首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
To establish the major body axes, late Drosophila oocytes localize determinants to discrete cortical positions: bicoid mRNA to the anterior cortex, oskar mRNA to the posterior cortex, and gurken mRNA to the margin of the anterior cortex adjacent to the oocyte nucleus (the "anterodorsal corner"). These localizations depend on microtubules that are thought to be organized such that plus end-directed motors can move cargoes, like oskar, away from the anterior/lateral surfaces and hence toward the posterior pole. Likewise, minus end-directed motors may move cargoes toward anterior destinations. Contradicting this, cytoplasmic dynein, a minus-end motor, accumulates at the posterior. Here, we report that disruption of the plus-end motor kinesin I causes a shift of dynein from posterior to anterior. This provides an explanation for the dynein paradox, suggesting that dynein is moved as a cargo toward the posterior pole by kinesin-generated forces. However, other results present a new transport polarity puzzle. Disruption of kinesin I causes partial defects in anterior positioning of the nucleus and severe defects in anterodorsal localization of gurken mRNA. Kinesin may generate anterodorsal forces directly, despite the apparent preponderance of minus ends at the anterior cortex. Alternatively, kinesin I may facilitate cytoplasmic dynein-based anterodorsal forces by repositioning dynein toward microtubule plus ends.  相似文献   

3.
4.
During oogenesis in Drosophila, mRNAs encoding determinants required for the polarization of egg and embryo become localized in the oocyte in a spatially restricted manner. The TGF-alpha like signaling molecule Gurken has a central role in the polarization of both body axes and the corresponding mRNA displays a unique localization pattern, accumulating initially at the posterior and later at the anterior-dorsal of the oocyte. Correct localization of gurken RNA requires a number of cis-acting sequence elements, a complex of trans-acting proteins, of which only several have been identified, and the motor proteins Dynein and Kinesin, traveling along polarized microtubules. Here we report that the cytoplasmic Dynein-light-chain (DDLC1) which is the cargo-binding subunit of the Dynein motor protein, directly bound with high specificity and affinity to a 230-nucleotide region within the 3'UTR of gurken, making it the first Drosophila mRNA-cargo to directly bind to the DLC. Although DDLC1 lacks known RNA-binding motifs, comparison to double-stranded RNA-binding proteins suggested structural resemblance. Phenotypic analysis of ddlc1 mutants supports a role for DDLC1 in gurken RNA localization and anchoring as well as in correct positioning of the oocyte nucleus.  相似文献   

5.
6.
During Drosophila oogenesis, localization of the transforming growth factor alpha (TGFalpha)-like signaling molecule Gurken to the oocyte membrane is required for polarity establishment of the egg and embryo. To test Gurken domain functions, full-length and truncated forms of Gurken were expressed ectopically using the UAS/Gal4 expression system, or in the germline using the endogenous promoter. GrkDeltaC, a deletion of the cytoplasmic domain, localizes to the oocyte membrane and can signal. GrkDeltaTC, which lacks the transmembrane and cytoplasmic domains, retains signaling ability when ectopically expressed in somatic cells. However, in the germline, the GrkDeltaTC protein accumulates throughout the oocyte cytoplasm and cannot signal. In addition, we found that several strong gurken alleles contain point mutations in the transmembrane region. We conclude that secretion of Gurken requires its transmembrane region, and propose a model in which the gene cornichon mediates this process.  相似文献   

7.
8.
9.
The anteroposterior and dorsoventral axes of the future embryo are specified within Drosophila oocytes by localizing gurken mRNA, which targets the secreted Gurken transforming growth factor-alpha synthesis and transport to the same site. A key question is whether gurken mRNA is targeted to a specialized exocytic pathway to achieve the polar deposition of the protein. Here, we show, by (immuno)electron microscopy that the exocytic pathway in stage 9-10 Drosophila oocytes comprises a thousand evenly distributed transitional endoplasmic reticulum (tER)-Golgi units. Using Drosophila mutants, we show that it is the localization of gurken mRNA coupled to efficient sorting of Gurken out of the ER that determines which of the numerous equivalent tER-Golgi units are used for the protein transport and processing. The choice of tER-Golgi units by mRNA localization makes them independent of each other and represents a nonconventional way, by which the oocyte implements polarized deposition of transmembrane/secreted proteins. We propose that this pretranslational mechanism could be a general way for targeted secretion in polarized cells, such as neurons.  相似文献   

10.
11.
12.
BACKGROUND: The cytoskeleton and associated motors play an important role in the establishment of intracellular polarity. Microtubule-based transport is required in many cell types for the asymmetric localization of mRNAs and organelles. A striking example is the Drosophila oocyte, where microtubule-dependent processes govern the asymmetric positioning of the nucleus and the localization to distinct cortical domains of mRNAs that function as cytoplasmic determinants. A conserved machinery for mRNA localization and nuclear positioning involving cytoplasmic Dynein has been postulated; however, the precise role of plus- and minus end-directed microtubule-based transport in axis formation is not yet understood. RESULTS: Here, we show that mRNA localization and nuclear positioning at mid-oogenesis depend on two motor proteins, cytoplasmic Dynein and Kinesin I. Both of these microtubule motors cooperate in the polar transport of bicoid and gurken mRNAs to their respective cortical domains. In contrast, Kinesin I-mediated transport of oskar to the posterior pole appears to be independent of Dynein. Beside their roles in RNA transport, both motors are involved in nuclear positioning and in exocytosis of Gurken protein. Dynein-Dynactin complexes accumulate at two sites within the oocyte: around the nucleus in a microtubule-independent manner and at the posterior pole through Kinesin-mediated transport. CONCLUSION: The microtubule motors cytoplasmic Dynein and Kinesin I, by driving transport to opposing microtubule ends, function in concert to establish intracellular polarity within the Drosophila oocyte. Furthermore, Kinesin-dependent localization of Dynein suggests that both motors are components of the same complex and therefore might cooperate in recycling each other to the opposite microtubule pole.  相似文献   

13.
During Drosophila oogenesis Gurken, associated with the oocyte nucleus, activates the Drosophila EGF receptor in the follicular epithelium. Gurken first specifies posterior follicle cells, which in turn signal back to the oocyte to induce the migration of the oocyte nucleus from a posterior to an anterior-dorsal position. Here, Gurken signals again to specify dorsal follicle cells, which give rise to dorsal chorion structures including the dorsal appendages. If Gurken signaling is delayed and starts after stage 6 of oogenesis the nucleus remains at the posterior pole of the oocyte. Eggs develop with a posterior ring of dorsal appendage material that is produced by main-body follicle cells expressing the gene Broad-Complex. They encircle terminal follicle cells expressing variable amounts of the TGFbeta homologue, decapentaplegic. By ectopically expressing decapentaplegic and clonal analysis with Mothers against dpp we show that Decapentaplegic signaling is required for Broad-Complex expression. Thus, the specification and positioning of dorsal appendages along the anterior-posterior axis depends on the intersection of both Gurken and Decapentaplegic signaling. This intersection also induces rhomboid expression and thereby initiates the positive feedback loop of EGF receptor activation, which positions the dorsal appendages along the dorsal-ventral egg axis.  相似文献   

14.
15.
The localization of Oskar at the posterior pole of the Drosophila oocyte induces the assembly of the pole plasm and therefore defines where the abdomen and germ cells form in the embryo. This localization is achieved by the targeting of oskar mRNA to the posterior and the localized activation of its translation. oskar mRNA seems likely to be actively transported along microtubules, since its localization requires both an intact microtubule cytoskeleton and the plus end-directed motor kinesin I, but nothing is known about how the RNA is coupled to the motor. Here, we describe barentsz, a novel gene required for the localization of oskar mRNA. In contrast to all other mutations that disrupt this process, barentsz-null mutants completely block the posterior localization of oskar mRNA without affecting bicoid and gurken mRNA localization, the organization of the microtubules, or subsequent steps in pole plasm assembly. Surprisingly, most mutant embryos still form an abdomen, indicating that oskar mRNA localization is partially redundant with the translational control. Barentsz protein colocalizes to the posterior with oskar mRNA, and this localization is oskar mRNA dependent. Thus, Barentsz is essential for the posterior localization of oskar mRNA and behaves as a specific component of the oskar RNA transport complex.  相似文献   

16.
The anterior-posterior axis of Drosophila becomes polarized early in oogenesis, when the oocyte moves to the posterior of the germline cyst because it preferentially adheres to posterior follicle cells. The source of this asymmetry is unclear, however, since anterior and posterior follicle cells are equivalent until midoogenesis, when Gurken signaling from the oocyte induces posterior fate. Here, we show that asymmetry arises because each cyst polarizes the next cyst through a series of posterior to anterior inductions. Delta signaling from the older cyst induces the anterior polar follicle cells, the anterior polar cells signal through the JAK/STAT pathway to induce the formation of the stalk between adjacent cysts, and the stalk polarizes the younger anterior cyst by inducing the shape change and preferential adhesion that position the oocyte at the posterior. The anterior-posterior axis is therefore established by a relay mechanism, which propagates polarity from one cyst to the next.  相似文献   

17.
Drosophila gurken mRNA is localized by dynein-mediated transport to a crescent near the oocyte nucleus, thus targeting the TGFalpha signal and forming the primary embryonic axes. Here, we show that gurken and the I factor, a non-LTR retrotransposon, share a small consensus RNA stem loop of defined secondary structure, which forms a conserved signal for dynein-mediated RNA transport to the oocyte nucleus. Furthermore, gurken and the I factor compete in vivo for the same localization machinery. I factor transposition leads to its mRNA accumulating near and within the oocyte nucleus, thus causing perturbations in gurken and bicoid mRNA localization and axis specification. These observations further our understanding of the close association of transposable elements with their host and provide an explanation for how I factor transposition causes female sterility. We propose that the transposition of other elements may exploit the host's RNA transport signals and machinery.  相似文献   

18.
Establishment of the Drosophila dorsal-ventral axis depends upon the correct localization of gurken mRNA and protein within the oocyte. gurken mRNA becomes localized to the presumptive dorsal anterior region of the oocyte, but is synthesized in the adjoining nurse cells. Normal gurken localization requires the heterogeneous nuclear ribonucleoprotein Squid, which binds to the gurken 3′ untranslated region. However, whether Squid functions in the nurse cells or the oocyte is unknown. To address this question, we generated genetic mosaics in which half of the nurse cells attached to a given oocyte are unable to produce Squid. In these mosaics, gurken mRNA is localized normally but ectopically translated during the dorsal anterior localization process, even though the oocyte contains abundant Squid produced by the wild type nurse cells. These data indicate that translational repression of gurken mRNA requires Squid function in the nurse cells. We propose that Squid interacts with gurken mRNA in the nurse cell nuclei and, together with other factors, maintains gurken in a translationally silent state during its transport to the dorsal anterior region of the oocyte. This translational repression is not required for gurken mRNA localization, indicating that the information repressing translation is separable from that regulating localization.  相似文献   

19.
mRNA localization is a widespread mode of delivering proteins to their site of function. The embryonic axes in Drosophila are determined in the oocyte, through Dynein-dependent transport of gurken/TGF-α mRNA, containing a small localization signal that assigns its destination. A signal with a similar secondary structure, but lacking significant sequence similarity, is present in the I factor retrotransposon mRNA, also transported by Dynein. It is currently unclear whether other mRNAs exist that are localized to the same site using similar signals. Moreover, searches for other genes containing similar elements have not been possible due to a lack of suitable bioinformatics methods for searches of secondary structure elements and the difficulty of experimentally testing all the possible candidates. We have developed a bioinformatics approach for searching across the genome for small RNA elements that are similar to the secondary structures of particular localization signals. We have uncovered 48 candidates, of which we were able to test 22 for their localization potential using injection assays for Dynein mediated RNA localization. We found that G2 and Jockey transposons each contain a gurken/I factor-like RNA stem–loop required for Dynein-dependent localization to the anterior and dorso–anterior corner of the oocyte. We conclude that I factor, G2, and Jockey are members of a “family” of transposable elements sharing a gurken-like mRNA localization signal and Dynein-dependent mechanism of transport. The bioinformatics pipeline we have developed will have broader utility in fields where small RNA signals play important roles.  相似文献   

20.
A cis-acting signal in the 3' UTR of the Drosophila bicoid mRNA directs both the transport of the mRNA from the nurse cells to the oocyte and its anterior localization within the oocyte. Here we demonstrate that the signal mediates redundant RNA recognition events, A and B, that initiate largely overlapping programs of mRNA localization during oogenesis. Recognition event A requires a region encompassing stem-loops IV/V of the predicted secondary structure, and can be eliminated by a single nucleotide mutation. Localization initiated through event B begins slightly later in oogenesis, and requires sequences that have not been narrowly defined. Using forms of the 3' UTR lacking this RNA recognition redundancy, we reexamine the roles of the swallow, staufen, and exuperantia genes, which are all required for normal bicoid mRNA localization. Our results reveal that exuperantia first becomes essential for localization at a time when well-defined microtubule tracks between the nurse cells and oocyte disappear. Thus, exuperantia may specifically facilitate a form of nurse cell-to-oocyte mRNA transport not dependent on the microtubule tracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号