions of ecosystem functioning, including herbivory, predation, and decomposition rates. We perform a meta‐analysis of 72 large published food webs to investigate their trophic diversity structure and possible endogenous, exogenous, and methodological causal variables. Consistent with classic theory, we found that published food webs can generally be described as ‘pyramids of species richness’. The food webs were more predator‐poor, prey‐rich and hierarchical than is expected by chance or by the niche or cascade models. The trophic species richness distribution also depended on centrality, latitude, ecosystem‐type and methodological bias. Although trophic diversity structure is generally pyramidal, under many conditions the structure is consistently uniform or inverse‐pyramidal. Our meta‐analysis adds nuance to classic assumptions about food web structure: diversity decreases with trophic level, but not under all conditions, and the decrease may be scale‐dependent. Synthesis The distribution of species richness across trophic levels has not been evaluated in recent decades, despite improvement in food web resolution and the relevance of biodiversity distribution to ecosystem function. Our meta‐analysis of 72 large, recent food webs, illustrates that published food webs can generally be described as basal‐rich, top‐poor ‘pyramids of species richness’, consistent with classic theory. Although trophic diversity structure is generally pyramidal, under some environmental and ecological conditions the structure is uniform or inverse‐pyramidal. Our meta‐analysis confirms classic theory about food web structure, while adding nuance by describing conditions under which classic pyramid structure is not observed.  相似文献   

12.
Evolutionary conflicts of interest between family members areexpected to influence patterns of parental investment. In altricialbirds, despite providing the same kind of parental care, patternsof investment in different offspring can differ between parents,a situation termed parentally biased favoritism. Previous explanationsfor parentally biased favoritism have received mixed theoreticaland empirical support. Here, we test the prediction that inblue tits, Cyanistes caeruleus, females bias their food allocationrules to favor the smallest offspring during the nestling stage.By doing so, females could increase the subsequent amount ofpaternal care supplied by their partner during the fledgingperiod, as a previous study showed that males feed the largestfledglings. When size differences within the brood are lesspronounced, all offspring will require similar amounts of postfledgingcare, and thus, the male parent will lose the advantage of caringfor the largest offspring that are closest to independence.In this study, we controlled the hunger of the smallest andlargest nestlings in the brood and compared the food allocationrules of the 2 parents. We found that the male parent had astronger preference than the female to feed the closest nestlingsand made no distinction between nestlings based on size, whereasthe female provisioned small hungry nestlings more when theywere at intermediate distances from her. These differences inparental food allocation rules are consistent with predictionsbased on sexual conflict over postfledging parental investment.  相似文献   

13.
The food web is one of the oldest and most central organising concepts in ecology and for decades, food chain length has been hypothesised to be controlled by productivity, disturbance, and/or ecosystem size; each of which may be mediated by the functional trophic role of the top predator. We characterised aquatic food webs using carbon and nitrogen stable isotopes from 66 river and floodplain sites across the wet-dry tropics of northern Australia to determine the relative importance of productivity (indicated by nutrient concentrations), disturbance (indicated by hydrological isolation) and ecosystem size, and how they may be affected by food web architecture. We show that variation in food chain length was unrelated to these classic environmental determinants, and unrelated to the trophic role of the top predator. This finding is a striking exception to the literature and is the first published example of food chain length being unaffected by any of these determinants. We suggest the distinctive seasonal hydrology of northern Australia allows the movement of fish predators, linking isolated food webs and potentially creating a regional food web that overrides local effects of productivity, disturbance and ecosystem size. This finding supports ecological theory suggesting that mobile consumers promote more stable food webs. It also illustrates how food webs, and energy transfer, may function in the absence of the human modifications to landscape hydrological connectivity that are ubiquitous in more populated regions.  相似文献   

14.
Dietary habits and trophic‐guild structure were examined in a fish assemblage (47 species) of the Chesapeake Bay estuary, U.S.A., using 10 years of data from >25 000 fish stomachs. The assemblage was comprised of 10 statistically significant trophic guilds that were principally differentiated by the relative amounts of Mysida, Bivalvia, Polychaeta, Teleostei and other Crustacea in the diets. These guilds were broadly aggregated into five trophic categories: piscivores, zooplanktivores, benthivores, crustacivores and miscellaneous consumers. Food web structure was largely dictated by gradients in habitat (benthic to pelagic) and prey size. Size classes within piscivorous species were more likely to be classified into different guilds, reflecting stronger dietary changes through ontogeny relative to benthivores and other guilds. Relative to predator species and predator size, the month of sampling had negligible effects on dietary differences within the assemblage. A majority of sampled fishes derived most of their nutrition from non‐pelagic prey sources, suggesting a strong coupling of fish production to benthic and demersal food resources. Mysida (predominantly the opossum shrimp Neomysis americana) contributed substantially to the diets of over 25% of the sampled predator groups, indicating that this species is a critical, but underappreciated, node in the Chesapeake Bay food web.  相似文献   

15.
Males, especially in species where they provide little or no parental investment, usually have high potential reproductive rates and are expected to maximize their fitness by mating with several females. This view is challenged, however, by species in which males provide no parental investment, but nevertheless mate with one female only. Male monogamy (monogyny), associated with an extreme investment in paternity protection, appears to be comparatively common in web‐building spiders, and has recently been subject to experimental and theoretical studies. To date, however, studies approaching this issue from an ecological perspective are rare. Theory predicts that the evolution of a monogynous mating strategy is favoured by a male‐biased sex ratio, but not necessarily by a high mortality risk for mate‐searching males. To test these predictions, we conducted a field study on the golden orb spider Nephila fenestrata, which has a mating system with potentially cannibalistic, polyandrous females, and males that are often functionally sterile after mating with one female only. Based on daily observations of marked individuals, we confirm that, consistent with laboratory findings, monogyny is common in N. fenestrata. Nevertheless, observations of male movements between females raise the possibility that a proportion of males may mate with two females. We show that the sex ratio in our study population is male‐biased, and that males incur only a relatively moderate mortality risk during mate‐search. These findings provide insights into the ecological basis for the evolutionary maintenance of monogyny.  相似文献   

16.
While the recent inclusion of parasites into food‐web studies has highlighted the role of parasites as consumers, there is accumulating evidence that parasites can also serve as prey for predators. Here we investigated empirical patterns of predation on parasites and their relationships with parasite transmission in eight topological food webs representing marine and freshwater ecosystems. Within each food web, we examined links in the typical predator–prey sub web as well as the predator–parasite sub web, i.e. the quadrant of the food web indicating which predators eat parasites. Most predator– parasite links represented ‘concomitant predation’ (consumption and death of a parasite along with the prey/host; 58–72%), followed by ‘trophic transmission’ (predator feeds on infected prey and becomes infected; 8–32%) and predation on free‐living parasite life‐cycle stages (4–30%). Parasite life‐cycle stages had, on average, between 4.2 and 14.2 predators. Among the food webs, as predator richness increased, the number of links exploited by trophically transmitted parasites increased at about the same rate as did the number of links where these stages serve as prey. On the whole, our analyses suggest that predation on parasites has important consequences for both predators and parasites, and food web structure. Because our analysis is solely based on topological webs, determining the strength of these interactions is a promising avenue for future research.  相似文献   

17.
东太平洋中部中上层鲨鱼群落营养生态位分化   总被引:1,自引:0,他引:1  
鲨鱼在大洋生态系统中占据着重要的生态地位,其作为顶级捕食者,通过下行效应直接影响生态系统的稳定.稳定同位素技术是目前研究摄食生态学强有力的手段之一,可利用碳氮稳定同位素在食物网中的特性分别指示鲨鱼的食物来源和营养级.本研究选取8种130尾采集自东太平洋中部的中上层鲨鱼,应用稳定同位素绘制其种群生态位图谱,比较不同种群间的生态地位及资源分配方式上的差异.结果表明:不同鲨鱼种群碳、氮稳定同位素比值存在显著差异;8种鲨鱼在东太平洋生态系统中的营养级为4.3~5.4,大青鲨、尖吻鲭鲨与其他6种鲨鱼存在摄食隔离,表现出独特的营养生态地位.这些结果充分证明大洋性中上层鲨鱼并非生态系统的冗余种,其营养生态位的独特性不会被其他捕食者简单地替代和弥补.  相似文献   

18.
19.
Sex differences in parental care are thought to arise from differential selection on the sexes. Sexual dimorphism, including sexual size dimorphism (SSD), is often used as a proxy for sexual selection on males. Some studies have found an association between male‐biased SSD (i.e., males larger than females) and the loss of paternal care. While the relationship between sexual selection on males and parental care evolution has been studied extensively, the relationship between female‐biased SSD (i.e., females larger than males) and the evolution of parental care has received very little attention. Thus, we have little knowledge of whether female‐biased SSD coevolves with parental care. In species displaying female‐biased SSD, we might expect dimorphism to be associated with the evolution of paternal care or perhaps the loss of maternal care. Here, drawing on data for 99 extant frog species, we use comparative methods to evaluate how parental care and female‐biased SSD have evolved over time. Generally, we find no significant correlation between the evolution of parental care and female‐biased SSD in frogs. This suggests that differential selection on body size between the sexes is unlikely to have driven the evolution of parental care in these clades and questions whether we should expect sexual dimorphism to exhibit a general relationship with the evolution of sex differences in parental care.  相似文献   

20.
Reynolds PL  Bruno JF 《PloS one》2012,7(5):e36196
Widespread overharvesting of top consumers of the world's ecosystems has "skewed" food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs), while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms) generally emerged in communities with greater predator to prey richness (the more top-rich food webs). These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号