首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
实验在出生后1周到6周的幼年和成年鲁氏菊头蝠(Rhinolophusrouxi)上进行。结果发现,出生第1周的动物下丘听神经元对超声刺激反应的最佳频率低,潜伏期长,阈值高。它们的平均值分别为:31.24±14.08千赫,16.56±3.83毫秒和74.24±6.22dB。同时,调谐曲线宽阔,Q10-dB值小,其均值为2.34±0.96。随着周令增长,上述特性逐渐改变。到第6周时,最佳频率的均值发展到70.16±19.16千赫,最佳频率分布峰值也移至75—85千赫的高频段,反应潜伏期均值降至8.12±1.86毫秒,阈值均值降至32.82±26.36dB,已出现相当多具有非常陡削调谐曲线的神精元,Q10-dB值在20以上者占到80%,有的高达100以上,已接近成年动物。  相似文献   

2.
幼小蝙蝠下丘神经元的听反应特性   总被引:8,自引:0,他引:8  
孙心德 《兽类学报》1993,13(2):98-103
实验在出生6—8天的8只幼龄鲁氏菊头蝠(Rhinolophus rouxi)上进行。使用玻璃微电极记录中脑下丘听神经元对超声信号的反应。共观察了162个听单位,它们对超声反应的最佳频率分布范围为25.8—60.9千赫,多数集中在43.0—47.0千赫。反应的潜伏期在6.0—38.0毫秒,平均为15.4±5.2毫秒。反应的最低阈值在25—84dB,平均为69.8±10.3dB.这些神经元对超声刺激的调谐曲线都较宽阔,故Q10-dB值都较小。当微电极由下丘表面垂直下插时,所记录到的神经元的最佳频率与记录深度之间不存在相关关系,即没有音调筑构现象。听神经元的这些特性与同种成年动物构成显著差异。  相似文献   

3.
自由声场刺激条件下,采用单单位胞外微电极记录方法,研究了一种未被研究过的恒频/调频(CF/FM)蝙蝠———菲菊头蝠(Rhinolophuspusillus)的下丘神经元基本声反应特性,其结果发现,在所得的110个下丘神经元中,发放类型包括相位型(54·5%)、紧张型(25·5%)、持续型(7·3%)、梳齿型(7·3%)和暂停型(5·4%)等5种类型。记录深度在208~1855(829·0±328·1)μm之间,最佳频率在16·7~75·6(38·9±15·7)kHz之间,最小阈值在5~74(34·7±13·6)dBSPL之间,阈上10dBSPL潜伏期在5·0~27·5(15·2±3·9)ms之间。最佳频率随记录深度的增加而增大(r=0·9578,P<0·001);记录的54个频率调谐曲线(FTCs)均为开放型,其中52个为单峰型,2个为双峰型。52个单峰型FTC的Q10-dB值介于1·56~31·61之间,并且大部分是狭窄型(Q10-dB值>5),占69·2%(36/52),少部分为宽阔型(Q10-dB值<5),占30·8%(16/52)。2个双峰型神经元FTC在低频处为宽阔型,高频处为狭窄型,Q10-dB值分别为1·95、8和2·89、6·51。共获得34个神经元的强度-发放率函数(RIFs),可分为单调型、非单调型和饱和型。结合先前所研究的FM蝙蝠———普通伏翼蝠(Pipistrellusabramus)下丘神经元的基本声反应特性,比较分析了CF/FM蝙蝠与FM蝙蝠下丘神经元的声反应差异及其行为学意义。  相似文献   

4.
本文以声压级(SP)的dB值为单位,用不同频率(从音频到超声)的声刺激,对大鼠听觉一级神经元325根单一纤维的活动进行了观察。结果表明:每一纤维都有自己的最佳频率和相应的最低阈值。测得最佳频率的最低值为0.58kHz,最高值为62.6kHz; 最低阈值为6dBSPL,其相应频率为27.49kHz;最敏感的频率范围在20—50kHz。频率-阈值曲线在比最佳频率高的一侧斜度陡峭,低的一侧倾斜缓慢。频率-阈值曲线的锐度若以Q值表示,它对最佳频率分布的回归曲线由最佳频率的低频向高频方向逐渐升高,且Q10,Q20,Q30,Q40,Q50,dB的回归曲线具有相似的倾斜度。绝大多数纤维都有自发放电。给最佳频率持续音作用时,随刺激强度的增强,放电速率增加,但到阈上30dB左右皆达饱和。由各频率的最低阈值绘成的听反应阈曲线与行为测听所得的听力曲线颇为近似。  相似文献   

5.
采用超声监测仪录制超声信号和细胞外电生理记录下丘神经元的频率调谐曲线(frequency tuningcurqes,FTCs)的方法,探讨了大蹄蝠(Hipposideros armiger)回声定位信号与下丘(inferior colliculus,IC)神经元频率调谐之间的相关性.结果发现,大蹄蝠回声定位叫声为恒频-调频(consrant frequency-frequenevmodulated,CF-FM)信号,一般含有2-3个谐波,第二谐波为其主频,cF成分频率(Mean±SD,n=18)依次为:(33.3 4±0.2)、(66.5±0.3)、(99.4 4±0.5)kHz;电生理实验共获得72个神经元的频率调谐曲线,Q10-dB值的范围是0.5-95.4(9.2±14.6,rg=72),最佳频率(best frequency,BF)在回声定位主频附近的神经元具有尖锐的频率调谐特性.结果表明,大蹄蝠回声定位信号与下丘神经元频率调谐存在相关性,表现为最佳频率在回声定位信号主频附近的神经元频率调谐曲线的Q10-dB值较大,具有很强的频率分析能力.  相似文献   

6.
普通伏翼蝠下丘神经元基本声反应特性   总被引:5,自引:0,他引:5  
自由声场条件下,采用单单位胞外微电极记录方法,研究了普通伏翼蝠(Pipistrellusabramus)下丘神经元基本声反应特性。结果发现,在所得的65个下丘神经元中:特征频率在18.9~76.7kHz(42.94±11.29)之间,最小阈值在29.1~80.1dBSPL(58.65±12.62)之间,潜伏期在3.1~10.4ms(6.10±1.47)之间;特征频率随记录深度的增加而增大,与最小阈值之间没有显著相关性;发放类型包括相位型(73.85%)、梳齿型(15.38%)和紧张型(10.77%)3种基本类型;频率调谐曲线均为开峰型,多数神经元(72.30%)调谐曲线较宽阔,少数(27.70%)较狭窄,并且多数神经元的频率调谐曲线高频边比低频边陡。  相似文献   

7.
分别对出生后第2周和第4周的中华鼠耳蝠(Myotischinensis)中脑下丘中央核121个听神经元进行了考察,同时与成年动物进行比较。结果表明,微电泳NMDA对下丘中央核绝大部分听神经元(2周龄、4周龄和成年动物分别为96%、95%和96%)具有易化性影响,表现为听反应脉冲发放率增加、反应阈值下降、频率调谐曲线增宽。NMDA的易化性效应部分地与动物的周龄相关,表现为对听反应阈值和听反应脉冲发放率的易化效应在出生后2-4周逐渐增强,但4周以后的易化效应趋缓;微电泳GABAA受体的特异性拮抗剂Bicuculine,对神经元的听反应也呈现易化性影响,表现为听反应脉冲发放率增加,反应阈值降低和频率调谐曲线增宽等。实验结果还提示,bicuculine对下丘神经元听反应的易化作用,在出生后早期呈持续增强趋势。NMDA和bicuculine的效应与动物周龄之间的关系略有差异,是否提示着下丘中央核NMDA受体和GABAA受体在出生后的发育进程有所差别,尚待进一步探讨。  相似文献   

8.
本文报道了硕螽听通路单个听觉中间神经元的声反应特征。依据动作电位发放模式的不同,听觉中间神经元可分为两类,即紧张型与相位型。紧张型听觉中间神经元属于窄凋谐带神经元,敏感的频率范围8—18千赫,反应最佳频率在12千赫附近,与同种雄硕螽叫声的主能峰相匹配。相位型听觉中间神经元属于宽调谐带神经元,有二个敏感频率范围,分别为5—8千赫和12—18千赫。它们对声强度的编码方式也不一样:分别以动作电位的数目与反应潜伏期对声强编码。本文还讨论了不同类型听觉中间神经元的功能意义。  相似文献   

9.
经验改变大鼠听皮层神经元的特征频率   总被引:3,自引:1,他引:2  
应用常规电生理学技术,以神经元的特征频率和频率调谐曲线为指标,研究大鼠听皮层神经元特征频率的可塑性. 结果表明,在给予的条件刺激频率和神经元特征频率相差1.0 kHz范围内,条件刺激可诱导50%以上神经元特征频率发生完全偏移,并可分为向频率调谐曲线的低频端偏移、高频端偏移,或两侧均可偏移三种类型. 其中,神经元的特征频率高、Q10-dB值大和频率调谐曲线对称指数大于零的神经元,其特征频率偏向频率调谐曲线高频端的概率更高. 结果提示,经验可改变大鼠听皮层神经元的特征频率,为深入研究中枢神经元功能活动可塑性的机制提供了重要实验资料.  相似文献   

10.
自由声场刺激条件下,采用单单位胞外微电极记录方法,研究了一种未被研究过的恒频/调频(CF/FM)蝙蝠——菲菊头蝠(Rhinolophus pusillus)的下丘神经元基本声反应特性,其结果发现,在所得的110个下丘神经元中,发放类型包括相位型(54.5%)、紧张型(25.5%)、持续型(7.3%)、梳齿型(7.3%)和暂停型(5.4%)等5种类型。记录深度在208~1 855(829.0±328.1)μm之间,最佳频率在16.7~75.6(38.9±15.7)kHz之间,最小阈值在5~74(34.7±13.6)dB SPL之间,阈上10 dB SPL潜伏期在5.0~27.5(15.2±3.9)ms之间。最佳频率随记录深度的增加而增大(r=0.957 8,P<0.001);记录的54个频率调谐曲线(FTCs)均为开放型,其中52个为单峰型,2个为双峰型。52个单峰型FTC的Q10-dB值介于1.56~31.61之间,并且大部分是狭窄型(Q 10-dB值>5),占69.2%(36/52),少部分为宽阔型(Q 10-dB值<5),占30.8%(16/52)。2个双峰型神经元FTC在低频处为宽阔型,高频处为狭窄型,Q 10-dB值分别为1.95、8和2.89、6.51。共获得34个神经元的强度-发放率函数(RIFs),可分为单调型、非单调型和饱和型。结合先前所研究的FM蝙蝠——普通伏翼蝠(Pipistrellus abramus)下丘神经元的基本声反应特性,比较分析了CF/FM蝙蝠与FM蝙蝠下丘神经元的声反应差异及其行为学意义。  相似文献   

11.
本实验对鼠耳蝠出生后不同时期进行纯音暴露,采用常规电生理不方法研究出生后早期声音暴露出蝙蝠中脑下丘听神经元频率调谐特性发育的影响及影响的临界期。结果表明,出生后第1,3周开始声暴露的实验组,其神经元调于暴露声频段的数量较对照组和出生后第5周开始声暴露的实验组明显增多,且音调筑构出现扭曲,神经元频率调谐曲线的Q10-dB值也较高。  相似文献   

12.
This study examines the effect of pulse repetition rate (PRR), pulse intensity, and bicuculline on the minimum threshold (MT) and latency of inferior collicular neurons of the big brown bat, Eptesicusfuscus, under free-field stimulation conditions. It tests the hypothesis that changes in MT and latency of collicular neurons are co-dependent on PRR. The number of impulses in inferior collicular neurons (n = 245) increased either monotonically (25%) or non-monotonically (75%) with pulse intensity. Latencies either decreased to a plateau (72%), fluctuated unpredictably within 3 ms (21%) or changed very little (7%) with increasing pulse intensity. Latencies and MTs of most collicular neurons increased by 1.5–24 ms (mean ± SD = 4.8 ± 3.3 ms) and 4–75 dB (mean ± SD = 22.1 ± 16.2 dB) with increasing PRR. In most neurons (94%), the latency increase was completely (42%) or partially (52%) eliminated when pulse intensity was compensated for the MT increase with PRR. Complete elimination of latency was achieved by bicuculline application. In a few neurons (6%), the latency increase with PRR was not affected by compensated pulse intensity or bicuculline application. Accepted: 8 October 1997  相似文献   

13.
Using an ethological approach, we studied the possibility of sound perception as well as probable contribution of diverse mechanosensory systems composing the mechanosensory complex to triggering of motor responses to sound stimulation in imaginal crickets Phaeophilacris bredoides lacking the tympanal organs (“deaf”). It was shown that Ph. bredoides imagoes are able to perceive sounds and respond to sound cues by a locomotor reaction in a relatively broad frequency range which becomes narrower as sound intensity decreases [0.1–6.0 kHz (111 ± 3 dB SPL), 0.1–1.5 kHz (101 ± 3 dB SPL), 0.1–1.3 kHz (91 ± 3 dB SPL), 0.1–0.6 kHz (81 ± 3 dB SPL), and 0.1 kHz (71 ± 3 dB SPL)]. Sound perception and triggering ofmotor responses appear to involve the cercal organs (CO), subgenual organs (SO) and, probably, other distant mechanosensory organs (DMO). CO are essential for triggering of locomotor responses to sound within the ranges of 1.6–6.0 kHz (111 ± 3 dB SPL), 1–1.5 kHz (101 ± 3 dB SPL), 0.9–1.3 kHz (91 ± 3 dB SPL), and 0.5–0.6 kHz (81 ± 3 dB SPL). SO and, probably, other DMO provide locomotor responses to sound within the ranges of 0.1–6.0 kHz (111 ± 3 dB SPL), 0.1–0.8 kHz (101 ± 3 dB SPL), 0.1–0.4 kHz (91 ± 3 dB SPL), and 0.1–0.4 kHz (81 ± 3 dB SPL). From this, it follows that “deaf” (nonsinging) Ph. bredoides can perceive sounds using CO, SO and, probably, other DMO, which (as in singing crickets) are likely to compose an integrated mechanosensory complex providing adequate acoustic behavior of this cricket species. Performance efficiency and sensitivity of the mechanosensory complex (specifically, of CO) rely on the thoroughness of grooming. Following self-cleaning of CO, the level of cricket motor activity in response to cue presentation returned to the baseline and sometimes even increased. Whether or not crickets of this species communicate acoustically is yet to be found out, however, we suggest that the mechanosensory complex, which triggers motor responses to a sound, is normally involved in the defensive escape response aimed at rescuing from predators.  相似文献   

14.
Neurons in the inferior colliculus (IC) of the awake big brown bat, Eptesicus fuscus, were examined for joint frequency and latency response properties which could register the timing of the bat's frequency-modulated (FM) biosonar echoes. Best frequencies (BFs) range from 10 kHz to 100 kHz with 50% tuning widths mostly from 1 kHz to 8 kHz. Neurons respond with one discharge per 2-ms tone burst or FM stimulus at a characteristic latency in the range of 3–45 ms, with latency variability (SD) of 50 μs to 4–6 ms or more. BF distribution is related to biosonar signal structure. As observed previously, on a linear frequency scale BFs appear biased to lower frequencies, with 20–40 kHz overrepresented. However, on a hyperbolic frequency (linear period) scale BFs appear more uniformly distributed, with little overrepresentation. The cumulative proportion of BFs in FM1 and FM2 bands reconstructs a scaled version of the spectrogram of FM broadcasts. Correcting FM latencies for absolute BF latencies and BF time-in-sweep reveals a subset of IC cells which respond dynamically to the timing of their BFs in FM sweeps. Behaviorally, Eptesicus perceives echo delay and phase with microsecond or even submicrosecond accuracy and resolution, but even with use of phase-locked FM and tone-burst stimuli the cell-by-cell precision of IC time-frequency registration seems inadequate by itself to account for the temporal acuity exhibited by the bat. Accepted: 21 June 1997  相似文献   

15.
Inquiescentmalecicadas,theauditorysensitivitiesaresimilartothoseofcicadafemales[1—3].Butinsingingmalecicadas,theauditorymembrane(tympanum)producesintensivevibrations,andisamainwindowofsoundradiation[4—8].Therefore,inthetraditionalideas,thehearingsystemofsing…  相似文献   

16.
Summary Because it seemed likely that temperature affects not only the calling mechanism of anurans, but their auditory systems as well, we have measured the thresholds ofBombina variegata variegata andAlytes obstetricans obstetricans at 5°, 12°, 20° and 28°C by recording multiple-unit activity from the torus semicircularis. An increase in temperature from 5° to 28°C shortened the latencies considerably. InBombina v. variegata latencies fell from an average of 32 ms to 13 ms (600 Hz), and inAlytes o. obstetricans from an average of 22 ms to 11 ms (500 Hz). At frequencies below 500 Hz the decrease was still greater. Latency was also dependent on frequency, being shorter with high-frequency tones. At 5°C the auditory neurons ofBombina are rather insensitive and respond irregularly. At 12°C and at 20°C sensitivity is markedly increased. The minimum threshold in males was at 400–500 Hz (49 dB SPL), and that of females was at 450 Hz (47 dB SPL). There was no further increase in sensitivity at 28°C. InAlytes the auditory neurons were fully functional even at 5°C. At this temperature the audiogram had sensitivity maxima at 300, 1,100–1,300 and 1,800 Hz. In both males and females an increase in temperature to 20°C caused an extraordinary increase in sensitivity, primarily in the low-frequency range; the minimum threshold, at 400 Hz, was 44 dB SPL in males and 41 dB SPL in famales. In the intermediate frequency range there was also a marked increase in sensitivity, but not in the high-frequency range, where the best frequency was 1,800 Hz. At 28°C the threshold to low-frequency tones was increased.  相似文献   

17.
1. The neural audiogram of the common long-eared bat, Plecotus auritus was recorded from the inferior colliculus (IC). The most sensitive best frequency (BF) thresholds for single neurones are below 0 dB SPL between 7-20 kHz, reaching a best value of -20 dB SPL between 12-20 kHz. The lower and upper limits of hearing occur at 3 kHz and 63 kHz, respectively, based on BF thresholds at 80 dB SPL. BF threshold sensitivities are about 10 dB SPL between 25-50 kHz, corresponding to the energy band of the sonar pulse (26-78 kHz). The tonotopic organization of the central nucleus of the IC (ICC) reveals that neurones with BFs below 20 kHz are disproportionately represented, occupying about 30% of ICC volume, occurring in the more rostral and lateral regions of the nucleus. 2. The acoustical gain of the external ear reaches a peak of about 20 dB between 8-20 kHz. The gain of the pinna increases rapidly above 4 kHz, to a peak of about 15 dB at 7-12 kHz. The pinna gain curve is similar to that of a simple, finite length acoustic horn; expected horn gain is calculated from the average dimensions of the pinna. 3. The directional properties of the external ear are based on sound diffraction by the pinna mouth, which, to a first approximation, is equivalent to an elliptical opening due to the elongated shape of the pinna. The spatial receptive field properties for IC neurones are related to the directional properties of the pinna. The position of the acoustic axis of the pinna and the best position (BP) of spatial receptive fields are both about 25 degrees from the midline between 8-30 kHz but approach the midline to 8 degrees at 45 kHz. In elevation, the acoustic axis and the BP of receptive fields move upwards by 20 degrees between 9-25 kHz, remaining stationary for frequencies up to 60 kHz. 4. The extremely high auditory sensitivity shown by the audiogram and the directionality of hearing are discussed in terms of the adaptation of the auditory system to low frequencies and the role of a large pinna in P. auritus. The functional significance of low frequency hearing in P. auritus is discussed in relation to hunting for prey by listening and is compared to other gleaning species.  相似文献   

18.
Using an ethological approach, we studied the possibility of sound perception as well as probable contribution of diverse mechanosensory systems composing the mechanosensory complex to triggering of motor responses to sound stimulation in the cricket Gryllus bimaculatus larvae. It was shown that larvae can perceive sounds and respond to them by a locomotor reaction in a relatively broad frequency range, which becomes narrower as sound intensity decreases [0.1–6.6 kHz (111 ± 3 dB SPL), 0.1–1.4 kHz (101 ± 3 dB SPL), 0.1–0.8 kHz (91 ± 3 dB SPL]. Sound perception and triggering of motor responses appear to involve the cercal organs (CO), subgenual organs (SO) and, probably, other distant mechanosensory organs (DMO). Normal functioning of CO is essential for triggering locomotor responses to sound within the ranges of 1–1.4 kHz (101 ± 3 dB SPL) and 0.1–0.8 kHz (91 ± 3 dB SPL). CO are not necessary for triggering of motor responses to cues with an intensity of 111 ± 3 dB. SO and, probably, other DMO provide locomotor responses to sound within the ranges of 0.1–6.6 kHz (111 ± 3 dB SPL), 0.1–0.9 kHz (101 ± 3 dB SPL), and 0.1–0.3 kHz (91 ± 3 dB SPL). Thus, last instar larvae of G. bimaculatus lacking the tympanal organs can perceive sounds using CO, SO and, probably, other DMO, which (as in cricket imagoes) are likely to compose an integrated mechanosensory complex providing adequate acoustic behavior of this cricket species. Performance efficiency and sensitivity of the mechanosensory complex (specifically, CO) rely on the thoroughness of grooming. After self-cleaning of CO, the level of larval motor activity in response to cue presentation returned to the baseline and sometimes even increased. We assume that under normal conditions the mechanosensory complex, which triggers motor responses to a sound, is involved in the defensive escape response aimed at rescuing from predators.  相似文献   

19.
黑蝉(C.atrata Fabricius.)鸣声的方向性和第三气门的功能   总被引:2,自引:0,他引:2  
黑蝉鸣声的波形结构无明显的方向性.单音节的重复周期和调幅脉冲列的间隔(I_1和I_2)分别为9.787±0.813ms、2.286±0.093ms和1.874±0.063ms.幅值特性有明显的方向性.主峰频率(MPF=5.47±0.11kHz)的幅值,头向和背向分别比尾向下降5.9dB和3.9dB,侧向和腹向分别增高1.1dB和2.3dB.两侧第三气门受阻后鸣声的波形结构和音色都产生明显变化.I_1和I_2分别为0.912±0.156ms和1.099±0.113ms,约为正常值的40—59%.有三个谱带,MPF为5775Hz,两侧谱带的峰值频率为4575Hz和7025Hz,分别下降1.5dB和3.4dB.  相似文献   

20.
The examination of the standard waves' amplitude and latency of the brain stem auditory evoked response (BAEP) was performed in 20 guinea pigs (males and females, weighing 250 to 300 g). According with the relative loudness of stimuli (90, 70, 50, 30, 10 dB SPL), the latency of BAEP waves was larger (t1 = 0.2 msec), but the conductance time between P1 to P5 was constant (3.1 to 3.6 msec). The highest wave of BAEP was P2 with an amplitude: 90 dB SPL, U = 6.5 +/- 1.2 microV; 70 dB SPL, U = 4.3 +/- 1.0 microV; 50 dB SPL, U = 3.5 +/- 0.6 microV; 30 dB SPL, U = 2.0 +/- 0.4 microV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号