首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Oskar is one of seven Drosophila maternal-effect genes that are necessary for germline and abdomen formation. We have cloned oskar and show that oskar RNA is localized to the posterior pole of the oocyte when germ plasm forms. This polar distribution of oskar RNA is established during oogenesis in three phases: accumulation in the oocyte, transport toward the posterior, and finally maintenance at the posterior pole of the oocyte. The colocalization of oskar and nanos in wild-type and bicaudal embryos suggests that oskar directs localization of the posterior determinant nanos. We propose that the pole plasm is assembled stepwise and that continued interaction among its components is required for germ cell determination.  相似文献   

3.
oskar mRNA localization to the posterior of the Drosophila oocyte defines where the abdomen and germ cells form in the embryo. Although this localization requires microtubules and the plus end-directed motor, kinesin, its mechanism is controversial and has been proposed to involve active transport to the posterior, diffusion and trapping, or exclusion from the anterior and lateral cortex. By following oskar mRNA particles in living oocytes, we show that the mRNA is actively transported along microtubules in all directions, with a slight bias toward the posterior. This bias is sufficient to localize the mRNA and is reversed in mago, barentsz, and Tropomyosin II mutants, which mislocalize the mRNA anteriorly. Since almost all transport is mediated by kinesin, oskar mRNA localizes by a biased random walk along a weakly polarized cytoskeleton. We also show that each component of the oskar mRNA complex plays a distinct role in particle formation and transport.  相似文献   

4.
Localization of the maternal determinant Oskar at the posterior pole of Drosophila melanogaster oocyte provides the positional information for pole plasm formation. Spatial control of Oskar expression is achieved through the tight coupling of mRNA localization to translational control, such that only posterior-localized oskar mRNA is translated, producing the two Oskar isoforms Long Osk and Short Osk. We present evidence that this coupling is not sufficient to restrict Oskar to the posterior pole of the oocyte. We show that Long Osk anchors both oskar mRNA and Short Osk, the isoform active in pole plasm assembly, at the posterior pole. In the absence of anchoring by Long Osk, Short Osk disperses into the bulk cytoplasm during late oogenesis, impairing pole cell formation in the embryo. In addition, the pool of untethered Short Osk causes anteroposterior patterning defects, owing to the dispersion of pole plasm and its abdomen-inducing activity throughout the oocyte. We show that the N-terminal extension of Long Osk is necessary but not sufficient for posterior anchoring, arguing for multiple docking elements in Oskar. This study reveals cortical anchoring of the posterior determinant Oskar as a crucial step in pole plasm assembly and restriction, required for proper development of Drosophila melanogaster.  相似文献   

5.
BACKGROUND: mRNA localization is a powerful and widely employed mechanism for generating cell asymmetry. In Drosophila, localization of mRNAs in the oocyte determines the axes of the future embryo. oskar mRNA localization at the posterior pole is essential and sufficient for the specification of the germline and the abdomen. Its posterior transport along the microtubules is mediated by Kinesin I and several proteins, such as Mago-nashi, which, together with oskar mRNA, form a posterior localization complex. It was recently shown that human Y14, a nuclear protein that associates with mRNAs upon splicing and shuttles to the cytoplasm, interacts with MAGOH, the human homolog of Mago-nashi. RESULTS: Here, we show that Drosophila Y14 interacts with Mago-nashi in vivo. Immunohistochemistry reveals that Y14 is predominantly nuclear and colocalizes with oskar mRNA at the posterior pole. We show that, in y14 mutant oocytes, oskar mRNA localization to the posterior pole is specifically affected, while the cytoskeleton appears to be intact. CONCLUSIONS: Our findings indicate that Y14 is part of the oskar mRNA localization complex and that the nuclear shuttling protein Y14 has a specific and direct role in oskar mRNA cytoplasmic localization.  相似文献   

6.
Cell fate is often determined by the intracellular localization of RNAs and proteins. In Drosophila oocytes, oskar (osk) RNA localization and the subsequent Osk synthesis at the posterior pole direct the assembly of the pole plasm, where factors for the germline and abdomen formation accumulate. osk RNA produces two isoforms, long and short Osk, which have distinct functions in pole plasm assembly. Short Osk recruits downstream components of the pole plasm, whose anchoring to the posterior cortex requires long Osk. The anchoring of pole plasm components also requires actin cytoskeleton, and Osk promotes long F-actin projections in the oocyte posterior cytoplasm. However, the mechanism by which Osk mediates F-actin reorganization remains elusive. Furthermore, although long Osk is known to associate with endosomes under immuno-electron microscopy, it was not known whether this association is functionally significant. Here we show that Rabenosyn-5 (Rbsn-5), a Rab5 effector protein required for the early endocytic pathway, is crucial for pole plasm assembly. rbsn-5(-) oocytes fail to maintain microtubule polarity, which secondarily disrupts osk RNA localization. Nevertheless, anteriorly misexpressed Osk, particularly long Osk, recruits endosomal proteins, including Rbsn-5, and stimulates endocytosis. In oocytes lacking rbsn-5, the ectopic Osk induces aberrant F-actin aggregates, which diffuse into the cytoplasm along with pole plasm components. We propose that Osk stimulates endosomal cycling, which in turn promotes F-actin reorganization to anchor the pole plasm components to the oocyte cortex.  相似文献   

7.
The localization of oskar mRNA to the posterior of the Drosophila oocyte defines the site of assembly of the pole plasm, which contains the abdominal and germline determinants. oskar mRNA localization requires the polarization of the microtubule cytoskeleton, which depends on the recruitment of PAR-1 to the posterior cortex in response to a signal from the follicle cells, where it induces an enrichment of microtubule plus ends. Here, we show that overexpressed oskar mRNA localizes to the middle of the oocyte, as well as the posterior. This ectopic localization depends on the premature translation of Oskar protein, which recruits PAR-1 and microtubule-plus-end markers to the oocyte center instead of the posterior pole, indicating that Oskar regulates the polarity of the cytoskeleton. Oskar also plays a role in the normal polarization of the oocyte; mutants that disrupt oskar mRNA localization or translation strongly reduce the posterior recruitment of microtubule plus ends. Thus, oskar mRNA localization is required to stabilize and amplify microtubule polarity, generating a positive feedback loop in which Oskar recruits PAR-1 to the posterior to increase the microtubule cytoskeleton's polarization, which in turn directs the localization of more oskar mRNA.  相似文献   

8.
Asymmetric mRNA localization is an effective mechanism for establishing cellular and developmental polarity. Posterior localization of oskar in the Drosophila oocyte targets the synthesis of Oskar to the posterior, where Oskar initiates the assembly of the germ plasm. In addition to harboring germline determinants, the germ plasm is required for localization and translation of the abdominal determinant nanos. Consequently, failure of oskar localization during oogenesis results in embryos lacking germ cells and abdominal segments. oskar accumulates at the oocyte posterior during mid-oogenesis through a well-studied process involving kinesin-mediated transport. Through live imaging of oskar mRNA, we have uncovered a second, mechanistically distinct phase of oskar localization that occurs during late oogenesis and results in amplification of the germ plasm. Analysis of two newly identified oskar localization factors, Rumpelstiltskin and Lost, that are required specifically for this late phase of oskar localization shows that germ plasm amplification ensures robust abdomen and germ cell formation during embryogenesis. In addition, our results indicate the importance of mechanisms for adapting mRNAs to utilize multiple localization pathways as necessitated by the dramatic changes in ovarian physiology that occur during oogenesis.  相似文献   

9.
The double-stranded RNA binding protein Staufen is required for the microtubule-dependent localization of bicoid and oskar mRNAs to opposite poles of the Drosophila oocyte and also mediates the actin-dependent localization of prospero mRNA during the asymmetric neuroblast divisions. The posterior localization of oskar mRNA requires Staufen RNA binding domain 2, whereas prospero mRNA localization mediated the binding of Miranda to RNA binding domain 5, suggesting that different Staufen domains couple mRNAs to distinct localization pathways. Here, we show that the expression of Miranda during mid-oogenesis targets Staufen/oskar mRNA complexes to the anterior of the oocyte, resulting in bicaudal embryos that develop an abdomen and pole cells instead of the head and thorax. Anterior Miranda localization requires microtubules, rather than actin, and depends on the function of Exuperantia and Swallow, indicating that Miranda links Staufen/oskar mRNA complexes to the bicoid mRNA localization pathway. Since Miranda is expressed in late oocytes and bicoid mRNA localization requires the Miranda-binding domain of Staufen, Miranda may play a redundant role in the final step of bicoid mRNA localization. Our results demonstrate that different Staufen-interacting proteins couple Staufen/mRNA complexes to distinct localization pathways and reveal that Miranda mediates both actin- and microtubule-dependent mRNA localization.  相似文献   

10.
oskar mRNA is localized to the posterior pole of the Drosophila oocyte   总被引:23,自引:0,他引:23  
J Kim-Ha  J L Smith  P M Macdonald 《Cell》1991,66(1):23-35
  相似文献   

11.
The Staufen-dependent localization of oskar mRNA to the posterior of the Drosophila oocyte induces the formation of the pole plasm, which contains the abdominal and germline determinants. In a germline clone screen for mutations that disrupt the posterior localization of GFP-Staufen, we isolated three missense alleles in the hnRNPA/B homolog, Hrp48. These mutants specifically abolish osk mRNA localization, without affecting its translational control or splicing, or the localization of bicoid and gurken mRNAs and the organization of the microtubule cytoskeleton. Hrp48 colocalizes with osk mRNA throughout oogenesis, and interacts with its 5' and 3' regulatory regions, suggesting that it binds directly to oskar mRNA to mediate its posterior transport. The hrp48 alleles cause a different oskar mRNA localization defect from other mutants, and disrupt the formation of GFP-Staufen particles. This suggests a new step in the localization pathway, which may correspond to the assembly of Staufen/oskar mRNA transport particles.  相似文献   

12.
Drosophila pole (germ) plasm contains germline and abdominal determinants. Its assembly begins with the localization and translation of oskar (osk) RNA at the oocyte posterior, to which the pole plasm must be restricted for proper embryonic development. Osk stimulates endocytosis, which in turn promotes actin remodeling to form long F-actin projections at the oocyte posterior pole. Although the endocytosis-coupled actin remodeling appears to be crucial for the pole plasm anchoring, the mechanism linking Osk-induced endocytic activity and actin remodeling is unknown. Here, we report that a Golgi-endosomal protein, Mon2, acts downstream of Osk to remodel cortical actin and to anchor the pole plasm. Mon2 interacts with two actin nucleators known to be involved in osk RNA localization in the oocyte, Cappuccino (Capu) and Spire (Spir), and promotes the accumulation of the small GTPase Rho1 at the oocyte posterior. We also found that these actin regulators are required for Osk-dependent formation of long F-actin projections and cortical anchoring of pole plasm components. We propose that, in response to the Osk-mediated endocytic activation, vesicle-localized Mon2 acts as a scaffold that instructs the actin-remodeling complex to form long F-actin projections. This Mon2-mediated coupling event is crucial to restrict the pole plasm to the oocyte posterior cortex.  相似文献   

13.
14.
15.
The Drosophila maternal effect gene oskar encodes the posterior determinant responsible for the formation of the posterior pole plasm in the egg, and thus of the abdomen and germline of the future fly. Previously identified oskar mutants give rise to offspring that lack both abdominal segments and a germline, thus defining the ;posterior group phenotype'. Common to these classical oskar alleles is that they all produce significant amounts of oskar mRNA. By contrast, two new oskar mutants in which oskar RNA levels are strongly reduced or undetectable are sterile, because of an early arrest of oogenesis. This egg-less phenotype is complemented by oskar nonsense mutant alleles, as well as by oskar transgenes, the protein-coding capacities of which have been annulled. Moreover, we show that expression of the oskar 3' untranslated region (3'UTR) is sufficient to rescue the egg-less defect of the RNA null mutant. Our analysis thus reveals an unexpected role for oskar RNA during early oogenesis, independent of Oskar protein. These findings indicate that oskar RNA acts as a scaffold or regulatory RNA essential for development of the oocyte.  相似文献   

16.
17.
Targeting proteins to specific domains within the cell is central to the generation of polarity, which underlies many processes including cell fate specification and pattern formation during development. The anteroposterior and dorsoventral axes of the Drosophila melanogaster embryo are determined by the activities of localized maternal gene products. At the posterior pole of the oocyte, Oskar directs the assembly of the pole plasm, and is thus responsible for formation of abdomen and germline in the embryo. Tight restriction of oskar activity is achieved by mRNA localization, localization-dependent translation, anchoring of the RNA and protein, and stabilization of Oskar at the posterior pole. Here we report that the type 1 regulatory subunit of cAMP-dependent protein kinase (Pka-R1) is crucial for the restriction of Oskar protein to the oocyte posterior. Mutations in PKA-R1 cause premature and ectopic accumulation of Oskar protein throughout the oocyte. This phenotype is due to misregulation of PKA catalytic subunit activity and is suppressed by reducing catalytic subunit gene dosage. These data demonstrate that PKA mediates the spatial restriction of Oskar for anteroposterior patterning of the Drosophila embryo and that control of PKA activity by PKA-R1 is crucial in this process.  相似文献   

18.
A group of maternal genes, the posterior group, is required for the development of the abdominal region in the Drosophila embryo. We have used genetic as well as cytoplasmic transfer experiments to order seven of the posterior group genes (nanos, pumilio, oskar, valois, vasa, staufen and tudor) into a functional pathway. An activity present in the posterior pole plasm of wild-type embryos can restore normal abdominal development in posterior group mutants. This activity is synthesized during oogenesis and the gene nanos most likely encodes this activity. The other posterior group genes have distinct accessory functions: pumilio acts downstream of nanos and is required for the distribution or stability of the nanos-dependent activity in the embryo. Staufen, oskar, vasa, valois and tudor act upstream of nanos. Embryos from females mutant for these genes lack the specialized posterior pole plasm and consequently fail to form germ-cell precursors. We suggest that the products of these genes provide the physical structure necessary for the localization of nanos-dependent activity and of germ line determinants.  相似文献   

19.
mRNA localization is a powerful mechanism for targeting factors to different regions of the cell and is used in Drosophila to pattern the early embryo. During oogenesis of the wasp Nasonia, mRNA localization is used extensively to replace the function of the Drosophila bicoid gene for the initiation of patterning along the antero-posterior axis. Nasonia localizes both caudal and nanos to the posterior pole, whereas giant mRNA is localized to the anterior pole of the oocyte; orthodenticle1 (otd1) is localized to both the anterior and posterior poles. The abundance of differentially localized mRNAs during Nasonia oogenesis provided a unique opportunity to study the different mechanisms involved in mRNA localization. Through pharmacological disruption of the microtubule network, we found that both anterior otd1 and giant, as well as posterior caudal mRNA localization was microtubule-dependent. Conversely, posterior otd1 and nanos mRNA localized correctly to the posterior upon microtubule disruption. However, actin is important in anchoring these two posteriorly localized mRNAs to the oosome, the structure containing the pole plasm. Moreover, we find that knocking down the functions of the genes tudor and Bicaudal-D mimics disruption of microtubules, suggesting that tudor's function in Nasonia is different from flies, where it is involved in formation of the pole plasm.  相似文献   

20.
Song Y  Fee L  Lee TH  Wharton RP 《Genetics》2007,176(4):2213-2222
Localization of maternal nanos mRNA to the posterior pole is essential for development of both the abdominal segments and primordial germ cells in the Drosophila embryo. Unlike maternal mRNAs such as bicoid and oskar that are localized by directed transport along microtubules, nanos is thought to be trapped as it swirls past the posterior pole during cytoplasmic streaming. Anchoring of nanos depends on integrity of the actin cytoskeleton and the pole plasm; other factors involved specifically in its localization have not been described to date. Here we use genetic approaches to show that the Hsp90 chaperone (encoded by Hsp83 in Drosophila) is a localization factor for two mRNAs, nanos and pgc. Other components of the pole plasm are localized normally when Hsp90 function is partially compromised, suggesting a specific role for the chaperone in localization of nanos and pgc mRNAs. Although the mechanism by which Hsp90 acts is unclear, we find that levels of the LKB1 kinase are reduced in Hsp83 mutant egg chambers and that localization of pgc (but not nos) is rescued upon overexpression of LKB1 in such mutants. These observations suggest that LKB1 is a primary Hsp90 target for pgc localization and that other Hsp90 partners mediate localization of nos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号