首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 299 毫秒
1.
The effect of various anti-inflammatory drugs on the production of prostaglandins E2 and F2 alpha, 6 keto PGF1 alpha and thromboxane B2 by bovine articular chondrocytes was measured by radioimmunoassay. While indomethacin and meclofenamic acid caused a dose-dependent inhibition of all prostanoids measured, the effects of hydrocortisone and colchicine varied with respect to different prostanoids. Hydrocortisone (10(-7)M - 10(-13)M) both in the presence and absence of added arachidonic acid, resulted in an inhibition of prostaglandins E2 and F2 alpha, and to a lesser extent, 6 keto PGF 1 alpha, but TxB2 production was only slightly inhibited by the drug in the absence of arachidonic acid and markedly increased in its presence. Colchicine (10(-7)M-10(-3)M) had the opposite effect, causing an inhibition of TxB2 and stimulating PGE2 and 6 keto PGF1 alpha production. These findings suggest that certain anti-inflammatory drugs may, in addition to their action on phospholipase A2 and cyclo-oxygenases, exert potent effects at the level of the different synthetases. In order to see whether these alterations in relative prostanoid levels affected proteoglycan metabolism, the effect of anti-inflammatory drugs on proteoglycan synthesis by cultured chondrocytes was tested using 35SO4 labeling methodology. The results showed that at the concentrations tested (10(-5)M to 10(-7)M), indomethacin, dexamethasone, hydrocortisone and colchicine inhibited 35SO4 incorporation into newly synthesized proteoglycan molecules both in the presence (10(-6)M) and absence of exogenous arachidonic acid. In the same concentration range chloroquine had no effect. These results do not support the hypothesis of direct prostanoid involvement in the modulation of proteoglycan synthesis in articular cartilage.  相似文献   

2.
The association of hyaluronate with the surface of chondrocytes was examined by several approaches using primary cultures of chondrocytes derived from the Swarm rat chondrosarcoma. In culture, chondrosarcoma chondrocytes produced large pericellular coats, which can be visualized by particle exclusion, and which can be removed by Streptomyces hyaluronidase. Exposure of chondrocytes, which had been metabolically labelled with 3H-acetate, to exogenous hyaluronate or to Streptomyces hyaluronidase resulted in the release of 36-38% of the endogenous, labelled chondroitin sulfate from the cell layer into the incubation solution. These results imply that at least 37% of the cell layer chondroitin sulfate proteoglycan is retained there by an interaction with hyaluronate. Thus membranes were prepared from cultured chondrocytes and examined for sites which bind 3H-hyaluronate. Binding was observed and found to be saturable, specific for hyaluronate, of high affinity (Kd = approximately 10(-10) M), and destroyed by treating the membranes with trypsin. The 3H-hyaluronate-binding activity was inhibited competitively by hyaluronate decasaccharides but not by hexasaccharides or octasaccharides, indicating that the binding sites recognize a sequence of hyaluronate composed of five disaccharide repeats. The binding activity was partially purified from a detergent extract of chondrocyte membranes by ion exchange chromatography on DEAE-cellulose, followed by affinity chromatography on wheat germ agglutinin-agarose. Analysis of the partially purified binding activity by SDS-PAGE revealed five protein bands of 48,000-66,000 daltons in silver-stained gels. SDS-PAGE followed by Western blotting and exposure to monoclonal antibodies which recognize epitopes present in link protein and in the hyaluronate-binding region of cartilage proteoglycan revealed no immunoreactive protein bands in the partially purified material. We conclude that one mechanism by which hyaluronate associates with the chondrocyte surface may be via interaction with a membrane-bound hyaluronate-binding protein which is distinct from link protein and proteoglycan.  相似文献   

3.
The catabolism of 35S-labeled aggrecan and loss of tissue glycosaminoglycans was investigated using bovine articular cartilage explant cultures maintained in medium containing 10(-6) M retinoic acid or 40 ng/ml recombinant human interleukin-1alpha (rHuIL-1alpha) and varying concentrations (1-1000 microg/ml) of sulfated glycosaminoglycans (heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate) and calcium pentosan polysulfate (10 microg/ml). In addition, the effect of the sulfated glycosaminoglycans and calcium pentosan polysulfate on the degradation of aggrecan by soluble aggrecanase activity present in conditioned medium was investigated. The degradation of 35S-labeled aggrecan and reduction in tissue levels of aggrecan by articular cartilage explant cultures stimulated with retinoic acid or rHuIL-1alpha was inhibited by heparin and heparan sulfate in a dose-dependent manner and by calcium pentosan polysulfate. In contrast, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate did not inhibit the degradation of 35S-labeled aggrecan nor suppress the reduction in tissue levels of aggrecan by explant cultures of articular cartilage. Heparin, heparan sulfate and calcium pentosan polysulfate did not adversely affect chondrocyte metabolism as measured by lactate production, incorporation of [35S]-sulfate or [3H]-serine into macromolecules by articular cartilage explant cultures. Furthermore, heparin, heparan sulfate and calcium pentosan polysulfate inhibited the proteolytic degradation of aggrecan by soluble aggrecanase activity. These results suggest that highly sulfated glycosaminoglycans have the potential to influence aggrecan catabolism in articular cartilage and this effect occurs in part through direct inhibition of aggrecanase activity.  相似文献   

4.
5.
Chondrocyte cultures were developed from the cell outgrowths of explanted human nonarthritic and osteoarthritic human cartilage. Two significant differences in sulfated proteoglycan synthesis were demonstrated between the chondrocytes obtained in this manner. With 35SO4 to measure newly synthesized proteoglycan, we found that chondrocytes derived from osteoarthritic cartilage secreted significantly less (P less than 0.05) high density proteoglycan into the culture medium than did chondrocytes from nonarthritic cartilage after 20 hr of radiolabeling. This reduced amount of high density proteoglycan was sustained when chondrocytes were maintained in unlabeled culture medium ("chase" medium). In addition, the osteoarthritic chondrocytes secreted an increased amount of low density proteoglycan when compared with their nonarthritic counterparts. The elution profile of secreted high density proteoglycan isolated from the osteoarthritic chondrocyte culture medium was assessed by gel filtration on Sepharose CL-2B and revealed the presence of two proteoglycan subpopulations (Kav, 0.25, 0.58), whereas only one proteoglycan series (Kav, 0.37) was seen in the high density fraction of nonarthritic chondrocyte culture medium. Similar gel filtration profiles were also obtained when chondrocytes were maintained in chase medium. The results of this study demonstrated that stable differences in proteoglycan synthesis, but not in intracellular processing, exist between nonarthritic and osteoarthritic chondrocytes. The findings are noteworthy in that these differences were not previously apparent when organ-cultured cartilage was used to assess putative alterations in proteoglycans between the two groups.  相似文献   

6.
Lipopolysaccharide (LPS) induces matrix degradation and markedly stimulates the production of several cytokines, i.e., interleukin-1β, −6, and −10, by disc cells and chondrocytes. We performed a series of experiments to compare cellular responses of cells from the bovine intervertebral disc (nucleus pulposus and annulus fibrosus) and from bovine articular cartilage to LPS. Alginate beads containing cells isolated from bovine intervertebral discs and articular cartilage were cultured with or without LPS in the presence of 10% fetal bovine serum. The DNA content and the rate of proteoglycan synthesis and degradation were determined. In articular chondrocytes, LPS strongly suppressed cell proliferation and proteoglycan synthesis in a dose-dependent manner and stimulated proteoglycan degradation. Compared with articular chondrocytes, nucleus pulposus cells responded in a similar, although less pronounced manner. However, treatment of annulus fibrosus cells with LPS showed no significant effects on proteoglycan synthesis or degradation. A slight, but statistically significant, inhibition of cell proliferation was observed at high concentrations of LPS in annulus fibrosus cells. Thus, LPS suppressed proteoglycan synthesis and stimulated proteoglycan degradation by articular chondrocytes and nucleus pulposus cells. The effects of LPS on annulus fibrosus cells were minor compared with those on the other two cell types. The dissimilar effects of LPS on the various cell types suggest metabolic differences between these cells and may further indicate a divergence in pathways of LPS signaling and a differential sensitivity to exogenous stimuli such as LPS.This work was supported in part by NIH grants 2-P50-AR39239 and 1-P01-AR48152.  相似文献   

7.
While not generally viewed as physiologically significant in articular cartilage, substantial tension can develop in fibrocartilage structures and in articular cartilage injuries. This study examined how different amplitudes of cyclic tension influence chondrocyte matrix synthesis. Bovine articular chondrocytes seeded in fibrin gels were loaded continuously for 48 hours at 1.0 Hz with displacements of 5%, 10%, or 20%. Protein and proteoglycan synthesis were measured by (3)H-proline and (35)S-sulfate incorporation, respectively. A poroelastic finite element model of the fibrin gel was developed to determine the strain distributions, hydrostatic pressures, and fluid velocities within the constructs at the various levels of displacement. Compared to unloaded controls, 10% and 20% displacements inhibited proteoglycan synthesis to the same extent, while 5% displacement had no effect. Tensile loading did not significantly affect protein synthesis. The finite element model predicted a wide range of strains and fluid velocities within the region of the gel analyzed for matrix synthesis, and the ranges overlapped for the different levels of displacement. These results indicate that the cyclic tension amplitude influences chondrocyte proteoglycan synthesis and that there may be a threshold in the response.  相似文献   

8.
9.
The synthesis and turnover in vivo of 35S-labelled proteoglycans in mouse cervical, thoracic and lumbar intervertebral discs, and in costal cartilage, was investigated after intraperitoneal injection of [35S]sulphate. Intervertebral discs and costal cartilage synthesize similar amounts of 35S-labelled proteoglycans per microgram of DNA. Discs and cartilage all synthesize a major proteoglycan species (approx. 85%) of large hydrodynamic size and a minor species (approx. 15%) of small size. Both proteoglycans carry chondroitin sulphate chains. Keratan sulphate was not found associated with either species. The total 35S-labelled proteoglycan pool had a metabolic half-life (t1/2) of 10-12 days in discs, and 17 days in cartilage. The extractable major and minor species turned over at similar rates. Those proteoglycans left in the tissue after 29 days turn over very slowly. Approx. 50% of the major 35S-labelled proteoglycan species formed mixed aggregates with hyaluronic acid and rat chondrosarcoma proteoglycan. The ability to form aggregates did not decrease up to 45 days after synthesis. Of the heterogeneous population of proteoglycans comprising the major species, those remaining in the tissue 9 days after synthesis were of smaller average hydrodynamic size and had shorter chondroitin sulphate side chains than the average size at the time of synthesis. With increasing time after synthesis, proteoglycans were less readily extracted from the tissue by 4.0 M-guanidinium chloride than at the time of synthesis.  相似文献   

10.
Lapine articular chondrocytes in vitro were used to study the effects of Fe3+, Fe2+, ferritin and haemoglobin on cell proliferation, synthesis of proteoglycans and morphological structure. Fe3+ (10, 100 and 500 micrograms/ml) reduced the DNA content of cultures by approximately 35% as well as inhibiting proteoglycan synthesis. Chondrocytes showed positive cytoplasmic staining for both ferric and ferrous ions at the 500 micrograms/ml concentration. Fe2+ (100 micrograms/ml) also decreased DNA content and proteoglycan synthesis, although no iron uptake by the chondrocytes could be detected. Ferritin (1.0, 0.5 and 0.1 micrograms/ml) elicited a significant inhibition of proteoglycan synthesis without affecting cellular DNA synthesis. 1 and 5 micrograms/ml of haemoglobin each reduced the DNA content of cultures by 60%, whilst markedly inhibiting proteoglycan synthesis (75 and 99% respectively). None of the substances tested caused chondrocyte toxicity. The ability of Fe3+, Fe2+, ferritin and, in particular, haemoglobin to inhibit chondrocyte proteoglycan synthesis may represent a pathway whereby cartilage is susceptible to destruction in the haemophilic joint.  相似文献   

11.
Clinical observations have suggested a relationship between osteoarthritis and a changed estrogen metabolism in menopausal women. Phytoestrogens have been shown to ameliorate various menopausal symptoms. Proteoglycans (PG) consisting of low and high sulfated glycosaminoglycans (GAG) are the main components of articular cartilage matrix, and their synthesis is increased by insulin in growth plate cartilage. We have investigated whether GAG synthesis and sodium [35S]sulfate incorporation in female bovine articular chondrocytes are affected by daidzein, genistein, and/or insulin. For comparative purposes, estradiol incubations were performed. Articular chondrocytes were cultured in monolayers at 5% O2 and 5% CO2 in medium containing serum for 7 days followed by the addition of 10(-11) M-10(-4) M daidzein, genistein, 17beta-estradiol, or 5 microg/ml insulin in a serum-free culture phase of 2 days. Photometrically analyzed GAG synthesis was significantly suppressed by high doses (10(-5) M-10(-4) M) of daidzein, genistein, and 17beta-estradiol. Although insulin raised the sodium [35S]sulfate uptake significantly, different concentrations of daidzein, genistein, or 17beta-estradiol showed no significant effects. However, the stimulating effect of insulin on sulfate incorporation was enhanced significantly after preincubation of cells with 10(-11) M-10(-5) M daidzein or 10(-9) M-10(-5) M genistein but not by 17beta-estradiol. In view of the risks of long-term estrogen replacement therapy, further experiments should clarify the potential benefit of phytoestrogens and insulin in articular cartilage metabolism.  相似文献   

12.
Forskolin, a plant cardiotonic diterpene, stimulated proteoglycan biosynthesis by chondrocytes in monolayer culture. The quantitative increase in proteoglycans was dependent on the concentration of forskolin, but was relatively independent of the presence of serum. At forskolin concentrations that stimulated proteoglycan synthesis, a significant stimulation of adenylate cyclase and cAMP was also measured. The quantitative increase in proteoglycans was characterized, qualitatively, by an increased deposition of newly synthesized proteoglycan in the cell-associated fraction. An analysis of the most dense proteoglycans (fraction dA1) in the cell-associated fraction showed that more of the proteoglycans eluted in the void volume of a Sepharose CL-2B column, indicating that an increased amount of proteoglycan aggregate was synthesized in forskolin-treated cultures. The proteoglycan monomer dA1D1 secreted into the culture medium of forskolin-stimulated cultures overlapped in hydrodynamic size with that of control cultures, although cultures stimulated with forskolin and phosphodiesterase inhibitors produced even larger proteoglycans. The hydrodynamic size of 35SO4 and 3H-glucosamine-labelled glycosaminoglycans isolated from the dA1D1 fraction of the culture medium was greater in forskolin-treated chondrocytes, especially from those in which phosphodiesterase inhibitors had been added. These results indicated that forskolin, a direct activator of chondrocyte adenylate cyclase mimicked the effects of cAMP analogues on chondrocyte proteoglycan synthesis previously reported. These results implicate activation of adenylate cyclase as a regulatory event in the biosynthesis of cartilage proteoglycans, and more specifically in the production of hydrodynamically larger glycosaminoglycans.  相似文献   

13.
The effect of glucocorticoids on sulfated proteoglycan synthesis by rabbit costal chondrocyte cultures exposed to serum-free conditions has been examined. Low density cultures of rabbit costal chondrocytes were maintained on dishes coated with extracellular matrix produced by bovine corneal endothelial cells and exposed to a 9:1 mixture (v/v) of Dulbecco's modified Eagle's medium and Ham's F-12 medium supplemented with transferrin, high density lipoproteins, fibroblast growth factor, and insulin (Medium A). Chondrocytes maintained in the presence of Medium A supplemented with 10(-7) M hydrocortisone reorganized, at confluence, into a homogeneous cartilage-like tissue composed of round cells surrounded by a refractile matrix in which abundant thin collagen fibrils characteristic of type II collagen were observed. The cell ultrastructure and fibrils of the pericellular matrix were similar to those seen in vivo. In contrast, cells maintained in the presence of Medium A alone, once they reached confluence, formed a fibroblastic multilayer and produced thick collagen bundles. The level of 35SO4(2-) incorporated into large cartilage-specific proteoglycans in glucocorticoid-supplemented cultures was 33-fold higher than that of glucocorticoid-free cultures. The level of 35SO4(2-) incorporated into small ubiquitous proteoglycans was only 4-fold higher than that of glucocorticoid-free cultures. On the other hand, the level of [3H]glucosamine incorporated into hyaluronate in glucocorticoid-supplemented cultures was 4.5-fold lower than that of glucocorticoid-free cultures. Within 24 h of their addition to confluent cultures, hydrocortisone or dexamethasone markedly stimulated proteoglycan synthesis. This effect was not mimicked by androgens, estrogens, progesterone, or an inactive form of glucocorticoids such as deoxycorticosterone. This suggests that glucocorticoids have a direct and specific stimulatory effect on cartilage-specific proteoglycan synthesis and are essential for the maintenance of this synthesis in low density chondrocyte cultures.  相似文献   

14.
Inhibitors of p38 mitogen-activated protein kinase (MAPK) diminish inflammatory arthritis in experimental animals. This may be effected by diminishing the production of inflammatory mediators, but this kinase is also part of the IL-1 signal pathway in articular chondrocytes. We determined the effect of p38 MAPK inhibition on proliferative and synthetic responses of lapine chondrocytes, cartilage, and synovial fibroblasts under basal and IL-1-activated conditions.Basal and growth factor-stimulated proliferation and proteoglycan synthesis were determined in primary cultures of rabbit articular chondrocytes, first-passage synovial fibroblasts, and cartilage organ cultures. Studies were performed with or without p38 MAPK inhibitors, in IL-1-activated and control cultures. Media nitric oxide and prostaglandin E2 were assayed.p38 MAPK inhibitors blunt chondrocyte and cartilage proteoglycan synthesis in response to transforming growth factor beta; responses to insulin-like growth factor 1 (IGF-1) and fetal calf serum (FCS) are unaffected. p38 MAPK inhibitors significantly reverse inhibition of cartilage organ culture proteoglycan synthesis by IL-1. p38 MAPK inhibition potentiated basal, IGF-1-stimulated and FCS-stimulated chondrocyte proliferation, and reversed IL-1 inhibition of IGF-1-stimulated and FCS-stimulated DNA synthesis. Decreases in nitric oxide but not prostaglandin E2 synthesis in IL-1-activated chondrocytes treated with p38 MAPK inhibitors are partly responsible for this restoration of response. Synovial fibroblast proliferation is minimally affected by p38 MAPK inhibition.p38 MAPK activity modulates chondrocyte proliferation under basal and IL-1-activated conditions. Inhibition of p38 MAPK enhances the ability of growth factors to overcome the inhibitory actions of IL-1 on proliferation, and thus could facilitate restoration and repair of diseased and damaged cartilage.  相似文献   

15.
The effects of 1,25-dihydroxycholecalciferol (1,25-(OH)2D3) (10(-13)M-10(-8) M) and 24R ,25-dihydroxycholecalciferol ( 24R ,25-(OH)2D3) (10(-12)M-10(-7) M) on cell proliferation and proteoglycan deposition were examined in our newly developed multilayer culture system for rabbit and human articular chondrocytes. The cells are embedded in an extracellular matrix similar to that seen in vivo and maintain their in vivo phenotype. We extracted and purified native proteoglycans and degraded material from three culture compartments: the medium, intercellular matrix, and cells. Proteoglycan synthesis and deposition were analyzed by measuring 35SO4 incorporation, hexuronic acid, and galactose contents. In both rabbit and human chondrocyte cultures, chronic 1,25-(OH)2D3 treatment inhibited chondrocyte proliferation and stimulated proteoglycan synthesis and accumulation in the three compartments at 10(-12)-10(-8) M; maximal effect was at 10(-10)M. Cell proliferation was reduced by 55% and the content of hexuronic acid (or galactose) was increased to about three times that of controls in all compartments. 1,25-(OH)2D3 did not alter the proteoglycan composition. Chronic 24R ,25-(OH)2D3 treatment induced comparable effects with a maximum at 10(-8)M. When human dermal fibroblasts were treated as above both vitamin D metabolites increase mitosis. 1,25-(OH)2D3 mainly reduced the pericellular deposition of proteoglycans, while 24R ,25-(OH)2D3 appeared to reduce their synthesis and deposition in both medium and pericellular compartments. These results suggest that both 1,25-(OH)2D3 and 24R ,25-(OH)2D3 act specifically on articular chondrocytes to promote phenotype expression.  相似文献   

16.
Swarm rat chondrosarcoma chondrocytes produce an inhibitor of collagenase similar to that found in bovine articular chondrocytes and extracts of bovine scapular cartilage. These cells synthesize normal levels of cartilage type proteoglycans when cultured in serum free medium with insulin. Collagen synthesis is also increased when insulin is added to chondrosarcoma chondrocytes. We have demonstrated that insulin stimulates collagenase inhibitor production by these chondrocytes. Enhancement of inhibitory activity occurs over the range of 10 to 1000 ng/ml. A 3.2 fold stimulation was observed at a concentration of 1 microgram/ml. There was a lag period of 24 to 48 hours before the insulin effect became evident. Latent or active collagenase was not detectable under these conditions. These results suggest that the hormone insulin controls the levels of collagen in this tumor by stimulating synthesis of collagen and inhibitors of collagenase.  相似文献   

17.
The effect of cell culture age and concomitant changes in cell density on the biosynthesis of sulfated-proteoglycan by rabbit articular chondrocytes in secondary monolayer culture was studied. Low density (LD, 2 d), middle density (MD, 5-7 d), and high density (HD, 12-15 d) cultures demonstrated changes in cellular morphology and rates of DNA synthesis. DNA synthesis was highest at LD to MD densities, but HD cultures continued to incorporate [3H]-thymidine. LD cultures incorporated 35SO4 into sulfated-proteoglycans at a higher rate than MD or LD cultures. The qualitative nature of the sulfated-proteoglycans synthesized at the different culture ages were analyzed by assessing the distribution of incorporated 35SO4 in associative and dissociative CsCl density gradients and by elution profiles on Sepharose CL-2B. Chondrocytes deposited into the extracellular matrix (cell-associated fraction) 35SO4-labeled proteoglycan aggregate. More aggregated proteoglycan was found in the MD and HD cultures than at LD. A 35SO4-labeled aggregated proteoglycan of smaller hydrodynamic size than that found in the cell-associated fraction was secreted into the culture medium at each culture age. The proteoglycan monomer (A1D1) of young and older cultures had similar hydrodynamic sizes at all cell culture ages and cell densities. The glycosaminoglycan chains of A1D1 were hydrodynamically larger in the younger LD cultures than in the older HD cultures and consisted of only chondroitin 6 and 4 sulfate chains. A small amount of chondroitin 4,6 sulfate was detected, but no keratan sulfate was measured. The A1D2 fractions of young LD cultures contained measurable amounts of dermatan sulfate; no dermatan sulfate was found in older MD or HD cultures. These studies indicated that chondrocytes at LD synthesized a proteoglycan monomer with many of the characteristics of young immature articular cartilage of rabbits. These results also indicated that rapidly dividing chondrocytes were capable of synthesizing proteoglycans which form aggregates with hyaluronic acid. Culture age and cell density appears primarily to modulate the synthesis of glycosaminoglycan types and chain length. Whether or not these glycosaminoglycans are found on the same or different core proteins remains to be determined.  相似文献   

18.
Arthritis is characterised by the proteolytic degradation of articular cartilage leading to a loss of joint function. Articular cartilage is composed of an extracellular matrix of proteoglycans and collagens. We have previously shown that serine proteinases are involved in the activation cascades leading to cartilage collagen degradation. The aim of this study was to use an active-site probe, biotinylated fluorophosphonate, to identify active serine proteinases present on the chondrocyte membrane after stimulation with the pro-inflammatory cytokines IL-1 and oncostatin M (OSM), agents that promote cartilage resorption. Fibroblast activation protein alpha (FAPalpha), a type II integral membrane serine proteinase, was identified on chondrocyte membranes stimulated with IL-1 and OSM. Real-time PCR analysis shows that FAPalpha gene expression is up-regulated by this cytokine combination in both isolated chondrocytes and cartilage explant cultures and is significantly higher in cartilage from OA patients compared to phenotypically normal articular cartilage. Immunohistochemistry analysis shows FAPalpha expression on chondrocytes in the superficial zone of OA cartilage tissues. This is the first report demonstrating the expression of active FAPalpha on the chondrocyte membrane and elevated levels in cartilage from OA patients. Its cell surface location and expression profile suggest that it may have an important pathological role in the cartilage turnover prevalent in arthritic diseases.  相似文献   

19.
The object of this study was to determine whether changes in the synovial fluid (SF) induced by in vivo loading can alter the metabolic activity of chondrocytes in vitro, and, if so, whether insulin-like growth factor-I (IGF-I) is responsible for this effect. Therefore, SF was collected from ponies after a period of box rest and after they had been exercised for a week. Normal, unloaded articular cartilage explants were cultured in 20% solutions of these SFs for 4 days and chondrocyte bioactivity was determined by glycosaminoglycan (GAG) turnover (i.e., the incorporation of 35SO4 into GAG and the release of GAG into the medium). Furthermore, the extent to which the bioactivity is IGF-I-dependent was determined in a cartilage explant culture in 20% SF, in the presence and absence of anti-IGF-I antibodies. In explants cultured in post-exercise SF, GAG synthesis was enhanced and GAG release was diminished when compared to cultures in pre-exercise SF. SF analysis showed that IGF-I and IGFBP-3 levels were increased in post-exercise SF. There was a positive correlation between IGF-I levels and proteoglycan synthesis, but no correlation between IGF-I levels and proteoglycan release. Addition of anti-IGF-I antibodies significantly inhibited stimulation of proteoglycan synthesis in explants cultured in SF with 40%. However, there was no difference in inhibition of proteoglycan synthesis between pre- and post-exercise SF which indicated that the relative contribution of IGF-I in the stimulating effect of SF did not change. Proteoglycan release was not influenced by the presence of anti-IGF-I antibodies. It is concluded that chondrocyte metabolic activity is at least partially regulated by changes in the SF induced by in vivo loading. Exercise altered the SF in a way that it had a favourable effect on cartilage PG content by enhancing the PG synthesis and reducing the PG breakdown. IGF-I is an important contributor to the overall stimulating effect of SF on cartilage metabolism. It is, however, unlikely that IGF-I is the only mediator in the exercise-induced increase in this stimulating effect.  相似文献   

20.
The effect of vanadate on proteoglycan synthesis by cultured rabbit costal chondrocytes was examined. Rabbit chondrocytes were seeded at low densities and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of 4 microM vanadate to the culture medium induced a morphologic differentiation of the fibroblastic cells to spherical chondrocytes, and increased by two- to threefold incorporation of [35S]sulfate and [3H]glucosamine into large, chondroitin sulfate proteoglycans. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, in that chemical analyses showed increases in the accumulation of macromolecules containing hexuronic acid and hexosamine in vanadate-maintained cultures. However, vanadate had only a marginal effect on [35S]sulfate incorporation into small proteoglycans and [3H]glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant material. These results provide evidence that vanadate selectively stimulates the synthesis of proteoglycans characteristically found in cartilage by rabbit costal chondrocyte cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号