首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinase Plk1 plays multiple roles in regulating mitotic progression, including stabilization of spindle poles, but its substrates are largely unknown. A new study by Yamamoto and coworkers has identified a centrosomal protein, Kizuna (Kiz), as a mitotic substrate of Plk1 (Oshimori et al., 2006). Phosphorylation of Kiz ensures the integrity of spindle poles in the face of severe pulling forces exerted by the chromosome-attached spindle microtubules.  相似文献   

2.
Formation of a bipolar spindle is essential for faithful chromosome segregation at mitosis. Because centrosomes define spindle poles, defects in centrosome number and structural organization can lead to a loss of bipolarity. In addition, microtubule-mediated pulling and pushing forces acting on centrosomes and chromosomes are also important for bipolar spindle formation. Polo-like kinase 1 (Plk1) is a highly conserved Ser/Thr kinase that has essential roles in the formation of a bipolar spindle with focused poles. However, the mechanism by which Plk1 regulates spindle-pole formation is poorly understood. Here, we identify a novel centrosomal substrate of Plk1, Kizuna (Kiz), depletion of which causes fragmentation and dissociation of the pericentriolar material from centrioles at prometaphase, resulting in multipolar spindles. We demonstrate that Kiz is critical for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation, and suggest that Plk1 maintains the integrity of the spindle poles by phosphorylating Kiz.  相似文献   

3.
Polo-like kinase functions are essential for the establishment of a normal bipolar mitotic spindle, although precisely how Plk1 regulates the spindle is uncertain. In this study, we report that the small GTP/GDP-binding protein Ran is associated with Plk1. Plk1 is capable of phosphorylating co-immunoprecipitated Ran in vitro on serine-135 and Ran is phosphorylated in vivo at the same site during mitosis when Plk1 is normally activated. Cell cultures over-expressing a Ran S135D mutant have significantly higher numbers of abnormal mitotic cells than those over-expressing either wild-type or S135A Ran. The abnormalities in S135D mutant cells are similar to cells over-expressing Plk1. Our data suggests that Ran is a physiological substrate of Plk1 and that Plk1 regulates the spindle organization partially through its phosphorylation on Ran.  相似文献   

4.
Polo-like kinase 1 (Plk1) plays a role in numerous events in mitosis, but how the multiple functions of Plk1 are separated is poorly understood. We studied regulation of Plk1 through two putative phosphorylation residues, Ser-137 and Thr-210. Using phospho-specific antibodies, we found that Thr-210 phosphorylation precedes Ser-137 phosphorylation in vivo, the latter occurring specifically in late mitosis. We show that expression of two activating mutants of these residues, S137D and T210D, results in distinct mitotic phenotypes. Whereas expression of both phospho-mimicking mutants as well as of the double mutant leads to accelerated mitotic entry, further progression through mitosis is dramatically different: the T210D mutant causes a spindle assembly checkpoint-dependent delay, whereas the expression of the S137D mutant or the double mutant results in untimely activation of the anaphase-promoting complex/cyclosome (APC/C) and frequent mitotic catastrophe. Using nonphosphorylatable Plk1-S137A and Plk1-T210A mutants, we show that both sites contribute to proper mitotic progression. Based on these observations, we propose that Plk1 function is altered at different stages of mitosis through consecutive posttranslational events, e.g., at Ser-137 and Thr-210. Furthermore, our data show that uncontrolled Plk1 activation can uncouple APC/C activity from spindle assembly checkpoint control.  相似文献   

5.
In animal cells, most microtubules are nucleated at centrosomes. At the onset of mitosis, centrosomes undergo a structural reorganization, termed maturation, which leads to increased microtubule nucleation activity. Centrosome maturation is regulated by several kinases, including Polo-like kinase 1 (Plk1). Here, we identify a centrosomal Plk1 substrate, termed Nlp (ninein-like protein), whose properties suggest an important role in microtubule organization. Nlp interacts with two components of the gamma-tubulin ring complex and stimulates microtubule nucleation. Plk1 phosphorylates Nlp and disrupts both its centrosome association and its gamma-tubulin interaction. Overexpression of an Nlp mutant lacking Plk1 phosphorylation sites severely disturbs mitotic spindle formation. We propose that Nlp plays an important role in microtubule organization during interphase, and that the activation of Plk1 at the onset of mitosis triggers the displacement of Nlp from the centrosome, allowing the establishment of a mitotic scaffold with enhanced microtubule nucleation activity.  相似文献   

6.
Bipolar spindle formation is essential for faithful chromosome segregation at mitosis. Because centrosomes define spindle poles, abnormal number and structural organization of centrosomes can lead to loss of spindle bipolarity and genetic integrity. ASAP (aster-associated protein or MAP9) is a centrosome- and spindle-associated protein, the deregulation of which induces severe mitotic defects. Its phosphorylation by Aurora A is required for spindle assembly and mitosis progression. Here, we show that ASAP is localized to the spindle poles by Polo-like kinase 1 (Plk1) (a mitotic kinase that plays an essential role in centrosome regulation and mitotic spindle assembly) through the γ-TuRC-dependent pathway. We also demonstrate that ASAP is a novel substrate of Plk1 phosphorylation and have identified serine 289 as the major phosphorylation site by Plk1 in vivo. ASAP phosphorylated on serine 289 is localized to centrosomes during mitosis, but this phosphorylation is not required for its Plk1-dependent localization at the spindle poles. We show that phosphorylated ASAP on serine 289 contributes to spindle pole stability in a microtubule-dependent manner. These data reveal a novel function of ASAP in centrosome integrity. Our results highlight dual ASAP regulation by Plk1 and further confirm the importance of ASAP for spindle pole organization, bipolar spindle assembly, and mitosis.  相似文献   

7.
Bipolar mitotic spindle organization is fundamental to faithful chromosome segregation. Furry (Fry) is an evolutionarily conserved protein implicated in cell division and morphology. In human cells, Fry localizes to centrosomes and spindle microtubules in early mitosis, and depletion of Fry causes multipolar spindle formation. However, it remains unknown how Fry controls bipolar spindle organization. This study demonstrates that Fry binds to polo-like kinase 1 (Plk1) through the polo-box domain of Plk1 in a manner dependent on the cyclin-dependent kinase 1-mediated Fry phosphorylation at Thr-2516. Fry also binds to Aurora A and promotes Plk1 activity by binding to the polo-box domain of Plk1 and by facilitating Aurora A-mediated Plk1 phosphorylation at Thr-210. Depletion of Fry causes centrosome and centriole splitting in mitotic spindles and reduces the kinase activity of Plk1 in mitotic cells and the accumulation of Thr-210-phosphorylated Plk1 at the spindle poles. Our results suggest that Fry plays a crucial role in the structural integrity of mitotic centrosomes and in the maintenance of spindle bipolarity by promoting Plk1 activity at the spindle poles in early mitosis.  相似文献   

8.
The spindle checkpoint prevents activation of the anaphase-promoting complex (APC/C) until all chromosomes are correctly attached to the mitotic spindle. Early in mitosis, the mitotic checkpoint complex (MCC) inactivates the APC/C by binding the APC/C activating protein CDC20 until the chromosomes are properly aligned and attached to the mitotic spindle, at which point MCC disassembly releases CDC20 to activate the APC/C. Once the APC/C is activated, it targets cyclin B and securin for degradation, and the cell progresses into anaphase. While phosphorylation is known to drive many of the events during the checkpoint, the precise molecular mechanisms regulating spindle checkpoint maintenance and inactivation are still poorly understood. We sought to determine the role of mitotic phosphatases during the spindle checkpoint. To address this question, we treated spindle checkpoint-arrested cells with various phosphatase inhibitors and examined the effect on the MCC and APC/C activation. Using this approach we found that 2 phosphatase inhibitors, calyculin A and okadaic acid (1 μM), caused MCC dissociation and APC/C activation leading to cyclin A and B degradation in spindle checkpoint-arrested cells. Although the cells were able to degrade cyclin B, they did not exit mitosis as evidenced by high levels of Cdk1 substrate phosphorylation and chromosome condensation. Our results provide the first evidence that phosphatases are essential for maintenance of the MCC during operation of the spindle checkpoint.  相似文献   

9.
Polo-like kinase-1 (Plk1) is essential for progression of mitosis and localizes to centrosomes, central spindles, midbody, and kinetochore. Ran, a small GTPase of the Ras superfamily, plays a role in microtubule dynamics and chromosome segregation during mitosis. Although Ran-binding protein-1 (RanBP1) has been reported as a regulator of RanGTPase for its mitotic functions, the action mechanism between Ran and RanBP1 during mitosis is still unknown. Here, we demonstrated in vitro and in vivo phosphorylation of RanBP1 by Plk1 as well as the importance of phosphorylation of RanBP1 in the interaction between Plk1 and Ran during early mitosis. Both phosphorylation-defective and N-terminal deletion mutant constructs of RanBP1 disrupted the interaction with Ran, and depletion of Plk1 also disrupted the formation of a complex between Ran and RanBP1. In addition, the results from both ectopic expression of phosphorylation-defective mutant construct and a functional complementation on RanBP1 deficiency with this mutant indicated that phosphorylation of RanBP1 by Plk1 might be crucial to microtubule nucleation and spindle assembly during mitosis.  相似文献   

10.
The dual-specificity phosphatase CDC25B, a key regulator of CDK/Cyclin complexes, is considered as the starter of mitosis. It is an unstable protein, degraded by the proteasome, but often over-expressed in various human cancers. Based on experiments carried out in Xenopus eggs, and on video microscopy studies in mammalian cells, it has been proposed that human CDC25B degradation is dependent of the F-box protein bTrCP, but the involvement of this latter protein was not formally demonstrated yet. Here, we show that indeed, in mammalian cells, bTrCP participates to CDC25B turn-over, and is required for the complete degradation of CDC25B at the metaphase-anaphase transition. Using a stabilized mutant of CDC25B, which cannot interact anymore with bTrCP, we further show that, during late phases of mitosis, reduced degradation of CDC25B leads to an extended window of expression of the protein, which in turn induces a delay in mitosis exit and entails mitotic defects such as chromosomes missegregation. These findings show that a dysfunction in the rapid and precisely controlled degradation of CDC25B at the metaphase-anaphase transition is sufficient to cause genomic instability and suggest that, in human tissues, pathologic stabilization or untimed expression of CDC25B could contribute to tumorigenesis.  相似文献   

11.
《The Journal of cell biology》1995,129(6):1617-1628
Correct assembly and function of the mitotic spindle during cell division is essential for the accurate partitioning of the duplicated genome to daughter cells. Protein phosphorylation has long been implicated in controlling spindle function and chromosome segregation, and genetic studies have identified several protein kinases and phosphatases that are likely to regulate these processes. In particular, mutations in the serine/threonine-specific Drosophila kinase polo, and the structurally related kinase Cdc5p of Saccharomyces cerevisae, result in abnormal mitotic and meiotic divisions. Here, we describe a detailed analysis of the cell cycle-dependent activity and subcellular localization of Plk1, a recently identified human protein kinase with extensive sequence similarity to both Drosophila polo and S. cerevisiae Cdc5p. With the aid of recombinant baculoviruses, we have established a reliable in vitro assay for Plk1 kinase activity. We show that the activity of human Plk1 is cell cycle regulated, Plk1 activity being low during interphase but high during mitosis. We further show, by immunofluorescent confocal laser scanning microscopy, that human Plk1 binds to components of the mitotic spindle at all stages of mitosis, but undergoes a striking redistribution as cells progress from metaphase to anaphase. Specifically, Plk1 associates with spindle poles up to metaphase, but relocalizes to the equatorial plane, where spindle microtubules overlap (the midzone), as cells go through anaphase. These results indicate that the association of Plk1 with the spindle is highly dynamic and that Plk1 may function at multiple stages of mitotic progression. Taken together, our data strengthen the notion that human Plk1 may represent a functional homolog of polo and Cdc5p, and they suggest that this kinase plays an important role in the dynamic function of the mitotic spindle during chromosome segregation.  相似文献   

12.
Polo-like kinase 1 (Plk1) plays essential roles during multiple stages of mitosis by phosphorylating a number of substrates. Here, we report that the atypical protein kinase Rio2 is a novel substrate of Plk1 and can be phosphorylated by Plk1 at Ser-335, Ser-380, and Ser-548. Overexpression of Rio2 causes a prolonged mitotic exit whereas knockdown of Rio2 accelerates mitotic progression, suggesting that Rio2 is required for the proper mitotic progression. Overexpression of phospho-mimicking mutant Rio2 S3D but not the nonphosphorylatable mutant Rio2 S3A displays a profile similar to that of wild-type Rio2. These results indicate that the phosphorylation status of Rio2 correlates with its function in mitosis. Furthermore, time-lapse imaging data show that overexpression of Rio2 but not Rio2 S3A results in a slowed metaphase-anaphase transition. Collectively, these findings strongly indicate that the Plk1-mediated phosphorylation of Rio2 regulates metaphase-anaphase transition during mitotic progression.  相似文献   

13.
RAF kinases regulate cell proliferation and survival and can be dysregulated in tumors. The role of RAF in cell proliferation has been linked to its ability to activate mitogen-activated protein kinase kinase 1 (MEK) and mitogen-activated protein kinase 1 (ERK). Here we identify a MEK-independent role for RAF in tumor growth. Specifically, in mitotic cells, CRAF becomes phosphorylated on Ser338 and localizes to the mitotic spindle of proliferating tumor cells in vitro as well as in murine tumor models and in biopsies from individuals with cancer. Treatment of tumors with allosteric inhibitors, but not ATP-competitive RAF inhibitors, prevents CRAF phosphorylation on Ser338 and localization to the mitotic spindle and causes cell-cycle arrest at prometaphase. Furthermore, we identify phospho-Ser338 CRAF as a potential biomarker for tumor progression and a surrogate marker for allosteric RAF blockade. Mechanistically, CRAF, but not BRAF, associates with Aurora kinase A (Aurora-A) and Polo-like kinase 1 (Plk1) at the centrosomes and spindle poles during G2/M. Indeed, allosteric or genetic inhibition of phospho-Ser338 CRAF impairs Plk1 activation and accumulation at the kinetochores, causing prometaphase arrest, whereas a phospho-mimetic Ser338D CRAF mutant potentiates Plk1 activation, mitosis and tumor progression in mice. These findings show a previously undefined role for RAF in tumor progression beyond the RAF-MEK-ERK paradigm, opening new avenues for targeting RAF in cancer.  相似文献   

14.
Polo-like kinases regulate many aspects of mitotic and meiotic progression from yeast to man. In early mitosis, mammalian Polo-like kinase 1 (Plk1) controls centrosome maturation, spindle assembly, and microtubule attachment to kinetochores. However, despite the essential and diverse functions of Plk1, the full range of Plk1 substrates remains to be explored. To investigate the Plk1-dependent phosphoproteome of the human mitotic spindle, we combined stable isotope labeling by amino acids in cell culture with Plk1 inactivation or depletion followed by spindle isolation and mass spectrometry. Our study identified 358 unique Plk1-dependent phosphorylation sites on spindle proteins, including novel substrates, illustrating the complexity of the Plk1-dependent signaling network. Over 100 sites were validated by in vitro phosphorylation of peptide arrays, resulting in a broadening of the Plk1 consensus motif. Collectively, our data provide a rich source of information on Plk1-dependent phosphorylation, Plk1 docking to substrates, the influence of phosphorylation on protein localization, and the functional interaction between Plk1 and Aurora A on the early mitotic spindle.During mitosis, multiple processes, such as mitotic entry, spindle assembly, chromosome segregation, and cytokinesis, must be carefully coordinated to ensure the error-free distribution of chromosomes into the newly forming daughter cells. The physical separation of the chromosomes to opposite poles of the cell is driven by the mitotic spindle, a proteinaceous and highly dynamic microtubule (MT)1-based macromolecular machine. Spindle assembly begins early in mitosis and is completed when the bipolar attachment of microtubules to kinetochore (KT) pairs is achieved (1, 2). Polo-like kinase 1 (Plk1), a serine/threonine-specific kinase first identified in Drosophila (3), is one of the key regulators of this essential mitotic process and has therefore attracted much attention (46). In agreement with its diverse functions, the localization of Plk1 during mitosis is dynamic. Plk1 first associates with centrosomes in prophase before it localizes to spindle poles and KTs in prometaphase and metaphase. During anaphase, Plk1 is recruited to the central spindle and finally accumulates at the midbody during telophase. Proteomics studies using oriented peptide libraries have shown that two so-called polo boxes at the C-terminal end of Plk1, the polo box domain (PBD), are crucial for the localization of this kinase to cellular structures (7, 8). This domain binds to specific phosphorylated sequence motifs that are created by other priming kinases or are self-primed by Plk1 itself, thus providing an efficient mechanism to regulate localization and substrate selectivity in time and space (911).Despite the pleiotropic and critical functions of Plk1 during mitosis, only a limited number of target proteins and phosphorylation sites on substrates have so far been identified or studied in detail (46, 12). The difficulties in identification of bona fide Plk1 substrates stem from the low abundance of some substrates, technical limitations for determining in vivo phosphorylation sites, the requirement for Plk1 localization for recognition of some substrates, and the possibility that Plk1 may phosphorylate a broader consensus motif than determined previously (13). Recent developments in mass spectrometry (MS)-based proteomics have allowed the identification of a large number of in vivo phosphorylation sites from complex samples (14). However, the nature of the kinase(s) responsible for most of these phosphorylation events is still unclear, and the assignment of phosphorylation sites to individual kinases remains a challenging task. Previously, we explored the human mitotic spindle by MS and successfully identified a large number of novel spindle proteins and phosphorylation sites (15, 16). Now, the development of quantitative methods to monitor in vivo phosphorylation changes in complex samples (1719) represents a unique opportunity to address the role of individual kinases in spindle function.To study Plk1 function at the mitotic spindle, we combined quantitative proteomics using stable isotope labeling by amino acids in cell culture (SILAC) (20) with the isolation of human mitotic spindles and phosphopeptide enrichment. To expand the experimental coverage of Plk1 substrates and gain further insight into direct and indirect functions of Plk1, we compared the phosphoproteomes of mitotic spindles isolated from cells lacking Plk1 activity with spindles from cells with fully active kinase. Two independent approaches were used to interfere with Plk1 activity: protein depletion using an inducible small hairpin (shRNA) cell line and selective inhibition of the kinase by the small molecule inhibitor ZK-thiazolidinone (TAL) (21). Phosphorylation sites found to be down-regulated after Plk1 inhibition/depletion were subsequently validated using in vitro phosphorylation of synthetic peptide arrays. This approach identified many candidate Plk1 substrates, allowed confirmation of direct phosphorylation by Plk1 of more than 100 sites identified in vivo, and suggested a broader phosphorylation consensus motif for this kinase. Collectively, our data set provides a rich resource for in-depth studies on the spindle-associated Plk1-dependent phosphoproteome. This is illustrated by selective follow-up studies in which we validated the Plk1-dependent localization of substrates to centrosomes and kinetochores. In particular, using a phosphospecific antibody, we confirmed Plk1-dependent CENP-F phosphorylation in vivo and demonstrated that CENP-F localization to kinetochores depends on Plk1 kinase activity. Furthermore, we identified several Aurora A-dependent phosphorylation events that are regulated by Plk1, supporting the emerging view of an intimate functional relationship between Plk1 and Aurora A kinase (22, 23).  相似文献   

15.
The current paradigm states that exit from mitosis is triggered by the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) acting in concert with an activator called CDC20. While this has been well established for a number of systems, the evidence of a critical role of CDC20 in somatic cells is not unequivocal. In this study, we reexamined whether mitotic exit can occur properly after CDC20 is depleted. Using single-cell analysis, we found that CDC20 depletion with small interfering RNAs (siRNAs) significantly impaired the degradation of APC/C substrates and delayed mitotic exit in various cancer cell lines. The recruitment of cyclin B1 to the core APC/C was defective after CDC20 downregulation. Nevertheless, CDC20-depleted cells were still able to complete mitosis, albeit requiring twice the normal time. Intriguingly, a high level of cyclin-dependent kinase 1 (CDK1)-inhibitory phosphorylation was induced during mitotic exit in CDC20-depleted cells. The expression of an siRNA-resistant CDC20 rescued both the mitotic exit delay and the CDK1-inhibitory phosphorylation. Moreover, the expression of a nonphosphorylatable CDK1 mutant or the downregulation of WEE1 and MYT1 abolished mitotic exit in CDC20-depleted cells. These findings indicate that, in the absence of sufficient APC/C activity, an alternative mechanism that utilized the classic inhibitory phosphorylation of CDK1 could mediate mitotic exit.  相似文献   

16.
Background Mitosis is regulated by MPF (maturation promoting factor), the active form of Cdc2/28–cyclin B complexes. Increasing levels of cyclin B abundance and the loss of inhibitory phosphates from Cdc2/28 drives cells into mitosis, whereas cyclin B destruction inactivates MPF and drives cells out of mitosis. Cells with defective spindles are arrested in mitosis by the spindle-assembly checkpoint, which prevents the destruction of mitotic cyclins and the inactivation of MPF. We have investigated the relationship between the spindle-assembly checkpoint, cyclin destruction, inhibitory phosphorylation of Cdc2/28, and exit from mitosis.Results The previously characterized budding yeast mad mutants lack the spindle-assembly checkpoint. Spindle depolymerization does not arrest them in mitosis because they cannot stabilize cyclin B. In contrast, a newly isolated mutant in the budding yeast CDC55 gene, which encodes a protein phosphatase 2A (PP2A) regulatory subunit, shows a different checkpoint defect. In the presence of a defective spindle, these cells separate their sister chromatids and leave mitosis without inducing cyclin B destruction. Despite the persistence of B-type cyclins, cdc55 mutant cells inactivate MPF. Two experiments show that this inactivation is due to inhibitory phosphorylation on Cdc28: phosphotyrosine accumulates on Cdc28 in cdc55Δ cells whose spindles have been depolymerized, and a cdc28 mutant that lacks inhibitory phosphorylation sites on Cdc28 allows spindle defects to arrest cdc55 mutants in mitosis with active MPF and unseparated sister chromatids.Conclusions We conclude that perturbations of protein phosphatase activity allow MPF to be inactivated by inhibitory phosphorylation instead of by cyclin destruction. Under these conditions, sister chromatid separation appears to be regulated by MPF activity rather than by protein degradation. We discuss the role of PP2A and Cdc28 phosphorylation in cell-cycle control, and the possibility that the novel mitotic exit pathway plays a role in adaptation to prolonged activation of the spindle-assembly checkpoint.  相似文献   

17.
Phosphoprotein profiling by Kinetworks trade mark analysis of M-phase-arrested HeLa cells by nocodazole treatment revealed that a novel mitosis-specific phosphorylation event occurred in the nucleolar protein B23/nucleophosmin at a conserved Ser-4 residue. Consistent with the resemblance of the Ser-4 phosphorylation site to the Polo-like kinase 1 (Plk1) consensus recognition sequence, inhibition of Plk1 by a kinase-defective mutation (K82M) abrogated B23 Ser-4 phosphorylation, whereas activation of Plk1 by a constitutively active mutation (T210D) enhanced its phosphorylation following in vivo transfection and in vitro phosphorylation assays. Depletion of endogenous Plk1 by RNA interference abolished B23 Ser-4 phosphorylation. The physical interaction of Plk1 and B23 was further demonstrated by their co-immunoprecipitation and glutathione S-transferase fusion protein pull-down assays. Interference of Ser-4 phosphorylation of B23 induced multiple mitotic defects in HeLa cells, including aberrant numbers of centrosomes, elongation and fragmentation of nuclei, and incomplete cytokinesis. The phenotypes of B23 mutants are reminiscent of a subset of those described previously in Plk1 mutants. Our findings provide insights into the biochemical mechanism underlying the role of Plk1 in mitosis regulation through the identification of Ser-4 in B23 as a major physiological substrate of Plk1.  相似文献   

18.
Progression through mitosis requires activation of cyclin B/Cdk1 and its downstream targets, including Polo-like kinase and the anaphase-promoting complex (APC), the ubiquitin ligase directing degradation of cyclins A and B. Recent evidence shows that APC activation requires destruction of the APC inhibitor Emi1. In prophase, phosphorylation of Emi1 generates a D-pS-G-X-X-pS degron to recruit the SCF(betaTrCP) ubiquitin ligase, causing Emi1 destruction and allowing progression beyond prometaphase, but the kinases directing this phosphorylation remain undefined. We show here that the polo-like kinase Plk1 is strictly required for Emi1 destruction and that overexpression of Plk1 is sufficient to trigger Emi1 destruction. Plk1 stimulates Emi1 phosphorylation, betaTrCP binding, and ubiquitination in vitro and cyclin B/Cdk1 enhances these effects. Plk1 binds to Emi1 in mitosis and the two proteins colocalize on the mitotic spindle poles, suggesting that Plk1 may spatially control Emi1 destruction. These data support the hypothesis that Plk1 activates the APC by directing the SCF-dependent destruction of Emi1 in prophase.  相似文献   

19.
The nucleation of microtubules requires protein complexes containing γ-tubulin, which are present in the cytoplasm and associate with the centrosome and with the mitotic spindle. We have previously shown that these interactions require the γ-tubulin targeting factor GCP-WD/NEDD1, which has an essential role in spindle formation. The recruitment of additional γ-tubulin to the centrosomes occurs during centrosome maturation at the G2/M transition and is regulated by the mitotic kinase Plk1. However, the molecular details of this important pathway are unknown and a Plk1 substrate that controls γ-tubulin recruitment has not been identified. Here we show that Plk1 associates with GCP-WD in mitosis and Plk1 activity contributes to phosphorylation of GCP-WD. Plk1 depletion or inhibition prevents accumulation of GCP-WD at mitotic centrosomes, but GCP-WD mutants that are defective in Plk1-binding and -phosphorylation still accumulate at mitotic centrosomes and recruit γ-tubulin. Moreover, Plk1 also controls the recruitment of other PCM proteins implicated in centrosomal γ-tubulin attachment (Cep192/hSPD2, pericentrin, Cep215/Cdk5Rap2). Our results support a model in which Plk1-dependent recruitment of γ-tubulin to mitotic centrosomes is regulated upstream of GCP-WD, involves multiple PCM proteins and therefore potentially multiple Plk1 substrates.  相似文献   

20.
We previously reported that phosphorylation of myosin II-interacting guanine nucleotide exchange factor (MyoGEF) by polo-like kinase 1 (Plk1) promotes the localization of MyoGEF to the central spindle and increases MyoGEF activity toward RhoA during mitosis. In this study we report that aurora B-mediated phosphorylation of MyoGEF at Thr-544 creates a docking site for Plk1, leading to the localization and activation of MyoGEF at the central spindle. In vitro kinase assays show that aurora B can phosphorylate MyoGEF. T544A mutation drastically decreases aurora B-mediated phosphorylation of MyoGEF in vitro and in transfected HeLa cells. Coimmunoprecipitation and in vitro pulldown assays reveal that phosphorylation of MyoGEF at Thr-544 enhances the binding of Plk1 to MyoGEF. Immunofluorescence analysis shows that aurora B colocalizes with MyoGEF at the central spindle and midbody during cytokinesis. Suppression of aurora B activity by an aurora B inhibitor disrupts the localization of MyoGEF to the central spindle. In addition, T544A mutation interferes with the localization of MyoGEF to the cleavage furrow and decreases MyoGEF activity toward RhoA during mitosis. Taken together, our results suggest that aurora B coordinates with Plk1 to regulate MyoGEF activation and localization, thus contributing to the regulation of cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号