首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
Fusarium head blight (FHB) is one of the most devastating wheat diseases, causing both yield loss and quality reduction. To detect quantitative trait loci (QTL) responsible for FHB resistance, plants of the F 2:3 population derived from a ‘Wangshui-bai’ × ‘Sy95-7’ cross were artificially inoculated. Of 396 simple sequence repeats (SSRs), 125 amplified fragment length polymorphisms were used for FHB resistance QTL analysis. Five QTLs for FHB resistance were detected on chromosomes 3B, 6B, 7A, 1B and 2D. The effect of the QTL located on chromosome 3B on phenotypic variation was 31.69%, while that of the QTL found on 2D was the smallest and only accounted for 4.98% of the variation. The resistance alleles originated from ‘Wangshibai’ and association of the QTLs using these SSR markers may facilitate marker-assisted selection to improve FHB resistance in the wheat breeding programs of southwest China.  相似文献   

2.
Fusarium head blight (FHB, scab) is a fungal disease of wheat and other small cereals that is found in both temperate and semi-tropical regions. FHB causes severe yield and quality losses, but the most-serious concern is the possible mycotoxin contamination of cereal food and feed. Breeding for FHB resistance by conventional selection is feasible, but tedious and expensive. This study was conducted to identify and map DNA markers associated with FHB resistance genes in wheat. A population of 364 F1-derived doubled-haploid (DH) lines from the cross ’CM-82036’ (resistant)/’Remus’ (susceptible) was evaluated for Type II resistance (spread within the spike) during 2 years under field conditions. Marker analysis was performed on 239 randomly chosen DH lines. Different marker types were applied, with an emphasis on AFLP and SSR markers. Analysis of variance, as well as simple and composite interval mapping, were applied. Three genomic regions were found significantly associated with FHB resistance. The most-prominent effect was detected on the short arm of chromosome 3B, explaining up to 60% of the phenotypic variance for Type II FHB resistance. A further QTL was located on chromosome 5A and a third one on 1B. The QTL regions on 3B and 5A were tagged with flanking SSR markers, the 1B QTL was found associated with the high-molecular-weight glutenin locus. These results indicate that FHB resistance is under control of a few major QTLs operating together with unknown numbers of minor genes. Marker-assisted selection for these major QTLs involved in FHB resistance appears feasible and should accelerate the development of resistant and agronomically improved wheat cultivars. Received: 25 January 2001 / Accepted: 18 February 2001  相似文献   

3.
Kernel shattering (KS) can cause severe grain yield loss in wheat (Triticum aestivum L.). The introduction of genotypes with Fusarium head blight (FHB) resistance has elevated the KS importance. ‘Sumai3,’ the most commonly used FHB-resistant germplasm worldwide, is reported to be KS susceptible. The objectives of this study were to detect quantitative trait loci (QTLs) for KS and to determine the relationship between KS and FHB. A recombinant inbred line population derived from a cross between Sumai3 and ‘Stoa’ was evaluated for KS in five environments and FHB in two field trials, separately. Four genomic regions on chromosomes 2B, 3B, and 7A were associated with KS. Of them, two major KS QTLs were detected consistently over three environments and each located proximal to the centromere on chromosomes 3B and 7A. The resistant alleles at these two QTLs together can reduce KS by 66.1% relative to the reciprocal alleles and by 41.1% compared to the population mean. The field FHB data revealed four QTLs on chromosomes 2B, 3B, and 7A. Three of these FHB QTLs coincided with and/or linked to the KS QTLs with opposite allele effects in the corresponding genomic regions, which may explain the negative correlation (r = −0.29 and P < 0.01) between the KS and FHB infection found in this study. The results in this study indicate that KS and FHB in Sumai3 are, in part, inherited dependently. However, the correlation between KS and FHB is not strong, and the major FHB resistance QTL on chromosome arm 3BS was not linked to any KS QTL. Our results showed that pyramiding of the two major KS-resistant alleles and the unlinked major FHB-resistant allele could produce lines with both low values of KS and FHB infection.  相似文献   

4.
Fusarium head blight (FHB) in wheat results in reduced yield and quality and in accumulation of mycotoxins. The objective of this study was to identify genomic regions in wheat involved in the control of FHB resistance applying a QTL meta-analysis approach by combining QTL of 30 mapping populations to propose independent meta-QTL (MQTL). A consensus map was created on which initial QTL were projected. Nineteen MQTL comprising 2–13 initial QTL with widely varying confidence intervals were found on 12 chromosomes. Some of them coincided with genomic regions previously identified (e.g. chromosomes 3BS, 6B), however, some MQTL were newly detected by this study. Separate analysis of populations with the same resistant parent showed a rather high consistency for the Chinese spring wheat donor ‘Sumai 3’, but little consistency for the Chinese donor ‘Wangshuibai’ and the Swiss donor ‘Arina’. According to our results breeders can in future (1) choose parents for crossing not comprising the same resistance loci or QTL intervals, (2) exploit new MQTL, and (3) select markers of some of these MQTL to be used in marker-assisted selection. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
DNA markers for Fusarium head blight resistance QTLs in two wheat populations   总被引:29,自引:0,他引:29  
Genetic resistance to Fusarium head blight (FHB), caused by Fusarium graminearum, is necessary to reduce the wheat grain yield and quality losses caused by this disease. Development of resistant cultivars has been slowed by poorly adapted and incomplete resistance sources and confounding environmental effects that make screening of germplasm difficult. DNA markers for FHB resistance QTLs have been identified and may be used to speed the introgression of resistance genes into adapted germplasm. This study was conducted to identify and map additional DNA markers linked to genes controlling FHB resistance in two spring wheat recombinant inbred populations, both segregating for genes from the widely used resistance source ’Sumai 3’. The first population was from the cross of Sumai 3/Stoa in which we previously identified five resistance QTLs. The second population was from the cross of ND2603 (Sumai 3/Wheaton) (resistant)/ Butte 86 (moderately susceptible). Both populations were evaluated for reaction to inoculation with F. graminearum in two greenhouse experiments. A combination of 521 RFLP, AFLP, and SSR markers were mapped in the Sumai 3/Stoa population and all DNA markers associated with resistance were screened on the ND2603/Butte 86 population. Two new QTL on chromosomes 3AL and 6AS wer found in the ND2603/Butte 86 population, and AFLP and SSR markers were identified that explained a greater portion of the phenotypic variation compared to the previous RFLP markers. Both of the Sumai 3-derived QTL regions (on chromosomes 3BS, and 6BS) from the Sumai 3/Stoa population were associated with FHB resistance in the ND2603/Butte 86 population. Markers in the 3BS QTL region (Qfhs.ndsu-3BS) alone explain 41.6 and 24.8% of the resistance to FHB in the Sumai 3/Stoa and ND2603/Butte 86 populations, respectively. This region contains a major QTL for resistance to FHB and should be useful in marker-assisted selection. Received: 17 August 2000 / Accepted: 16 October 2000  相似文献   

6.
Resistance to Fusarium head blight (FHB) is of great importance in wheat breeding programs in the northern hemisphere. In Europe, breeders prefer adapted germplasm as resistance donor because of high grain yield and quality demands. Our objective was to identify chromosomal regions affecting FHB resistance among 455 European soft winter wheat (Triticum aestivum L.) lines using a genome-wide association mapping approach and to analyze the importance of epistatic interactions. All entries were evaluated for FHB resistance by inoculation in two environments and several ratings. Wheat was genotyped by 115 simple sequence repeat markers randomly distributed across the genome and two allele-specific markers for Rht-B1 and Rht-D1 genes. The genome-wide scan revealed nine significant (P < 0.05) marker–phenotype associations on seven chromosomes including dwarfing gene Rht-D1. Using a Bonferroni–Holm correction, three significant associations remained on chromosomes 1B, 1D, and 2D. The proportion of the genotypic variance explained simultaneously by individual markers was 36% and increased to 50% when two digenic epistatic interactions were considered, one of them associated with Rht-B1. In conclusion, new genomic regions on chromosomes 1D and 3A could be found for FHB resistance in European wheat and the effect of epistatic interactions was substantial.  相似文献   

7.
Spot blotch caused by Bipolaris sorokiniana is a destructive disease of wheat in warm and humid wheat growing regions of the world. The development of disease resistant cultivars is considered as the most effective control strategy for spot blotch. An intervarietal mapping population in the form of recombinant inbred lines (RILs) was developed from a cross ‘Yangmai 6’ (a Chinese source of resistance) × ‘Sonalika’ (a spot blotch susceptible cultivar). The 139 single seed descent (SSD) derived F6, F7, F8 lines of ‘Yangmai 6’ × ‘Sonalika’ were evaluated for resistance to spot blotch in three blocks in each of the 3 years. Joint and/or single year analysis by composite interval mapping (CIM) and likelihood of odd ratio (LOD) >2.2, identified four quantitative trait loci (QTL) on the chromosomes 2AL, 2BS, 5BL and 6DL. These QTLs were designated as QSb.bhu-2A, QSb.bhu-2B, QSb.bhu-5B and QSb.bhu-6D, respectively. A total of 63.10% of phenotypic variation was explained by these QTLs based on the mean over years. Two QTLs on chromosomes 2B and 5B with major effects were consistent over 3 years. All QTL alleles for resistance were derived from the resistant parent ‘Yangmai 6’.  相似文献   

8.
Fusarium head blight (FHB) is a serious disease in wheat and barley affecting both yield and quality. To identify genes for resistance to infection, the RIL population derived from ‘Nanda2419’ × ‘Wangshuibai’ and the parents were evaluated for percentage of infected spikes (PIS) in four different environments. Using a 2,960 cM marker framework map constructed for this population, ten chromosome regions were detected for their association with type I resistance through interval mapping with Mapmaker/QTL, among which QTLs mapped in the intervals of Xwmc349~Xgwm149 on chromosome 4B, of Xwmc96~Xgwm304 on chromosome 5A and of Xgwm408~Xbarc140 on chromosome 5B were revealed in at least three environments and have Wangshuibai as the source of resistance alleles. Qfhi.nau-4B and Qfhi.nau-5A had larger effects and explained up to 17.5 and 27.0% of the phenotypic variance, respectively. To detect epistasis QTLs, two-locus interactions were examined by whole genome scan. Interactions of five locus pairs were found to have significant effects on type I resistance with the LOD score ranging 3.8–6.5 and four of them conferred resistance in parental phase. The one with the most significant effect was Xcfd42~Xgwm469 (6D)/Xwmc390-2~Xbd04 (2A) pair. No QTL × E interaction was detected for PIS. It was found that flowering time did not have significant effects on PIS in this population. Our studies indicated that Wangshuibai is useful for breeding for both type I and type II scab resistance and the markers associated with the QTLs could be used in marker-assisted selection and isolation of scab-resistance QTLs. F. Lin and S.L. Xue equally contributed to this article  相似文献   

9.
Fusarium head blight (FHB) is a devastating disease of wheat worldwide. Novel sources of resistance are critical for improving FHB resistance levels in wheat. From a large-scale evaluation of germplasm for reactions to FHB, we identified one wheat accession (PI 277012) that consistently showed a high level of resistance in both greenhouse and field experiments. To characterize the FHB resistance in this accession, we developed a doubled haploid (DH) mapping population consisting of 130 lines from the cross between PI 277012 and the hard red spring wheat cultivar ‘Grandin’. The DH population was then evaluated for reactions to FHB in three greenhouse seasons and five field environments. Based on a linkage map that consisted of 340 SSR markers spanning 2,703 cM of genetic distance, two major quantitative trait loci (QTLs) for FHB resistance were identified on chromosome arms 5AS and 5AL, with each explaining up to 20 and 32% of the variation in FHB severity, respectively. The two QTLs also showed major effects on reducing the percentage of Fusarium damaged kernels (FDK) and deoxynivalenol (DON) accumulation in seeds. FHB resistance has not previously been reported to be associated with this particular genomic region of chromosome arm 5AL, thus indicating the novelty of FHB resistance in PI 277012. Plant maturity was not associated with FHB resistance and the effects of plant height on FHB resistance were minor. Therefore, these results suggest that PI 277012 is an excellent source for improving FHB resistance in wheat. The markers identified in this research are being used for marker-assisted introgression of the QTLs into adapted durum and hard red spring wheat cultivars.  相似文献   

10.
The impact of moisture on the development of Fusarium head blight (FHB) and accumulation of deoxynivalenol (DON) in Fusarium-infected wheat was examined. The field experiments were designed as split-split-plot with five replicates. Main plots were durations of mist-irrigation [14, 21, 28 and 35 days after inoculation (DAI)]; sub-plots were wheat cultivar; and sub-sub-plots were F. graminearum isolates differing in aggressiveness and DON production capacity. The wheat cultivars ‘Alsen’ (moderately resistant), ‘2375’ (moderately susceptible) and ‘Wheaton’ (susceptible) were inoculated at anthesis. Severity of FHB was assessed 21 days after inoculation. Visually scabby kernels (VSK) and mycotxin content (DON, 15-AcDON, 3-AcDON and nivalenol) were determined on harvested grain. The damage to grain, as measured by VSK, was significantly lower in the treatments receiving the least amount of mist-irrigation (14 DAI) suggesting that extended moisture promotes disease development. DON was, however, significantly lower in the 35-DAI misting treatment than in treatments receiving less post-inoculation moisture. The reduction of DON observed in treatments receiving extended mist-irrigation was greatest in ‘Wheaton’ which recorded the highest FHB severity, VSK and DON of the cultivars examined. Our results suggest that DON and other trichothecenes may be reduced by late-season moisture despite increased grain colonization. We suggest that leaching may explain much of the reduction of mycotoxins, and that differences in tissue morphology and metabolism may determine the rate of leaching from specific tissues.  相似文献   

11.
Fusarium head blight (FHB) is a destructive disease of wheat. The objective of this study was to characterise the FHB resistance of the Brazilian spring wheat cultivar Frontana through molecular mapping. A population of 210 doubled-haploid lines from a cross of Frontana (partially resistant) and Remus (susceptible) was evaluated for FHB resistance during three seasons. Spray and single-spikelet inoculations were applied. The severity, incidence and spread of the disease were assessed by visual scoring. The population was genotyped with 566 DNA markers. The major QTL effect associated with FHB resistance mapped to chromosome 3A near the centromere, explaining 16% of the phenotypic variation for disease severity over 3 years. The most likely position is in the Xgwm720–Xdupw227 interval. The genomic region on 3A was significantly associated with FHB severity and incidence in all years evaluated, but not with FHB spread, indicating the prominent contribution of this QTL to resistance against initial infection. The map interval Xgwm129–Xbarc197 on chromosome 5A also showed consistent association with FHB severity and accounted for 9% of the phenotypic variation. In addition, smaller effects for FHB severity were identified on chromosomes 1B, 2A, 2B, 4B, 5A and 6B in single years. Individual QTLs for resistance to FHB spread accounted for less than 10% of the variation in trait expression. The present study indicates that FHB resistance of Frontana primarily inhibits fungal penetration (type I resistance), but has a minor effect on fungal spread after infection (type II resistance).Communicated by H.C. Becker  相似文献   

12.
 Two sets of single chromosome recombinant lines comparing 2D chromosomes from the wheat varieties ‘Ciano 67’ and ‘Mara’ with the common 2D chromosome of ‘Cappelle-Desprez’ in a ‘Cappelle-Desprez’ background were used to detect a diagnostic wheat microsatellite marker for the dwarfing gene Rht8. The genetic linkage maps place the wheat microsatellite marker WMS 261 0.6 cM distal to Rht8 on the short arm of chromosome 2D. By PCR analysis the WMS 261 alleles of ‘Mara’, ‘Cappelle-Desprez’ and ‘Ciano 67’ could be distinguished by different fragment sizes of 192 bp, 174 bp and 165 bp, respectively. A screen of over 100 international varieties of wheat showed that the three allelic variants were all widespread. It also demonstrated that a limited number of varieties carried novel WMS 261 variants of over 200 bp. Following classification of the individual recombinant lines for allelic variants at the WMS 261 locus it was possible to attribute a 7- to 8-cm reduction in plant height with the WMS 261-192-bp allele compared to the WMS 261-174-bp allele in the set of recombinant lines comparing 2D chromosomes of ‘Mara’ and ‘Cappelle-Desprez’. A height reduction of around 3 cm was detected between the WMS 261-174-bp allele and the WMS 261-165-bp allele in the recombinant lines comparing 2D chromosomes of ‘Cappelle-Desprez’ and ‘Ciano 67’. Received: 17 October 1997 / Accepted: 12 November 1997  相似文献   

13.
Fusarium head blight of wheat is an extremely damaging disease, causing severe losses in seed yield and quality. The objective of the current study was to examine and characterize alternate sources of resistance to Fusarium head blight (FHB). Ninety-one F1-derived doubled haploid lines from the cross Triticum aestivum 'Wuhan-1' x Triticum aestivum 'Maringa' were examined for disease reaction to Fusarium graminearum by single-floret injection in replicated greenhouse trials and by spray inoculation in replicated field trials. Field and greenhouse experiments were also used to collect agronomic and spike morphology characteristics. Seed samples from field plots were used for deoxynivalenol (DON) determination. A total of 328 polymorphic microsatellite loci were used to construct a genetic linkage map in this population and together these data were used to identify QTL controlling FHB resistance, accumulation of DON, and agronomic and spike morphology traits. The analysis identified QTL for different types of FHB resistance in four intervals on chromosomes 2DL, 3BS, and 4B. The QTLs on 4B and 3BS proximal to the centromere are novel and not reported elsewhere. QTL controlling accumulation of DON independent of FHB resistance were located on chromosomes 2DS and 5AS. Lines carrying FHB resistance alleles on 2DL and 3BS showed a 32% decrease in disease spread after single-floret injection. Lines carrying FHB resistance alleles on 3BS and 4B showed a 27% decrease from the mean in field infection. Finally, lines carrying favourable alleles on 3BS and 5AS, showed a 17% reduction in DON accumulation. The results support a polygenic and quantitative mode of inheritance and report novel FHB resistance loci. The data also suggest that resistance to FHB infection and DON accumulation may be controlled, in part, by independent loci and (or) genes.  相似文献   

14.
Wheat scab (Fusarium Head Blight, FHB) is a destructive disease in the warm and humid wheat-growing areas of the world. Finding diverse sources of FHB resistance is critical for genetic diversity of resistance for wheat breeding programs. Leymus racemosus is a wild perennial relative of wheat and is highly resistant to FHB. Three wheat- L. racemosus disomic addition (DA) lines DA5Lr#1, DA7Lr#1 and DALr.7 resistant to FHB were used to develop wheat- L.racemosus translocation lines through irradiation and gametocidal gene-induced chromosome breakage. A total of nine wheat-alien translocation lines with wheat scab resistance were identified by chromosome C-banding, GISH, telosomic pairing and RFLP analyses. In line NAU614, the long arm of 5Lr#1 was translocated to wheat chromosome 6B. Four lines, NAU601, NAU615, NAU617, and NAU635, had a part of the short arm of 7Lr#1 transferred to different wheat chromosomes. Four other lines, NAU611, NAU634, NAU633, and NAU618, contained translocations involving Leymus chromosome Lr.7 and different wheat chromosomes. The resistance level of the translocation lines with a single alien chromosome segment was higher than the susceptible wheat parent Chinese Spring but lower than the alien resistant parent L. racemosus. At least three resistance genes in L. racemosus were identified. One was located on chromosome Lr.7, and two could be assigned to the long arm of 5Lr#1 and the short arm of 7Lr#1.  相似文献   

15.
Fusarium head blight (FHB) resistance was evaluated in five recombinant inbred (RI) populations. The RI populations consisted of top-cross progeny derived from a diallel set of crosses. Each of five two-row barley lines differing in response to FHB were crossed with ‘Harbin 2-row’. FHB severity was scored on an 11-point scale, where resistant = 0 and susceptible = 10, based on the ‘cut-spike test’. Disease data were obtained for each population for 2 or 3 years. Linkage maps comprised of expressed sequence tag (EST) markers were developed for each population and used for quantitative trait locus (QTL) detection. Thirty two QTLs were detected using all data sets (individual populations and years). Thirteen QTLs were detected using averages across years; 10 of these were consistent across the individual year and average data sets. These QTLs clustered at 14 regions, with clusters on all chromosomes. At 11 of these clusters, Harbin 2-row contributed FHB resistance alleles. No QTLs were detected near the row type (vrs1) locus in any of the five RI populations, suggesting that the FHB resistance QTL in this region reported in two-row × six-row crosses may be pleiotropic effect of vrs1. QTL were coincident with the flowering type locus (cly1/Cly2) on chromosome 2H in every population. Some QTL × QTL interactions were significant, but these were smaller than QTL main effects. Considering the pleiotropic effect of spike morphology on FHB resistance, future FHB resistance mapping efforts in barley should focus on cross combinations in which alleles at vrs1 are not segregating. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
吴迪  郑彤  李磊  李韬 《生物技术进展》2020,10(3):242-250
赤霉病是小麦主要的流行病害之一。借助标记辅助选择将不同数量性状基因座(quantitative trait loci,QTL)聚合是防治赤霉病有效且环保的方法,可以从源头上控制赤霉病并降低籽粒中毒素含量。抗赤霉病QTL在小麦全基因组均有分布,但除了Fhb1、Fhb2等少数位点有比较可靠的鉴别标记,绝大部分位点缺乏有效的位点特异性鉴别标记。简单重复序列(simple sequence repeat,SSR)标记多态性丰富,可以区分自然群体中不同等位变异,方便用于标记辅助育种。基于此,搜集了不同文献中报道的与赤霉病关联的SSR标记386个,并用这些标记构建全基因组赤霉病抗性QTL一致性图谱,接着对这些关联标记进行拷贝数分析,进而选择位点内的单拷贝SSR标记,将这些单拷贝标记在156个品种组成的自然群体中进行扩增,并与三季大田和三季温室环境下赤霉病抗性进行关联,筛选与赤霉病抗性关联的单拷贝SSR标记,明确这些标记在自然群体中的有效等位变异和效应。结果表明,共8个单拷贝SSR标记至少在两季试验中与表型显著关联(P<0.05),涉及2B、2D、3B、5A、5B、6A、6D、7A染色体,有5个单拷贝标记位点存在有效等位变异。中国地方品种和日本品种携带更多的有利变异,且有利等位变异数目越多的品种赤霉病抗性越好。研究分析的QTL位点及其关联的单拷贝SSR标记可用于赤霉病抗病育种,有利于提高品种赤霉病抗性水平和育种效率。  相似文献   

17.
Fusarium head blight (FHB) of wheat is a widespread and destructive disease which occurs in humid and semi-humid areas. FHB epidemics can cause serious yield and quality losses under favorable climatic conditions, but the major concern is the contamination of grains with mycotoxins. Resistance to FHB is quantitatively inherited and greatly influenced by the environment. Its evaluation is costly and time-consuming. The genetic basis of FHB resistance has mainly been studied in spring wheat. The objective of this study was to map quantitative trait loci (QTLs) for resistance to FHB in a population of 240 recombinant inbred lines (RILs) derived from a cross between the two Swiss winter wheat cultivars Arina (resistant) and Forno (susceptible). The RILs were genotyped with microsatellite and RFLP markers. The resulting genetic map comprises 380 loci and spans 3,086 cM. The 240 RILs were evaluated for resistance to FHB in six field trials over 3 years. Composite interval mapping (CIM) analyses carried out on FHB AUDPC (i.e. mean values across six environments) revealed eight QTLs which altogether explained 47% of the phenotypic variance. The three main QTLs were mapped on the long arms of chromosomes 6D (R2=22%), 5B (R2=14%) and 4A (R2=10%). The QTL detected on 5B originated from the susceptible parent Forno. Other QTLs with smaller effects on FHB resistance were detected on chromosomes 2AL, 3AL, 3BL, 3DS and 5AL.Communicated by H.C. Becker  相似文献   

18.
Fusarium head blight (FHB), mainly caused by Fusarium graminearum Schwabe [telomorph: Gibberella zeae Schw. (Petch)], is an increasingly important disease of wheat (Triticum aestivum L.). Host-plant resistance provides the best hope for reducing economic losses associated with FHB, but new sources of resistance are limited. The moderately resistant winter wheat cultivar, Ernie, may provide a source of resistance that differs from Sumai 3 but these genes have not been mapped. Also hindering resistance breeding may be associations of resistance with agronomic traits such as late maturity that may be undesirable in some production environments. This research was conducted to identify QTL associated with type II FHB resistance (FHB severity, FHBS), and to determine if they are associated with days to anthesis (DTA), number of spikelets (NOS), and the presence/absence of awns. Two hundred and forty-three F8 recombinant inbred lines from a cross between the resistant cultivar, Ernie and susceptible parent, MO 94-317 were phenotyped for type II FHB resistance using point inoculation in the greenhouse during 2002 and 2003. Genetic linkage maps were constructed using 94 simple sequence repeat (SSR) and 146 amplified fragment length polymorphic (AFLP) markers. Over years four QTL regions on chromosomes 2B, 3B, 4BL and 5A were consistently associated with FHB resistance. These QTL explained 43.3% of the phenotypic variation in FHBS. Major QTL conditioning DTA and NOS were identified on chromosome 2D. Neither the QTL associated with DTA and NOS nor the presence/absence of awns were associated with FHB resistance in Ernie. Our results suggest that the FHB resistance in Ernie appears to differ from that in Sumai 3, thus pyramiding the QTL in Ernie with those from Sumai 3 could result in enhanced levels of FHB resistance in wheat.  相似文献   

19.
Crown rot (CR), caused by various Fusarium species, is a chronic wheat disease in Australia. As part of our objective of improving the efficiency of breeding CR resistant wheat varieties, we have been searching for novel sources of resistance. This paper reports on the genetic control of one of these newly identified resistant genotypes, ‘CSCR6’. A population derived from a cross between CSCR6 and an Australian variety ‘Lang’ was analyzed using two Fusarium isolates belonging to two different species, one Fusarium pseudograminearum and the other Fusarium graminearum. The two isolates detected QTL with the same chromosomal locations and comparable magnitudes, indicating that CR resistance is not species-specific. The resistant allele of one of the QTL was derived from ‘CSCR6’. This QTL, designated as Qcrs.cpi-3B, was located on the long arm of chromosome 3B and explains up to 48.8% of the phenotypic variance based on interval mapping analysis. Another QTL, with resistant allele from the variety ‘Lang’, was located on chromosome 4B. This QTL explained up to 22.8% of the phenotypic variance. A strong interaction between Qcsr.cpi-3B and Qcsr.cpi-4B was detected, reducing the maximum effect of Qcrs.cpi-3B to 43.1%. The effects of Qcrs.cpi-3B were further validated in four additional populations and the presence of this single QTL reduced CR severity by up to 42.1%. The fact that significant effects of Qcrs.cpi-3B were detected across all trials with different genetic backgrounds and with the use of isolates belonging to two different Fusarium species make it an ideal target for breeding programs as well as for further characterization of the gene(s) involved in its resistance.  相似文献   

20.
A major scab resistance gene called Va1 was identified in the Russian apple cultivar ‘Antonovka’ (accession APF22) conferring scab resistance under conditions of natural scab infection in the field. After scab scorings over a period of 3 years, a 1:1 segregation was observed in the mapping population 04/214 (‘Golden Delicious’ × ‘Antonovka’). The Va1 resistance gene provides sufficient broad spectrum resistance that is of use in apple resistance breeding and has been assigned Rvi17 according the proposal for a new scab nomenclature (Bus et al., Acta Horticulturae 814:739–746, 2009). Analysis of simple sequence repeats (SSRs) located on the apple linkage group (LG) 1 showed that the Va1 locus is closely linked (1 cM) to SSR CH-Vf1 known to cosegregate with the Vf locus. A tight genetic association was also observed between a specific cleaved amplified polymorphic sequence marker (ARD-CAPS) developed from the HcrVf paralog Vf2ARD present in ‘Antonovka’, but there is no indication yet for a causal relationship with Vf2ARD. Although the whole race spectrum of Va1 is still unknown, it was obvious that it acts against the scab races 6 and 7 which are able to overcome the resistance of Malus floribunda 821. A second resistance factor (named Va2) was studied by race 1-specific scab tests based on grafted 04/214 clones. A 1:1-segregation ratio was observed, too, but 18 “phenotypic recombinants” were found after comparisons with the field scab data of the same genotypes. Va2 was mapped on LG 1 with a genetic distance of about 15 cM above CH-Vf1. The positions of the newly identified ‘Antonovka’ scab resistance factors are compared with previously reported Va mapping approaches and published results from quantitative trait loci analyses performed with different ‘Antonovka’ genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号