首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophage inhibitory cytokine-1 (MIC-1/GDF15), a divergent member of the TGF-β superfamily, is over-expressed by many common cancers including those of the prostate (PCa) and its expression is linked to cancer outcome. We have evaluated the effect of MIC-1/GDF15 overexpression on PCa development and spread in the TRAMP transgenic model of spontaneous prostate cancer. TRAMP mice were crossed with MIC-1/GDF15 overexpressing mice (MIC-1(fms)) to produce syngeneic TRAMP(fmsmic-1) mice. Survival rate, prostate tumor size, histopathological grades and extent of distant organ metastases were compared. Metastasis of TC1-T5, an androgen independent TRAMP cell line that lacks MIC-1/GDF15 expression, was compared by injecting intravenously into MIC-1(fms) and syngeneic C57BL/6 mice. Whilst TRAMP(fmsmic-1) survived on average 7.4 weeks longer, had significantly smaller genitourinary (GU) tumors and lower PCa histopathological grades than TRAMP mice, more of these mice developed distant organ metastases. Additionally, a higher number of TC1-T5 lung tumor colonies were observed in MIC-1(fms) mice than syngeneic WT C57BL/6 mice. Our studies strongly suggest that MIC-1/GDF15 has complex actions on tumor behavior: it limits local tumor growth but may with advancing disease, promote metastases. As MIC-1/GDF15 is induced by all cancer treatments and metastasis is the major cause of cancer treatment failure and cancer deaths, these results, if applicable to humans, may have a direct impact on patient care.  相似文献   

2.
Cyclin-dependent kinase inhibitors (CDKIs) p21Cip1/Waf1 (p21) and p27Kip1 (p27) play a determining role in cell cycle progression by regulating CDK activity; however, p21 role in prostate cancer (PCa) is controversial. Whereas p21 upregulation by anticancer agents causes cell cycle arrest in various PCa cell lines, elevated p21 levels have been associated with higher Gleason score, poor survival and increased PCa recurrence. These conflicting findings suggest that more studies are needed to examine p21 role in PCa. Herein, employing genetic approach, transgenic mice harboring p21/Cdkn1a homozygous deletion (p21−/−) were crossed with the transgenic adenocarcinoma of the mouse prostate (TRAMP) mice to characterize in vivo consequences of p21 deletion on prostate tumorigenesis. Lower urogenital tract weight of p21−/−/TRAMP mice was significantly lower than those of p21+/−/TRAMP and TRAMP mice. Histopathology further supported these observations, showing less aggressiveness in prostates of p21−/−/TRAMP. Furthermore, a significantly higher incidence of low-grade prostatic intraepithelial lesions (PIN) with a concomitant reduction in adenocarcinoma incidence was observed in p21−/−/TRAMP mice compared with TRAMP mice. In addition, whereas TRAMP mice showed the presence of poorly differentiated adenocarcinoma lesions, no such lesions were observed in p21/TRAMP transgenic mice. Specifically, there was a significant reduction in the severity of lesions in both p21−/−/TRAMP and p21+/−/TRAMP mice compared with TRAMP mice. Together, our data showed that p21 deletion reduces prostate tumorigenesis by slowing-down progression of PIN (pre-malignant) to adenocarcinoma (malignant), suggesting that intact p21 expression is associated with PCa aggressiveness, while its decreased levels may in fact confer protection against prostate tumorigenesis.  相似文献   

3.
The TGF-b superfamily cytokine MIC-1/GDF15 circulates in all humans and when overproduced in cancer leads to anorexia/cachexia, by direct action on brain feeding centres. In these studies we have examined the role of physiologically relevant levels of MIC-1/GDF15 in the regulation of appetite, body weight and basal metabolic rate. MIC-1/GDF15 gene knockout mice (MIC-1−/−) weighed more and had increased adiposity, which was associated with increased spontaneous food intake. Female MIC-1−/− mice exhibited some additional alterations in reduced basal energy expenditure and physical activity, possibly owing to the associated decrease in total lean mass. Further, infusion of human recombinant MIC-1/GDF15 sufficient to raise serum levels in MIC-1−/− mice to within the normal human range reduced body weight and food intake. Taken together, our findings suggest that MIC-1/GDF15 is involved in the physiological regulation of appetite and energy storage.  相似文献   

4.
Bone metastasis is the major cause of morbidity and mortality of prostate cancer (PCa). Fibroblast growth factor 9 (FGF9) has been reported to promote PCa bone metastasis. However, the mechanism by which overexpression of FGF9 promotes PCa progression and metastasis is still unknown. Herein, we report that transgenic mice forced to express FGF9 in prostate epithelial cells (F9TG) developed high grade prostatic intraepithelial neoplasia (PIN) in an expression level- and time-dependent manner. Moreover, FGF9/TRAMP bigenic mice (F9TRAMP) grew advanced PCa earlier and had higher frequencies of metastasis than TRAMP littermates. We observed tumor microenvironmental changes including hypercellularity and hyperproliferation in the stromal compartment of F9TG and F9TRAMP mice. Expression of TGFβ1, a key signaling molecule overexpressed in reactive stroma, was increased in F9TG and F9TRAMP prostates. Both in vivo and in vitro data indicated that FGF9 promoted TGFβ1 expression via increasing cJun-mediated signaling. Moreover, in silico analyses showed that the expression level of FGF9 was positively associated with expression of TGFβ1 and its downstream signaling molecules in human prostate cancers. Collectively, our data demonstrated that overexpressing FGF9 in PCa cells augmented the formation of reactive stroma and promoted PCa initiation and progression.  相似文献   

5.
6.
Previous studies have shown that tumor progression in the transgenic adenocarcinoma of mouse prostate (TRAMP) model is characterized by global DNA hypomethylation initiated during early-stage disease and locus-specific DNA hypermethylation occurring predominantly in late-stage disease. Here, we utilized Dnmt1 hypomorphic alleles to examine the role of Dnmt1 in normal prostate development and in prostate cancer in TRAMP. Prostate tissue morphology and differentiation status was normal in Dnmt1 hypomorphic mice, despite global DNA hypomethylation. TRAMP; Dnmt1 hypomorphic mice also displayed global DNA hypomethylation, but were characterized by altered tumor phenotype. Specifically, TRAMP; Dnmt1 hypomorphic mice exhibited slightly increased tumor incidence and significantly increased pathological progression at early ages and, conversely, displayed slightly decreased tumor incidence and significantly decreased pathological progression at advanced ages. Remarkably, hypomorphic Dnmt1 expression abrogated local and distant site macrometastases. Thus, Dnmt1 has tumor suppressor activity in early-stage prostate cancer, and oncogenic activity in late stage prostate cancer and metastasis. Consistent with the biological phenotype, epigenomic studies revealed that TRAMP; Dnmt1 hypomorphic mice show dramatically reduced CpG island and promoter DNA hypermethylation in late-stage primary tumors compared to control mice. Taken together, the data reveal a crucial role for Dnmt1 in prostate cancer and suggest that Dnmt1-targeted interventions may have utility specifically for advanced and/or metastatic prostate cancer.Changes in DNA methyltransferase (Dnmt) expression and DNA methylation are observed in human prostate cancer (3, 38, 41). Of particular interest, genes with tumor suppressive function become hypermethylated and silenced, which correlates with the development of specific disease phenotypes (2, 3, 38). Although an association between prostate cancer and alterations in DNA methylation has been established, in vivo models are required to determine whether these changes functionally contribute to the disease. In this context, studies in which pharmacological inhibitors of Dnmts were shown to inhibit prostate cancer in murine models have proven informative (34, 56). However, it remains unknown whether genetic disruption of epigenetic components, such as Dnmts, also impacts prostate cancer development. This is a critical question since the pharmacological inhibitors of Dnmts have pleiotropic effects, including those unrelated to activation of methylation-silenced genes (21, 23, 31). Moreover, no studies to date have examined whether Dnmts or DNA methylation play roles in normal prostate development; this information is vital to fully understanding the effects that inhibiting DNA methylation may have on prostate cancer.Dnmt1 is a maintenance DNA methyltransferase that propagates preexisting DNA methylation patterns in genomic DNA (44). Dnmt1 also is involved in de novo DNA methylation in cancer cells and interacts with other key epigenetic control molecules, including histone-modifying enzymes (11, 19). Murine models have been used to investigate the in vivo functions of Dnmt1. Complete genetic knockout of Dnmt1 is embryonic lethal in mice (29). However, hypomorphic expression of Dnmt1 allows murine development to proceed but causes global DNA hypomethylation and impacts cancer development and progression (7, 14, 28). Specifically, hypomorphic expression of Dnmt1 can lead to the development of lymphoma (14). Furthermore, crossing Dnmt1 hypomorphic mice with murine tumor models alters tumor progression, resulting in either increased or decreased tumor development, depending on the disease stage and tissue site (1, 7, 53). For example, reduced expression of Dnmt1 dramatically decreases intestinal polyp formation in ApcMin/+ mice, either alone or in combination with 5-aza-2′-deoxycytidine treatment (7, 27). However, it was later noted that reduced expression of Dnmt1 has a dual effect on intestinal cancer in ApcMin/+ mice, in which the development of early stage intestinal microadenomas is accelerated, whereas the formation of adenomatous polyps is significantly reduced (53). In addition, ApcMin/+ Dnmt1 hypomorphic mice develop liver cancer associated with the loss of heterozygosity of Apc (53). Similarly, in Dnmt1 hypomorphic mice crossed to Mlh1−/− mice, a dual effect was noted wherein mice developed fewer intestinal cancers but displayed increased T- and B-cell lymphomas (52). In addition, a recent study demonstrated that hypomorphic Dnmt1 expression is associated with reduced squamous cell carcinoma of the tongue and esophagus, resulting in decreased invasive cancer (1). Taken together, the data suggest that Dnmt1 has diverse effects on cancer development, which are dependent on tissue context and tumor stage.TRAMP is a well-established transgenic prostate cancer model driven by prostate-specific expression of the simian virus 40 (SV40) T/t oncogenes (16). TRAMP mice are characterized by Dnmt mRNA and protein overexpression, altered DNA methylation, and altered gene expression during prostate cancer development (2, 33, 35, 37). Of the three enzymatically active Dnmts, Dnmt1 shows the greatest level of overexpression in TRAMP, and this correlates with Rb inactivation, a key genetic event driving prostate cancer in the model (37). Most critically, global DNA hypomethylation occurs during early and late disease stages, while DNA hypermethylation occurs primarily at late disease stages in TRAMP (35).Here, we utilized Dnmt1 hypomorphic mice and the TRAMP model to assess the role of DNA methylation in both normal prostatic development and prostate cancer. The Dnmt1 hypomorphic mouse model used involves two different hypomorphic alleles (N and R), resulting in four genotypes with progressively reduced DNA methylation (Dnmt1+/+, Dnmt1R/+, Dnmt1N/+, and Dnmt1N/R) (7, 52). The N allele consists of a PGK-Neo insertion that deletes a portion of exon 4 of Dnmt1, resulting in severely reduced Dnmt1 expression, while the R allele involves a lacO insertion into intron 3 of Dnmt1, which partially reduces Dnmt1 expression (7, 52). Based on our previous work establishing the timing of DNA hypomethylation and DNA hypermethylation in TRAMP, we hypothesized that hypomorphic Dnmt1 expression in TRAMP may have tumor-promoting effects at early disease stages and tumor-inhibitory effects at later stages of prostate cancer progression. Our data are consistent with this hypothesis and, more importantly, reveal a critical and unanticipated role for Dnmt1 in prostate cancer metastasis.  相似文献   

7.
CD24 is a small, heavily glycosylated, GPI-linked membrane protein, whose expression has been associated with the tumorigenesis and progression of several types of cancer. Here, we studied the expression of CD24 in tumors of MMTV-PyMT, Apc1572/T+ and TRAMP genetic mouse models that spontaneously develop mammary or prostate carcinoma, respectively. We found that CD24 is expressed during tumor development in all three models. In MMTV-PyMT and Apc1572T/+ breast tumors, CD24 was strongly but heterogeneously expressed during early tumorigenesis, but decreased in more advanced stages, and accordingly was increased in poorly differentiated lesions compared with well differentiated lesions. In prostate tumors developing in TRAMP mice, CD24 expression was strong within hyperplastic lesions in comparison with non-hyperplastic regions, and heterogeneous CD24 expression was maintained in advanced prostate carcinomas. To investigate whether CD24 plays a functional role in tumorigenesis in these models, we crossed CD24 deficient mice with MMTV-PyMT, Apc1572T/+ and TRAMP mice, and assessed the influence of CD24 deficiency on tumor onset and tumor burden. We found that mice negative or positive for CD24 did not significantly differ in terms of tumor initiation and burden in the genetic tumor models tested, with the exception of Apc1572T/+ mice, in which lack of CD24 reduced the mammary tumor burden slightly but significantly. Together, our data suggest that while CD24 is distinctively expressed during the early development of murine mammary and prostate tumors, it is not essential for the formation of tumors developing in MMTV-PyMT, Apc1572T/+ and TRAMP mice.  相似文献   

8.
Food intake and body weight are controlled by a variety of central and peripheral factors, but the exact mechanisms behind these processes are still not fully understood. Here we show that that macrophage inhibitory cytokine-1 (MIC-1/GDF15), known to have anorexigenic effects particularly in cancer, provides protection against the development of obesity. Both under a normal chow diet and an obesogenic diet, the transgenic overexpression of MIC-1/GDF15 in mice leads to decreased body weight and fat mass. This lean phenotype was associated with decreased spontaneous but not fasting-induced food intake, on a background of unaltered energy expenditure and reduced physical activity. Importantly, the overexpression of MIC-1/GDF15 improved glucose tolerance, both under normal and high fat-fed conditions. Altogether, this work shows that the molecule MIC-1/GDF15 might be beneficial for the treatment of obesity as well as perturbations in glucose homeostasis.  相似文献   

9.
15-Lipoxygenase-2 (15-LOX2) is a human-specific lipid-peroxidizing enzyme most prominently expressed in epithelial cells of normal human prostate but downregulated or completely lost in > 70% of prostate cancer (PCa) cases. Transgenic expression of 15-LOX2 in the mouse prostate surprisingly causes hyperplasia. Here we first provide evidence that 15-LOX2-induced prostatic hyperplasia does not progress to PCa even in p53+/− or p53−/− background. More important, by generating 15-LOX2; Hi-Myc double transgenic (dTg) mice, we show that 15-LOX2 expression inhibits Myc-induced PCa development, such that in the 3-month- and 6-month-old dTg mice, there is a significant reduction in prostate intraneoplasia (PIN) and PCa prevalent in age-matched Hi-Myc prostates. The dTg prostates show increased cell senescence and expression of several senescence-associated molecules, including p27, phosphorylated Rb, and Rb1cc1. We further show that in HPCa, 15-LOX2 and c-Myc manifest reciprocal protein expression patterns. Moreover, RB1CC1 accumulates in senescing normal human prostate (NHP) cells, and in both NHP and RWPE-1 cells, the 15-LOX2 metabolic products 15(S)-HPETE and 15(S)-HETE induce RB1CC1. We finally show that unlike 15-LOX2, RB1CC1 is not lost but rather frequently overexpressed in PCa samples. RB1CC1 knockdown in PC3 cells enhances clonal growth in vitro and tumor growth in vivo. Together, our present studies provide evidence for tumor-suppressive functions for both 15-LOX2 and RB1CC1.  相似文献   

10.
A distinct feature of human prostate cancer (PCa) is the development of osteoblastic (bone-forming) bone metastases. Metastatic growth in the bone is supported by factors secreted by PCa cells that activate signaling networks in the tumor microenvironment that augment tumor growth. To better understand these signaling networks and identify potential targets for therapy of bone metastases, we characterized the secretome of a patient-derived xenograft, MDA-PCa-118b (PCa-118b), generated from osteoblastic bone lesion. PCa-118b induces osteoblastic tumors when implanted either in mouse femurs or subcutaneously. To study signaling molecules critical to these unique tumor/microenvironment-mediated events, we performed mass spectrometry on conditioned media of isolated PCa-118b tumor cells, and identified 26 secretory proteins, such as TGF-β2, GDF15, FGF3, FGF19, CXCL1, galectins, and β2-microglobulin, which represent both novel and previously published secreted proteins. RT-PCR using human versus mouse-specific primers showed that TGFβ2, GDF15, FGF3, FGF19, and CXCL1 were secreted from PCa-118b cells. TGFβ2, GDF15, FGF3, and FGF19 function as both autocrine and paracrine factors on tumor cells and stromal cells, that is, endothelial cells and osteoblasts. In contrast, CXCL1 functions as a paracrine factor through the CXCR2 receptor expressed on endothelial cells and osteoblasts. Thus, our study reveals a complex PCa bone metastasis secretome with paracrine and autocrine signaling functions that mediate cross-talk among multiple cell types within the tumor microenvironment.A distinct feature of human prostate cancer (PCa)1 with lethal potential is the development of metastases in bone with a bone-forming phenotype (1). This property of PCa bone metastasis suggests that PCa cells have unique interactions with cells in the bone microenvironment. Cells that are known to be present in the bone microenvironment include osteoblasts, osteoclasts, adipocytes, fibroblasts, and endothelial cells. Communication between PCa cells and each of these cells in the microenvironment is known to promote metastatic growth. This communication involves metastatic PCa cells that secrete factors to affect stromal cells in the bone microenvironment. The tumor-modified stromal cells may further alter the properties of the PCa cells to allow them to progress in the bone environment (1). Determining how secretory proteins from the metastatic PCa cells affect the PCa/stromal communication network will lead to the development of strategies to treat bone metastases.Although men with PCa and bone metastasis most frequently present with osteoblastic bone lesions, the commonly-used PCa cell lines to study metastatic properties, for example, PC3 and C4–2B, induce osteolytic or mixed osteoblastic/osteolytic lesions, respectively, when the cells are implanted into mouse femurs or tibia (2). In contrast, the PCa-118b patient-derived xenograft (PDX), generated from an osteoblastic bone lesion of a patient with PCa and bone metastasis, shows phenotypic characteristics similar to the tumor from which it was derived, including induction of a strong osteoblastic response when implanted into femurs (3). Interestingly, PCa-118b cells are also able to induce ectopic bone formation when implanted subcutaneously (3, 4). The capacity of PCa-118b cells to induce bone formation, in which human tumor cells interact with the murine stromal microenvironment, makes this PDX an ideal model system to study tumor-microenvironment signaling pathways that create a bone-like tumor microenvironment conducive to metastatic PCa growth.In this study, we identified secreted factors from the conditioned medium of isolated PCa-118b cells by mass spectrometry. A total of 26 secretory proteins, including cytokines and growth factors, were identified. Human- and mouse-specific PCR probes were used to identify the cells that expressed these factors. Analysis of the receptor for the corresponding secreted factor determined whether the factor exerted activities in a paracrine and/or autocrine manner. The effects of selected factors on PCa cells or stromal cells, including osteoblasts and endothelial cells, were also examined. Our studies showed that PCa-118b cells secreted multiple factors that establish an autocrine or paracrine signaling network that can mediate cross-talk among multiple cell types within the bone microenvironment.  相似文献   

11.
Hematogenous metastasis accounts for the majority of cancer-related deaths, yet the mechanism remains unclear. Circulating tumor cells (CTCs) in blood may employ different pathways to cross blood endothelial barrier and establish a metastatic niche. Several studies provide evidence that prostate cancer (PCa) cell tethering and rolling on microvascular endothelium via E-selectin/E-selectin ligand interactions under shear flow theoretically promote extravasation and contribute to the development of metastases. However, it is unknown if CTCs from PCa patients interact with E-selectin expressed on endothelium, initiating a route for tumor metastases. Here we report that CTCs derived from PCa patients showed interactions with E-selectin and E-selectin expressing endothelial cells. To examine E-selectin-mediated interactions of PCa cell lines and CTCs derived from metastatic PCa patients, we used fluorescently-labeled anti-prostate specific membrane antigen (PSMA) monoclonal antibody J591-488 which is internalized following cell-surface binding. We employed a microscale flow device consisting of E-selectin-coated microtubes and human umbilical vein endothelial cells (HUVECs) on parallel-plate flow chamber simulating vascular endothelium. We observed that J591-488 did not significantly alter the rolling behavior in PCa cells at shear stresses below 3 dyn/cm2. CTCs obtained from 31 PCa patient samples showed that CTCs tether and stably interact with E-selectin and E-selectin expressing HUVECs at physiological shear stress. Interestingly, samples collected during disease progression demonstrated significantly more CTC/E-selectin interactions than samples during times of therapeutic response (p=0.016). Analysis of the expression of sialyl Lewis X (sLex) in patient samples showed that a small subset comprising 1.9-18.8% of CTCs possess high sLex expression. Furthermore, E-selectin-mediated interactions between prostate CTCs and HUVECs were diminished in the presence of anti-E-selectin neutralizing antibody. CTC-Endothelial interactions provide a novel insight into potential adhesive mechanisms of prostate CTCs as a means to initiate metastasis.  相似文献   

12.
Iodine supplementation exerts antitumor effects in several types of cancer. Iodide (I) and iodine (I2) reduce cell proliferation and induce apoptosis in human prostate cancer cells (LNCaP and DU-145). Both chemical species decrease tumor growth in athymic mice xenografted with DU-145 cells. The aim of this study was to analyze the uptake and effects of iodine in a preclinical model of prostate cancer (transgenic adenocarcinoma of the mouse prostate [TRAMP] mice/SV40-TAG antigens), which develops cancer by 12 wks of age. 125I and 125I2 uptake was analyzed in prostates from wild-type and TRAMP mice of 12 and 24 wks in the presence of perchlorate (inhibitor of the Na+/I symporter [NIS]). NIS expression was quantified by quantitative polymerase chain reaction (qPCR). Mice (6 wks old) were supplemented with 0.125 mg I plus 0.062 mg I2/mouse/day for 12 or 24 wks. The weight of the genitourinary tract (GUT), the number of acini with lesions, cell proliferation (levels of proliferating cell nuclear antigen [PCNA] by immunohistochemistry), p53 and p21 expression (by qPCR) and apoptosis (relative amount of nucleosomes by enzyme-linked immunosorbent assay) were evaluated. In both age-groups, normal and tumoral prostates take up both forms of iodine, but only I uptake was blocked by perchlorate. Iodine supplementation prevented the overexpression of NIS in the TRAMP mice, but had no effect on the GUT weight, cell phenotype, proliferation or apoptosis. In TRAMP mice, iodine increased p53 expression but had no effect on p21 (a p53-dependent gene). Our data corroborate NIS involvement in I uptake and support the notion that another transporter mediates I2 uptake. Iodine did not prevent cancer progression. This result could be explained by a strong inactivation of the p53 pathway by TAG antigens.  相似文献   

13.

Background

Prostate cancer (PCa) is the most common malignancy among men in the United States. Though highly sensitive, the often-used prostate-specific antigen (PSA) test has low specificity which leads to overdiagnosis and overtreatment of PCa. This paper presents results of a retrospective study that indicates that testing for macrophage inhibitory cytokine 1 (MIC-1) concentration along with the PSA assay could provide much improved specificity to the assay.

Methods

The MIC-1 serum level was determined by a novel p-Chip-based immunoassay run on 70 retrospective samples. The assay was configured on p-Chips, small integrated circuits (IC) capable of storing in their electronic memories a serial number to identify the molecular probe immobilized on its surface. The distribution of MIC-1 and pre-determined PSA concentrations were displayed in a 2D plot and the predictive power of the dual MIC-1/PSA assay was analyzed.

Results

MIC-1 concentration in serum was elevated in PCa patients (1.44 ng/ml) compared to normal and biopsy-negative individuals (0.93 ng/ml and 0.88 ng/ml, respectively). In addition, the MIC-1 level was correlated with the progression of PCa. The area under the receiver operator curve (AUC-ROC) was 0.81 providing an assay sensitivity of 83.3% and specificity of 60.7% by using a cutoff of 0.494 for the logistic regression value of MIC-1 and PSA. Another approach, by defining high-frequency PCa zones in a two-dimensional plot, resulted in assay sensitivity of 78.6% and specificity of 89.3%.

Conclusions

The analysis based on correlation of MIC-1 and PSA concentrations in serum with the patient PCa status improved the specificity of PCa diagnosis without compromising the high sensitivity of the PSA test alone and has potential for PCa prognosis for patient therapy strategies.  相似文献   

14.

Background

Current management of patients diagnosed with prostate cancer (PCa) is very effective; however, tumor recurrence with Castrate Resistant Prostate Cancer (CRPC) and subsequent metastasis lead to poor survival outcome, suggesting that there is a dire need for novel mechanistic understanding of tumor recurrence, which would be critical for designing novel therapies. The recurrence and the metastasis of PCa are tightly linked with the biology of prostate cancer stem cells or cancer-initiating cells that is reminiscent of the acquisition of Epithelial to Mesenchymal Transition (EMT) phenotype. Increasing evidence suggests that EMT-type cells share many biological characteristics with cancer stem-like cells.

Methodology/Principal Findings

In this study, we found that PCa cells with EMT phenotype displayed stem-like cell features characterized by increased expression of Sox2, Nanog, Oct4, Lin28B and/or Notch1, consistent with enhanced clonogenic and sphere (prostasphere)-forming ability and tumorigenecity in mice, which was associated with decreased expression of miR-200 and/or let-7 family. Reversal of EMT by re-expression of miR-200 inhibited prostasphere-forming ability of EMT-type cells and reduced the expression of Notch1 and Lin28B. Down-regulation of Lin28B increased let-7 expression, which was consistent with repressed self-renewal capability.

Conclusions/Significance

These results suggest that miR-200 played a pivotal role in linking the characteristics of cancer stem-like cells with EMT-like cell signatures in PCa. Selective elimination of cancer stem-like cells by reversing the EMT phenotype to Mesenchymal-Epithelial Transition (MET) phenotype using novel agents would be useful for the prevention of tumor recurrence especially by eliminating those cells that are the “Root Cause” of tumor development and recurrence.  相似文献   

15.
New Zealand Black (NZB) mice, a de novo model of CLL, share multiple characteristics with CLL patients, including decreased expression of miR-15a/16-1. We previously discovered a point mutation and deletion in the 3'' flanking region of mir-16-1 of NZB and a similar mutation has been found in a small number of CLL patients. However, it was unknown whether the mutation is the cause for the reduced miR-15a/16-1 expression and CLL development. Using PCR and in vitro microRNA processing assays, we found that the NZB sequence alterations in the mir-15a/16-1 loci result in deficient processing of the precursor forms of miR-15a/16-1, in particular, we observe impaired conversion of pri-miR-15a/16-1 to pre-miR-15a/16-1. The in vitro data was further supported by derivation of congenic strains with replaced mir-15a/16-1 loci at one or both alleles: NZB congenic mice (NmiR+/-) and DBA congenic mice (DmiR-/-). The level of miR-15a/16-1 reflected the configuration of the mir-15a/16-1 loci with DBA congenic mice (DmiR-/-) showing reduced miR-15a levels compared to homozygous wild-type allele, while the NZB congenic mice (NmiR+/-) showed an increase in miR-15a levels relative to homozygous mutant allele. Similar to Monoclonal B-cell Lymphocytosis (MBL), the precursor stage of the human disease, an overall expansion of the B-1 population was observed in DBA congenic mice (DmiR-/-) relative to wild-type (DmiR+/+). These studies support our hypothesis that the mutations in the mir-15a/16-1 loci are responsible for decreased expression of this regulatory microRNA leading to B-1 expansion and CLL development.  相似文献   

16.
Human chromosomal region 13q14 is a deletion hotspot in prostate cancer, multiple myeloma, and chronic lymphocytic leukemia. This region is believed to host multiple tumor suppressors. Chromosome Condensation 1-like (CHC1L) is located at 13q14, and found within the smallest common region of loss of heterozygosity in prostate cancer. Decreased expression of CHC1L is linked to pathogenesis and progression of both prostate cancer and multiple myeloma. However, there is no direct evidence for CHC1L’s putative tumor suppressing role in current literature. Presently, we describe the generation and characterization of Chc1L knockout mice. Chc1L -/- mice do not develop cancer at a young age, but bone marrow and spleen cells from 8–12 week-old mice display an exaggerated proliferative response. By approximately two years of age, knockout and heterozygote mice have a markedly increased incidence of tumorigenesis compared to wild-type controls, with tumors occurring mainly in the spleen, mesenteric lymph nodes, liver and intestinal tract. Histopathological analysis found that most heterozygote and knockout mice succumb to either Histiocytic Sarcoma or Histiocyte-Associated Lymphoma. Our study suggests that Chc1L is involved in suppression of these two histiocyte-rich neoplasms in mice and supports clinical data suggesting that CHC1L loss of function is an important step in the pathogenesis of cancers containing 13q14 deletion.  相似文献   

17.
Caveolin-1 (Cav-1) is the primary structural component of caveolae and is implicated in the processes of vesicular transport, cholesterol balance, transformation, and tumorigenesis. Despite an abundance of data suggesting that Cav-1 has transformation suppressor properties both in vitro and in vivo, Cav-1 is expressed at increased levels in human prostate cancer. To investigate the role of Cav-1 in prostate cancer onset and progression, we interbred Cav-1(-/-) null mice with a TRAMP (transgenic adenocarcinoma of mouse prostate) model that spontaneously develops advanced prostate cancer and metastatic disease. We found that, although the loss of Cav-1 did not affect the appearance of minimally invasive prostate cancer, its absence significantly impeded progression to highly invasive and metastatic disease. Inactivation of one (+/-) or both (-/-) alleles of Cav-1 resulted in significant reductions in prostate tumor burden, as well as decreases in regional lymph node metastases. Moreover, further examination revealed decreased metastasis to distant organs, such as the lungs, in TRAMP/Cav-1(-/-) mice. Utilizing prostate carcinoma cell lines (C1, C2, and C3) derived from TRAMP tumors, we also showed a positive correlation between Cav-1 expression and the ability of these cells to form tumors in vivo. Furthermore, down-regulation of Cav-1 expression in these cells, using a small interfering RNA approach, significantly reduced their tumorigenic and metastatic potential. Mechanistically, we showed that loss or down-regulation of Cav-1 expression results in increased apoptosis, with increased prostate apoptosis response factor-4 and PTEN levels in Cav-1(-/-) null prostate tumors. Our current findings provide the first in vivo molecular genetic evidence that Cav-1 does indeed function as a tumor promoter during prostate carcinogenesis, rather than as a tumor suppressor.  相似文献   

18.
Prostate cancer (PC) is a leading cause of death in men however the factors that regulate its progression and eventual metastasis to bone remain unclear. Here we show that WISP1/CCN4 expression in prostate cancer tissues was up-regulated in early stages of the disease and, further, that it correlated with increased circulating levels of WISP1 in the sera of patients at early stages of the disease. WISP1 was also elevated in the mouse prostate cancer model TRAMP in the hypoplastic diseased tissue that develops prior to advanced carcinoma formation. When the ability of anti-WISP1 antibodies to reduce the spread of PC3-Luc cells to distant sites was tested it showed that twice weekly injections of anti-WISP1 antibodies reduced the number and overall size of distant tumors developed after intracardiac (IC) injection of PC3-Luc cells in mice. The ability of antibodies against WISP1 to inhibit growth of PC3-Luc cancer cells in mice was also evaluated and showed that twice weekly injections of anti-WISP1 antibodies reduced local tumor growth when examined in xenografts. To better understand the mechanism of action, the migration of PC3-Luc cells through membranes with or without a Matrigel™ barrier showed the cells were attracted to WISP1, and that this attraction was inhibited by treatment with anti-WISP1 antibodies. We also show the expression of WISP1 at the bone-tumor interface and in the stroma of early grade cancers suggested WISP1 expression is well placed to play roles in both fostering growth of the cancer and its spread to bone. In summary, the up-regulation of WISP1 in the early stages of cancer development coupled with its ability to inhibit spread and growth of prostate cancer cells makes it both a potential target and an accessible diagnostic marker for prostate cancer.  相似文献   

19.
Higher levels of macrophage inhibitory cytokine‐1, also known as growth differentiation factor 15 (MIC‐1/GDF15), are associated with adverse health outcomes and all‐cause mortality. The aim of this study was to examine the relationships between MIC‐1/GDF15 serum levels and global cognition, five cognitive domains, and mild cognitive impairment (MCI), at baseline (Wave 1) and prospectively at 2 years (Wave 2), in nondemented participants aged 70–90 years. Analyses were controlled for age, sex, education, Framingham risk score, history of cerebrovascular accident, acute myocardial infarction, angina, cancer, depression, C‐reactive protein, tumor necrosis factor‐α, interleukins 6 and 12, and apolipoprotein ε4 genotype. Higher MIC‐1/GDF15 levels were significantly associated with lower global cognition at both waves. Cross‐sectional associations were found between MIC‐1/GDF15 and all cognitive domains in Wave 1 (all < 0.001) and between processing speed, memory, and executive function in Wave 2 (all < 0.001). Only a trend was found for the prospective analyses, individuals with high MIC‐1/GDF15 at baseline declined in global cognition, executive function, memory, and processing speed. However, when categorizing MIC‐1/GDF15 by tertiles, prospective analyses revealed statistically significant lower memory and executive function in Wave 2 in those in the upper tertile compared with the lower tertile. Receiver operating characteristics (ROC) analysis was used to determine MIC‐1/GDF15 cutoff values associated with cognitive decline and showed that a MIC‐1/GDF15 level exceeding 2764 pg/ml was associated with a 20% chance of decline from normal to MCI or dementia. In summary, MIC‐1/GDF15 levels are associated with cognitive performance and cognitive decline. Further research is required to determine the pathophysiology of this relationship.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号