首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aside from its excellent mechanical properties, spider silk (SS) would offer an active surface for heavy metal interaction due to its rich protein structure. The present study describes the potential use of natural (SS) as a sorbent of heavy metals from aqueous solutions. Single and multi-species biosorption experiments of heavy metals by natural SS were conducted using batch and column experiments. The biosorption kinetics, in general, was found to follow the second-order rate expression, and the experimental equilibrium biosorption data fitted reasonably well to Freundlich isotherm. From the Freundlich isotherm, the biosorption capacities of Cu(II) and Pb(II) ions onto SS were found as 0.20 and 0.007 mmol g?1, respectively. The results showed a decrease in the extent of metal ion uptake with lowering the pH.  相似文献   

2.
Biosorption is an innovative and alternative technology to remove heavy metal pollutants from aqueous solution using live, inactive and dead biomasses such as algae, bacteria and fungi. In this study, live and dried biomass of Phanerochaete chrysosporium and Funalia trogii was applied as heavy metal adsorbent material. Biosorption of copper(II) cations in aqueous solution by live and dried biomass of Phanerochaete chrysosporium and Funalia trogii was investigated to study the effects of initial heavy metal concentration, pH, temperature, contact time, agitation rate and amount of fungus. Copper(II) was taken up quickly by fungal biomass (live or dried) during the first 15 min and the most important factor which affected the copper adsorption by live and dried biomass was the pH value. An initial pH of around 5.0 allowed for an optimum adsorption performance. Live biomass of two white rot fungi showed a high copper adsorption capacity compared with dried biomass. Copper(II) uptake was found to be independent of temperature in the range of 20–45 °C. The initial metal ion concentration (10–300 mg/L) significantly influenced the biosorption capacity of these fungi. The results indicate that a biosorption as high as 40–60 % by live and dried biomass can be obtained under optimum conditions.  相似文献   

3.
A batch sorption technique was used to study the biosorption of Pb2+, Cd2+ and Zn2+ ions onto the vastly abundant water hyacinth weed, Eichhornia crassipes biomass in binary and ternary systems at a temperature of 30 °C and pH 4.84. Mutual interference effects were probed using equilibrium adsorption capacity ratios, , where the prime indicates the presence of one or two other metal ions. The combined action of the metals was found to be antagonistic, and the metal sorption followed the order Pb2+  Cd2+  Zn2+. The behaviour of competitive biosorption for Pb–Cd and Pb–Zn combinations were successfully described by the Langmuir Competitive Model (CLM), whilst the model showed poor fitting to the Cd–Zn data. In conclusion, Pb2+ ions could still be effectively removed from aqueous solution in the presence of both Cd2+ and Zn2+ ions, but removal of the Cd2+ and Zn2+ ions would be suppressed in the presence of Pb2+.  相似文献   

4.
目的:蕹菜(Ipomoea aquatica Forsk.)Cd(镉)积累典型品种对Cd、Pb(铅)、C(r铬)、N(i镍)等多种重金属的吸收积累及相互关系。方法:采用盆栽试验,分析4个蕹菜Cd积累典型品种在6种土壤上的两茬茎叶及根Cd、Pb、Cr、Ni含量及相关性。结果:①品种和土壤对供试蕹菜典型品种Cd含量的效应均达显著水平(P<0.05),对Pb、Cr和Ni含量的效应因重金属、收获时期及部位而不同,二者对Cd、Pb含量具一定的交互效应。②两茬茎叶Cd含量平均值均为T308>GDB>QLB>QLQ,根Cd平均含量高于茎叶Cd平均含量;除Cr外,根Pb和Ni平均含量均高于茎叶。③Cd、Pb、Cr、Ni含量呈现复杂的相关关系。茎叶Cd含量与Pb含量正相关,且第一茬相关性极显著(P<0.01);Pb含量与Ni含量相关关系明显,第一茬茎叶、根Pb含量与Ni含量的正相关达到显著(P<0.05)或极显著水平(P<0.01),但第二茬茎叶Pb含量与Ni含量却显著负相关(P<0.05);Pb含量与Cr含量的相关性仅第一茬茎叶显著(P<0.05);Cr含量与Ni含量的相关性仅第二茬茎叶达极显著水平(P<0.01)。结论:蕹菜典型品种对Cd、Pb、Cr、Ni的吸收积累存在协同和拮抗两种作用。  相似文献   

5.
Heavy metals could have long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. A study of Cd or/and Pb effects on soil enzyme activities and microbial community structure was undertaken with brown soil in a greenhouse for a period of 10 weeks. The experiment results showed that urease, acid phosphatase and dehydrogenase activities were significantly lower (p < 0.05) in Cd or/and Pb treatments than in control. Three enzyme activities decreased with the increasing metal concentrations. The effects of Cd and Pb combined on enzyme activities were higher than Cd or Pb alone. The soil microbial populations were far lower in heavy metal treatments than in control, and soil microbial populations under different heavy metals levels showed a significant difference (p < 0.05). The PCR-DGGE banding patterns confirmed that the addition of metals had a significant impact on microbial community structure.  相似文献   

6.
This work describes the preparation of new chelating material from mercerized sugarcane bagasse. The first part treats the chemical modification of non-mercerized sugarcane bagasse (SCB) and twice-mercerized sugarcane bagasse (MMSCB) with succinic anhydride. Mass percent gains (mpg) and degrees of succinylation (DS) of succinylated non- and twice-mercerized sugarcane bagasse 1 (SCB 1 and MMSCB 1) were calculated. MMSCB 1 exhibited an increase in mpg and DS of 49.2% and 0.9 mmol/g in relation to SCB 1. SCB 2 and MMSCB 2 were obtained by treatment of MMSCB 1 and SCB 1 with bicarbonate solution to release the carboxylate functions and characterized by FTIR. The second part evaluates and compares the adsorption capacity of SCB 2 and MMSCB 2 for Cu2+, Cd2+ and Pb2+ ions in an aqueous single metal solution. Adsorption isotherms were developed using Langmuir model. MMSCB 2 exhibited an increase in Qmax for Cd2+ (43.6 mg/g) and Pb2+ (83.3 mg/g) in relation to SCB 2.  相似文献   

7.
The optimum conditions for biosorption and bioaccumulation of lead and nickel were investigated by using a tolerant bacterial strain isolated from El-Malah canal, Assiut, Egypt, and identified as Pseudomonas aeruginosa ASU 6a. The experimental adsorption data were fitted towards the models postulated by Langmuir and Freundlich isotherm equations. The binding capacity by living cells is significantly lower than that of dead cells. The maximum biosorption capacities for lead and nickel obtained by using non-living cells and living cells were 123, 113.6 and 79, 70 mg/g, respectively. The biosorptive mechanism was confirmed by IR analysis and from the identification nature of acidic and basic sites. Moreover, the postulated mechanism was found to depend mainly on ionic interaction and complex formation.  相似文献   

8.
A novel method is described for the determination of sequential side-chain structures in the complex, high-arabinose polysaccharide of the gum exudate of angico branco (Anadenanthera colubrina), using as basis the structurally similar reducing oligosaccharides present in small quantities. Of the ten detected, eight were characterized as disaccharides (2, 3, and 9), linear trisaccharides (1 and 4), branched pentasaccharides (5 and 6), and a doubly branched heptasaccharide (8). The oligosaccharides are substituents of the polysaccharide, which has a (1→3)-linked β- -galactopyranosyl main chain, and with two exceptions they had 6-O-substituted galactopyranosyl reducing ends, probably corresponding to its main-chain units. Characterization was effected through their 1D and 2D NMR correlation spectra, which were better resolved and more readily interpretable than those of the polysaccharide. These spectral data were supported by monosaccharide composition and rotation values. Controlled Smith degradations and methylation analyses were carried out when it was necessary. These data were confirmed by field-desorption MS.  相似文献   

9.
Correlations between terricolous bryophyte flora and edaphic parameters (pH, organic nitrogen (ON), C/N, Cation Exchange Capacity (CEC), Organic Matter (OM) and Pb, Cd and Zn soil contents) of metalliferous wastes in northern France were performed using statistical analysis (FCA, PCA and FCMA). The significant correlation between the classification based on the bryophyte flora and that based on edaphic variables shows that bryophyte groupings have a strong bioindicative value. More information was obtained by taking into account other parameters such as physiological stages (sterility, fertility, maturation, vitality). Three bryophyte classes were distinguished according to Cd, Pb and Zn soil contents.  相似文献   

10.
Larvae ofGalleria mellonella L. (Lepidoptera, Pyralidae) were exposed to Pb (4, 43, 430 μg Pb/g food dw) and Cd (4, 20, 40 μg Cd/g food dw) applied singly and in combination. Metal transfer of Pb and Cd was investigated from food to larvae and successive stages ofG. mellonella and also to the pupal parasitoidPimpla turionellae L. (Hymenoptera, Ichneumonidae). Larvae/food concentration factors (CFs) were highest in controls (Cd 5.25, Pb 3.07) and ranged from 0.19 to 0.92 for Cd and from 0.18 to 0.83 for Pb in contaminated groups; in general, the CFs decreased with an increasing contamination level in food.G. mellonella eliminated most of its larval metal load before pupation (metal concentration in larvae ς> pupae). Although pupae were only moderately contaminated (0.11–1.61 μg Cd/g dw), concentrations inP. turionellae ranged from 0.5 to 6.8 μg Cd/g dw. Again, CFs (parasitoid/pupa) decreased with enhanced levels of metal in the host pupae (Cd 3.07–14.05, Pb 0.0–2.47). The CFs calculated for both species were lower at combined contamination compared to single application.G. mellonella can be classified as a ‘deconcentrator’ (CF<1) along with other lepidopteran species, whereasP. turionellae is apparently a ‘macroconcentrator’ (CF>2).  相似文献   

11.
Biosorption is a surface-dependent phenomenon. Surface modifications by chemical treatment methods could either improve or reduce the biosorption capacity of potential biosorbents. In the present work, pristine Pteris vittata L. pinnae (PPV) powder was treated separately with sodium hydroxide (NaOH), calcium chloride (CaCl2), and nitric acid (HNO3). The pristine and treated biosorbents were used to assess the biosorption of Pb(II), Cd(II), and Cr(VI) as a function of pH. Kinetics and adsorption isotherms were studied. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and scanning electron microscope combined with energy dispersive x-ray (SEM-EDX) spectroscopic techniques were used to characterize the biosorbents before and after chemical treatments. The possible functional groups contributing to the metal sorption were identified. Results revealed favorable biosorption of Pb(II), Cd(II), and Cr(VI) described by pseudo-second order kinetics. NaOH-treated P. vittata (NPV) showed higher biosorption capacity for Pb(II) and Cd(II) compared to that of PPV. ATR-FTIR studies indicated that -OH, -COOH, and -NH2 groups were mainly involved in Cr(VI) and -OH in Pb(II) and Cd(II) biosorption. The enhanced efficiency of NPV and CaCl2 treated P. vittata (CPV) in the uptake of Pb(II) and Cd(II) compared to PPV can be associated with their altered physicochemical characters.  相似文献   

12.
The detection of heavy metal ions using enzyme-linked immunosorbent assays (ELISA) has been reported by several research groups. However, highly sensitive and selective detection of total heavy metal ions using ELISA is a major technical limitation. Here we describe the development of a versatile and highly sensitive probe combining goat anti-mice IgG, colloidal gold nanoparticles (AuNPs) and horseradish peroxidase (HRP). We demonstrate the utility of this probe using three kinds of heavy metal complete antigens and three monoclonal antibodies (McAbs) in one ELISA system to establish a high-throughput screening protocol. The procedure was successfully applied to analysis of Hg(II), Pb(II) and Cd(II) individually and totally from different water samples. The sensitivities for the detection of Hg(II), Pb(II) and Cd(II) individually and totally are 27.4, 3.9, 15.8 and 18.2 nM, respectively. And all limit of detection (LODs) are lower than 1.2 nM. The recovery results obtained from the developed technique showed a good correlation (R2 = 0.983) with those from ICP-MS. The major advantage of the probe is the versatility and high sensibility. The probe could be potentially used, upon demand, as a sensitive and versatile detector for a broad range of applications.  相似文献   

13.
《Journal of Asia》2020,23(4):963-969
To investigate the accumulation patterns of Cd and/or Pb in various body parts, organs and tissues of the Asian gypsy moth (Lymantria dispar) larvae under Cd and/or Pb stress, Cd and Pb treated artificial diets were used to feed the larvae in the current study. These larval body parts/organs/tissues included the heads, integuments (body walls), alimentary canals, fat bodies and hemolymphs. Our results showed that under Cd and/or Pb stress, their accumulations in larval body parts/organs/tissues were significantly higher than those in the control, with the amounts of tested metals in the fat bodies and hemolymphs and alimentary canals being significantly higher than those in the heads and integuments. Under the single Cd (0, 7.5, 10.5 mg/kg) or Pb stress (0, 55, 90, 125 mg/kg), the accumulations of these heavy metals were positively correlated with their concentrations in diets. Under the combined stress (Cd × Pb), the Cd accumulation at the lower Pb concentrations was higher than that at higher Pb concentrations for the body parts/organs/tissues, similar effects of Cd concentrations on Pb accumulations were also recorded. These results clearly showed that Cd and/or Pb were accumulated in various body parts/organs/tissues at different levels under the heavy metal stress. And accumulations of Pb/Cd were positively correlated with their concentrations in the diets under the single stress. Under the combined stresses, Cd and Pb had synergistic effects at low concentrations whereas antagonistic effects at high concentrations. The accumulations of Cd and/or Pb in the gypsy moth larvae affects normal physiological and biochemical functions, and thus affects their growth and development.  相似文献   

14.
The incidence of kidney tumors in USA and Europe (in particular, Central Europe and Italy) has been dramatically increasing since the 1970s, possibly as a consequence of ongoing environmental pollution. Environmental factors have been considered responsible for at least 80% of the incidence of neoplastic diseases. To shed some light on this issue, the amounts of Cd and Pb were measured in neoplastic tissue and adjacent normal part of kidney excised for carcinoma and compared with those in renal tissues of fetuses, newborns and subjects that died of non-neoplastic diseases. Cd and Pb were determined by Inductively Coupled Plasma Atomic Emission Spectrometry and Atomic Absorption Spectrometry with Electrothermal Atomization. Metallothionein immunoperoxidase staining technique was used to localize the accumulation of Cd and Zn in the nephrons. Content of Cd and Pb in kidneys of fetuses and newborns was extremely low. However, it was significantly increased in adjacent-normal tissues of kidneys with carcinomas, and significantly higher compared to kidneys of individuals that died of non-neoplastic diseases. In tumoral tissues of the excised kidneys, Cd content was very low, while that of Pb significantly elevated. High amounts of Cd and Pb in the adjacent-normal parts of kidneys with carcinomas are suggestive of possible, individual or synergistic, effects of these pollutants on enzymatic systems, priming an oncogenic pathway. Detection of metallothioneins, primary ligands of Cd, exclusively in the cells of proximal tubuli, i.e. wherein renal carcinoma develops in over 80% of cases, strongly supports the assumption that Cd exerts a carcinogenic effect.  相似文献   

15.
The submerged aquatic plant Myriophyllum spicatum L. (Eurasian water milfoil) has been suggested as an efficient plant species for the treatment of metal-contaminated industrial wastewater. The process of metal removal by plants involves a combination of rapid sorption on the surface and slow accumulation and translocation in the biomass. This study focussed on the sorption/desorption characteristics of the surface of M. spicatum for Co, Cu, Ni and Zn. Batch sorption tests with mixed metal solutions covering a range of 0, 1, 5, 10, 50 and 100 mg l−1 of each metal, were performed. For Co, Ni and Zn, the sorption process was well described by the Langmuir model, whereas sorption of Cu was better described by the Freundlich model. The biomass showed the highest affinity for Cu and Zn. Langmuir sorption maxima of Co, Ni and Zn were 2.3, 3.0 and 6.8 mg g−1 DM, respectively. At the highest initial concentration of 100 mg l−1, a maximum of 29 mg g−1 DM of Cu was sorbed onto the surface of the biomass. Desorption by 0.1 M HCl did not fully recover the metals sorbed onto the surface and there was evidence of leaching from within the biomass. Recovery of heavy metals and regeneration of the biomass by washing with 0.1 M HCl was therefore not suggested as a viable strategy.  相似文献   

16.
Sorption of Cu(II) and Cd(II) onto the extracellular polymeric substances (EPS) produced by Aspergillus fumigatus was investigated for the initial pH of the solution, EPS concentrations, contact time, NaCl concentration, initial metal ion concentration and the presence of other ions in the solution. The results showed that the adsorption of metal ions was significantly affected by pH, EPS concentrations, initial metal concentration, NaCl concentration and co-ions. The sorption of Cu(II) and Cd(II) increased with increasing pH and initial metal ion concentration but decreased with an increase in the NaCl concentration. The maximum sorption capacities of A. fumigatus EPS calculated from the Langmuir model were 40 mg g−1 EPS and 85.5 mg g−1 EPS for Cu(II) and Cd(II), respectively. The binary metal sorption experiments showed a selective metal binding affinity in the order of Cu(II) > Pb(II) > Cd(II). Both the Freundlich and Langmuir adsorption models described the sorption of Cu(II) and Cd(II) by the EPS of Afumigatus adequately. Fourier transform infrared spectroscopy (FTIR) analysis revealed that carboxyl, amide and hydroxyl functional groups were mainly correlated with the sorption of Cu(II) and Cd(II). Energy dispersive X-ray (EDX) system analysis revealed that the ion-exchange was an important mechanism involved in the Cu(II) and Cd(II) sorption process taking place on EPS.  相似文献   

17.
朱云  杨中艺 《生态学报》2007,27(4):1376-1385
在经铅锌矿废水灌溉约50年的农田中种植24个长豇豆品种,测定植物体内的Pb、Zn、Cd在根、茎、叶及果实中的含量。结果表明,Cd在长豇豆根、茎、叶及果实的平均含量分别为1.212、0.425、1.051mg·kg^-1和0.011mg·kg^-1;Pb则分别是92.53、9.79、33.08mg·kg^-1和0.120mg·kg^-1;Zn分别是130.14、59.40、99.94mg·kg^-1和6.320mg·kg^-1。果实中的Cd、Pb和Zn最大品种间差异分别达4.4倍、4.2倍和1.6倍;各品种3种重金属含量ANOVA分析结果显示了品种间差异具有极显著意义。不同仁色(花仁、红仁及黑仁)长豇豆品种间的3种重金属含量在根部均有显著差异,而Zn及Cd含量在茎组织中也有显著差异;但各组在叶及果实中没有显著差异。尽管污灌区土壤Cd、Pb和Zn浓度均超出了国家土壤环境质量标准二级土壤的最高限值,但绝大多数品种的果实中所含重金属均符合国家食品卫生标准。Pb较易在果实中积累,有一个品种果实Pb浓度超过国家标准。根和茎中的3种重金属含量相互间均具有高度相关性,且果实中的Cd和Pb含量间也有显著相关,表明长豇豆对Cd、Pb和Zn的吸收和积累有协同性,这一特性使得同时低量积累重金属的长豇豆品种的筛选更为容易,特别是在可食部分同时低量积累Cd和Pb的品种。污灌区具有比对照区更高的产量,说明长豇豆能耐受农田中Cd、Pb和Zn的复合污染,因而生产者比较难以从长豇豆的中毒症状发现重金属的污染,导致在污染土壤中生产长豇豆容易受重金属污染。可见,筛选和培育低量积累重金属的长豇豆品种有利于降低人类通过食物链暴露于重金属的水平。  相似文献   

18.
In situ immobilization constitutes a promising technology for the mitigation of contaminants, through the reduction of metal bioavailability and mobility. This study investigated the adsorption isotherms and kinetic characteristics of humin extracted from peat soils. We also studied the influences of the pH, ionic strengths, and soluble organic matter concentrations of soil solutions on the adsorptive properties of humin, and compared its ability to detoxify potentially toxic metals in both actual and simulated soil solutions. The study results indicated that humin contains a massive population of oxygen-containing functional groups. Its adsorption capacity for Pb(II) was greater than that for Cu(II), which exceeded that for Cd(II). The adsorption of humin for Pb(II) conformed to the Freundlich model, while the adsorption of humin for Cd(II) and Cu(II) followed the Langmuir model. The adsorption kinetics of humin with respect to potentially toxic metals aligned well with second-order kinetics equations. As the pH was elevated, the potentially toxic metal adsorption by humin increased rapidly. Electrolyte ions and tartaric acids in solution both inhibited the adsorption of potentially toxic metals by humin, and its ability to inactivate potentially toxic metals. This was shown to be improved in actual field soil solutions in contrast to simulated soil solutions.  相似文献   

19.
The aim of this work was to prepare a carrageenan-g-poly(vinyl alcohol) (CG-g-PVA) polymer using potassium persulphate as an initiator. The effect of different ratios of the polymer blends on the parameters of the grafted polymer was investigated. The grafting ratio decreased with an increase of the CG content in the graft copolymer. The resulting CG-g-PVA was characterized by ATR-FTIR, tensile strength, elongation at break, swelling ratio, contact angle and biodegradation in soil. From the ATR-FTIR the 3,6-anhydride-galactose of the CG showed a peak at 927 cm−1 that was absent in the CG-g-PVA and the ether linkage of PVA-g-CG between the hydroxyl group of PVA and the 3,6-anhydride-galactose of CG showed a peak at 1089 cm−1 in the graft copolymer. The tensile strength and elongation at break decreased with an increase of the CG due to its phase separation. The highest tensile strength was observed at 2:8 CG/PVA. In addition, the swelling ratio decreased and the contact angle increased as a function of the increase of the CG in the grafted copolymer. The best ratio of CG-g-PVA was 2:8 CG/PVA. This graft copolymer was easily biodegraded in natural soil.  相似文献   

20.
本文依据国内外土壤环境质量标准的研究现状,在提出土壤环境标准制定依据和原则的基础上,对Hg、Cd、Pb和As的土壤环境质量标准进行了研究。研究表明,我国土壤环境质量功能分区可包括:(1)自然保护区或“清洁”无污染区;(2)农牧区;(3)森林区;(4)城市区、废物处置区和工矿区。其相应的土壤环境质量标准,汞为0.10、0.20、0.50和1.00mg/kg;镉为0.15、0.30、0.50和1.00mg/kg;铅为30、60、100和300mg/kg;砷为15、20、27和30(砂土区除外)mg/kg,并论证这些标准值在全国应用的可能性。为全国土壤质量的宏观管理与控制污染提供了科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号