首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Under equilibrium conditions, previous theory has shown that the presence of omnivory destabilizes food webs. Correspondingly, omnivory ought to be rare in real food webs. Although, early food web data appeared to verify this, recently many ecologists have found omnivory to be ubiquitous in food web data gathered at a high taxonomic resolution. In this paper, we re-investigate the role of omnivory in food webs using a non-equilibrium perspective. We find that the addition of omnivory to a simple food chain model (thus a simple food web) locally stabilizes the food web in a very complete way. First, non-equilibrium dynamics (e.g. chaos) tend to be eliminated or bounded further away from zero via period-doubling reversals invoked by the omnivorous trophic link. Second, food chains without interior attractors tend to gain a stable interior attractor with moderate amounts of omnivory.  相似文献   

2.
This article analyzes the nature of top-down and bottom-up effects and alternative states in systems characterized by life-history omnivory. The analysis is based on a three-species food web with intraguild predation (IGP). The top predator population has juvenile and adult stages, which consume the basal resource and the intermediate prey, respectively; the prey consumes only the resource. The per capita reproduction of the adult predators depends on their consumption rate of prey, while the maturation rate of the juvenile predators depends on their resource consumption rate. Enriching the resource can increase or decrease the abundances of one or both of the two consumer species; an increased density is more likely in the intermediate species than in the systems where IGP is not based on stage differences. Alternative states that have or lack the predator occur frequently, particularly when the prey population is capable of reducing the resource to very low densities. These results differ from those of several other recent models of life-history omnivory. They suggest that life-history omnivory may be one of the primary reasons why exploited populations undergo sudden collapses and why collapsed populations fail to recover in spite of large reductions in the exploitation rate.  相似文献   

3.
Intraguild predation (IGP) is an omnivorous food web configuration in which the top predator consumes both a competitor (consumer) and a second prey that it shares with the competitor. This omnivorous configuration occurs frequently in food webs, but theory suggests that it is unstable unless stabilizing mechanisms exist that can decrease the strength of the omnivore and consumer interaction. Although these mechanisms have been documented in native food webs, little is known about whether they operate in the context of an introduced species. Here, we study a marine mussel aquaculture system where the introduction of omnivorous mussels should generate an unstable food web that favors the extinction of the consumer, yet it persists. Using field and laboratory approaches, we searched for stabilizing mechanisms that could reduce interaction strengths in the food web. While field zooplankton counts suggested that mussels influence the composition and abundance of copepods, stable isotope results indicated that life‐history omnivory and cannibalism facilitated the availability of prey refugia, and reduced competition and the interaction strength between the mussel omnivore and zooplankton consumers. In laboratory experiments, however, we found no evidence of adaptive feeding which could weaken predator–consumer interactions. Our food web study suggests that the impact of an introduced omnivore may not only depend on its interaction with native species but also on the availability of stabilizing mechanisms that alter the strength of those interactions.  相似文献   

4.
Intraguild predation is the simplest, ubiquitous form of trophic omnivory, known to greatly influence the structure and functioning of natural and managed food webs. Although alternative states are fundamental to intraguild predation dynamics, only necessary conditions for alternative states have been previously reported. Using simple models, we found complex but systematic patterns in which different alternative states occur along a productivity gradient, and clarified the sufficient conditions to separate these patterns. We found that two quantities known to control the necessary conditions also determine the sufficient conditions: (1) relative energy transfer efficiency through alternative trophic pathways to an intraguild predator, and (2) relative resource exploitation ability between intraguild prey and predator. These governing quantities suggest how body size and stoichiometric relations between intraguild prey and predators can influence the possibility of alternative states. Our results indicate that food webs involving intraguild predation have a high potential of complex alternative states, and their management can be highly precarious.  相似文献   

5.
Trophic supplements to intraguild predation   总被引:2,自引:0,他引:2  
Intraguild predation (IGP) is a dominant community module in terrestrial food webs that occurs when multiple consumers feed both on each other and on a shared prey. This specific form of omnivory is common in terrestrial communities and is of particular interest for conservation biology and biological control given its potential to disrupt management of threatened or pest species. Extensive theory exists to describe the dynamics of three-species IGP, but these models have largely overlooked the potential for other, exterior interactions, to alter the dynamics within the IGP module. We investigated how three forms of feeding outside of the IGP module by intraguild predators (i.e. trophic supplementation) affect the dynamics of the predators (both IG predator and IG prey) and their shared resource. Specifically, we examined how the provision of a constant donor-controlled resource, the availability of an alternative prey species, and predator plant-feeding affect the dynamics of IGP models. All three forms of trophic supplements modified the basic expectations of IGP theory in two important ways, and their effects were similar. First, coexistence was possible without the IG prey being a superior competitor for the original shared resource if the IG prey could effectively exploit one of the types of trophic supplements. However, supplements to the IG predator restricted the potential for coexistence. Second, supplements to the IG prey ameliorated the disruptive effects of the IG predator on the suppression of the shared resource, promoting effective control of the resource in the presence of both predators. Consideration of these three forms of trophic supplementation, all well documented in natural communities, adds substantial realism and predictive power to intraguild predation theory.  相似文献   

6.
Growth in body size during ontogeny often results in changes in diet, leading to life-history omnivory. In addition, growth is often dependent on food density. Using a physiologically structured population model, we investigated the effects of these two aspects of individual growth in a system consisting of two size-structured populations, an omnivorous top predator and an intermediate consumer. With a single shared resource for both populations, we found that life-history omnivory decreases the likelihood of coexistence between top predator and intermediate consumer in this intraguild predation (IGP) system. This result contrasts with previous unstructured models and stage-structured models without food-dependent development. Food-dependent development and size-dependent foraging abilities of the predator resulted in a positive feedback between foraging success on the shared resource at an early life stage and foraging success on the intermediate consumer later in life. By phenomenologically incorporating this feedback in an unstructured IGP model, we show that it also demotes coexistence in this simple setting, demonstrating the robustness of the negative effect of this feedback.  相似文献   

7.
Multichannel omnivory by generalist predators, especially the use of both grazing and epigeic prey, has the potential to increase predator abundance and decrease herbivore populations. However, predator use of the epigeic web (soil surface detritus/microbe/algae consumers) varies considerably for reasons that are poorly understood. We therefore used a stable isotope approach to determine whether prey availability and predator hunting style (active hunting vs. passive web-building) impacted the degree of multichannel omnivory by the two most abundant predators on an intertidal salt marsh, both spiders. We found that carbon isotopic values of herbivores remained constant during the growing season, while values for epigeic feeders became dramatically more enriched such that values for the two webs converged in August. Carbon isotopic values for both spider species remained midway between the two webs as values for epigeic feeders shifted, indicating substantial use of prey from both food webs by both spider species. As the season progressed, prey abundance in the grazing food web increased while prey abundance in the epigeic web remained constant or declined. In response, prey consumption by the web-building spider shifted toward the grazing web to a much greater extent than did consumption by the hunting spider, possibly because passive web-capture is more responsive to changes in prey availability. Although both generalist predator species engaged in multichannel omnivory, hunting mode influenced the extent to which these predators used prey from the grazing and epigeic food webs, and could thereby influence the strength of trophic cascades in both food webs.  相似文献   

8.
Human induced global change has greatly altered the structure and composition of food webs through the invasion of non‐native species and the extinction of native species. Much attention has been paid to the effects of species deletions on food web structure and stability. However, recent empirical evidence suggests that for most taxa local species richness has increased as successful invasions outpace extinctions at this scale. This pattern suggests that food webs, which represent feeding interactions at the local scale, may be increasing in species richness. Knowledge of how food web structure relates to invasive species establishment and the effect of successful invaders on subsequent food web structure remains an unknown but potentially important aspect of global change. Here we explore the effect of food web topology on invasion success in model food webs to develop hypotheses about how the distribution of biodiversity across trophic levels affects the success of invasion at each trophic level. Our results suggest a connectance (C) based framework for predicting invasion success in food webs due to the way that C constrains the number of species at each trophic level and thus the number of potential predators and prey for an invader at a given trophic level. We use the relationship between C and the proportion of species at each trophic level in 14 well studied food webs to make the following predictions; 1) the success of basal invaders will increase as C increases due to the decrease in herbivores in high C webs, 2) herbivore invasion success will decrease as C increases due to the decrease in the proportion of basal species and increase in intermediate species and omnivores in high C webs. 3) Top predator invasion success will increase as C increases due to the increase in intermediate prey species. However, it is not clear how the relative influence of trophic structure compares to empirically known predictors of invasion success such as invader traits, propagule pressure, and resource availability.  相似文献   

9.
We investigated the addition of a trophic level to a simple food web. Direct and indirect effects caused by the presence of a new species in the food web were quantified by estimating survival and consumption rates on the basal resource. We focused on a blowfly intraguild prey–predator system with various ecological interactions taking place during the larval period. The experiments were designed to set Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) as the intraguild prey and Chrysomya albiceps (Wiedemann) as the intraguild predator and/or cannibal. The generalist pupal parasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) was introduced into the system during a non‐susceptible life stage of the interacting blowfly species. The cascading parasitoid effects induced behavioral changes in the blowfly larvae, increasing the impact of intraguild predation and cannibalism on blowfly survival. The results suggest that blowfly larvae can change their feeding behavior in response to the presence of a parasitoid.  相似文献   

10.
1. Many taxa can be found in food webs that differ in trophic complexity, but it is unclear how trophic complexity affects the performance of particular taxa. In pond food webs, larvae of the salamander Ambystoma opacum occupy the intermediate predator trophic position in a partial intraguild predation (IGP) food web and can function as keystone predators. Larval A. opacum are also found in simpler food webs lacking either top predators or shared prey. 2. We conducted an experiment where a partial IGP food web was simplified, and we measured the growth and survival of larval A. opacum in each set of food webs. Partial IGP food webs that had either a low abundance or high abundance of total prey were also simplified by independently removing top predators and/or shared prey. 3. Removing top predators always increased A. opacum survival, but removal of shared prey had no effect on A. opacum survival, regardless of total prey abundance. 4. Surprisingly, food web simplification had no effect on the growth of A. opacum when present in food webs with a low abundance of prey but had important effects on A. opacum growth in food webs with a high abundance of prey. Simplifying a partial IGP food web with a high abundance of prey reduced A. opacum growth when either top predators or shared prey were removed from the food web and the loss of top predators and shared prey influenced A. opacum growth in a non-additive fashion. 5. The non-additive response in A. opacum growth appears to be the result of supplemental prey availability augmenting the beneficial effects of top predators. Top predators had a beneficial effect on A. opacum populations by reducing the abundance of A. opacum present and thereby reducing the intensity of intraspecific competition. 6. Our study indicates that the effects of food web simplification on the performance of A. opacum are complex and depend on both how a partial IGP food web is simplified and how abundant prey are in the food web. These findings are important because they demonstrate how trophic complexity can create variation in the performance of intermediate predators that play important roles in temporary pond food webs.  相似文献   

11.
Documenting trophic links in a food web has traditionally required complex exclusion experiments coupled with extraordinarily labor-intensive direct observations of predator foraging. Newer techniques such as stable isotope analysis (SIA) may facilitate relatively quick and accurate assessments of consumer feeding behavior. Ratios of N and C isotopes are thought to be useful for determining species' trophic position (e.g., 1 degrees consumer, 2 degrees consumer, or omnivore) and their original carbon source (e.g., C3 or C4 plants; terrestrial or marine nutrients). Thus far, however, applications of stable isotopes to terrestrial arthropod food webs have suggested that high taxon-specific variation may undermine the effectiveness of this method. We applied stable isotope analysis to a pear orchard food web, in which biological control of a dominant pest, pear psylla (Cacopsylla pyricola), involves primarily generalist arthropod predators with a high frequency of omnivory. We found multiple sources of isotopic variation in this food web, including differences among plant tissues; time, stage, and taxon-specific differences among herbivores (despite similar feeding modes); and high taxon-specific variation among predators (with no clear evidence of omnivory). Collectively, these multiple sources of isotopic variation blur our view of the structure of this food web. Idiosyncrasies in consumer trophic shifts make ad hoc application of SIA to even moderately complex food webs intractable. SIA may not be a generally applicable "quick and dirty" method for delineating terrestrial food web structure-not without calibration of specific consumer food trophic shifts.  相似文献   

12.
1. Omnivory is an important interaction that has been the centre of numerous theoretical and empirical studies in recent years. Most of these studies examine the conditions necessary for coexistence between an omnivore and an intermediate consumer. Trait variation in ecological interactions (competition and predator tolerance) among intermediate consumers has not been considered in previous empirical studies despite the evidence that variation in species-specific traits can have important community-level effects. 2. I conducted a multifactorial microcosm experiment using species from the Sarracenia purpurea phytotelmata community, organisms that inhabit the water collected within its modified leaves. The basal trophic level consisted of bacterial decomposers, the second trophic level (intermediate consumers) consisted of protozoa and rotifers, and the third trophic level (omnivore) were larvae of the pitcher plant mosquito Wyeomyia smithii. Trophic level number (1, 2 and 3), resources (low and high), omnivore density (low and high) and intermediate consumer (monoculture of five protozoa and rotifers) identity were manipulated. Abundance of the basal trophic level, intermediate consumers, and growth of the omnivore were measured, as well as time to extinction (intermediate consumers) and time to pupation (mosquito larvae). 3. The presence of different intermediate consumers affected both bacteria abundance and omnivore growth. At high resource levels, Poteriochromonas, Colpidium and Habrotrocha rosa reduced bacteria densities greater than omnivore reduction of bacteria. Mosquito larvae did not pupate at low resource levels except when Poteriochromonas and Colopoda were present as intermediate consumers. Communities with H. rosa were the only ones consistent with the prediction that omnivores should exclude intermediate consumers at high resources. 4. These results had mixed support for predictions from omnivory food web theory. Intermediate consumers responded and affected this community differently under different community structures and resource levels. Consequently, variation in species-specific traits can have important population- and community-level effects and needs to be considered in food webs with omnivory.  相似文献   

13.
14.
Despite attempts at reconciliation, the role of omnivory in food web stability remains unclear. Here we develop a novel community matrix approach that is analogous to the bifurcation method of modular food web theory to show that the stability of omnivorous food chains depends critically on interaction strength. We find that there are only six possible ways that omnivorous interaction strengths can influence the stability of linear food chains. The results from these six cases suggest that: (1) strong omnivory is always destabilizing, (2) stabilization by weak to intermediate omnivorous interaction strengths dominates the set of possible stability responses, and, (3) omnivory can be occasionally strictly destabilizing or intermittently destabilizing. We then revisit the classical results of Pimm and Lawton to show that although their parameterization tends to produce a low percentage of stable omnivorous webs, the same parameterization shows strong theoretical support for the weak interaction effect. Finally, we end by arguing that our current empirical knowledge of omnivory resonates with this general theory.  相似文献   

15.
16.
We constructed the food webs of six Mediterranean streams in order to determine ecological generalities derived from analysis of their structure and to explore stabilizing forces within these ecosystems. Fish, macroinvertebrates, primary producers and detritus are the components of the studied food webs. Analysis focused on a suite of food web properties that describe species’ trophic habits, linkage complexity and food chains. A great structural similarity was found in analyzed food webs; we therefore suggest average values for the structural properties of Mediterranean stream food webs. Percentage of omnivorous species was positively correlated with connectance, and there was a predominance of intermediate trophic level species that had established simple links with detritus. In short, our results suggest that omnivory and the weak interactions of detritivores have a stabilizing role in these food webs.  相似文献   

17.
Spiders are dominant terrestrial predators that consume a large variety of prey and engage in intraguild predation. Although the feeding habits of certain species are well known, the trophic structure of spider assemblages still needs to be investigated. Stable isotope analysis enables characterisation of trophic relationships between organisms because it tracks the energy flow in food webs and indicates the average number of trophic transfers between a given species and the base of the web, thus being a useful tool to estimate the magnitude of intraguild predation in food webs. Using this technique, we studied the trophic groups of spiders and their links within the arthropod food web of a Mediterranean organic citrus grove. We assessed the trophic positions of the 25 most common spider species relative to other arthropod predators and potential prey in the four seasons of the year, both in the canopy and on the ground. The analyses showed great seasonal variation in the isotopic signatures of some arthropod species, as well as the existence of various trophic groups and a wide range of trophic levels among spiders, even in species belonging to the same family. Differences in δ15N between spiders and the most abundant prey in the grove usually spanned two trophic levels or more. Our findings provide field evidence of widespread intraguild predation in the food web and caution against using spider families or guilds instead of individual species when studying spider trophic interactions.  相似文献   

18.
We analyze the consequences of intraguild predation and stage structure for the possible composition of a three-species community consisting of resource, consumer, and predator. Intraguild predation, a special case of omnivory, induces two major differences with traditional linear food chain models: the potential for the occurrence of two alternative stable equilibria at intermediate levels of resource productivity and the extinction of the consumer at high productivities. At low productivities, the consumer dominates, while at intermediate productivities, the predator and the consumer can coexist. The qualitative behavior of the model is robust against addition of an invulnerable size class for the consumer population and against addition of an initial, nonpredatory stage for the predator population, which means that the addition of stage structure does not change the pattern. Unless the top predator is substantially less efficient on the bottom resource, it tends to drive the intermediate species extinct over a surprisingly large range of productivities, thus making coexistence generally impossible. These theoretical results indicate that the conditions for stable food chains involving intraguild predation cannot involve strong competition for the bottommost resource.  相似文献   

19.
Single trophic‐level studies of the relationship between biodiversity and ecosystem functioning highlight the importance of mechanisms such as resource partitioning, facilitation, and sampling effect. In a multi‐trophic context, trophic interactions such as intraguild predation may also be an important mediator of this relationship. Using a salt‐marsh food web, we investigated the interactive effects of predator species richness (one to three species) and trophic composition (strict predators, intraguild predators, or a mixture of the two) on ecosystem functions such as prey suppression and primary production via trophic cascades. We found that the trophic composition of the predator assemblage determined the impact of increasing predator species richness on the occurrence of trophic cascades. In addition, increasing the proportion of intraguild predator species present diminished herbivore suppression and reduced primary productivity. Therefore, trophic composition of the predator assemblage can play an important role in determining the nature of the relationship between predator diversity and ecosystem function.  相似文献   

20.
Reynolds PL  Bruno JF 《PloS one》2012,7(5):e36196
Widespread overharvesting of top consumers of the world's ecosystems has "skewed" food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs), while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms) generally emerged in communities with greater predator to prey richness (the more top-rich food webs). These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号