首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
左旋精氨酸对低氧性肺动脉高压治疗作用的实验研究   总被引:6,自引:0,他引:6  
目的:探讨结构型一氧化氮合酶(cNOS),内皮素-1(ET-1)在低氧性肺动脉高压(HPH)发病中的机制及左旋精氢酸(L-Arg)对HPH的治疗作用。方法:30只健康雄性SD大鼠平均分为三组:正常对照组(NC组)、低氧组(HP组)、低氧左旋精氨酸治疗组(LT组)。后组每日低氧前给予200mg/kg L-Arg。于低氧21d检测运动血流动力学,肺组织NO、ET-1含量,肺动脉内皮cNOS含量的改变,  相似文献   

2.
半胱胺对大鼠哺乳晚期泌乳量及血液几种激素含量的影响   总被引:6,自引:0,他引:6  
半胱胺对大鼠哺乳晚期泌乳量及血液几种激素含量的影响EFFECTSOFCYSTEAMINEONMILKYIELDANDSEVERALHORMONESLEVELSOFBLOODINRATSATLATESTAGEOFLACTATION关键词半胱胺,大鼠,泌...  相似文献   

3.
内皮素-1 mRNA反义寡核苷酸预防大鼠急性缺血性心律失常   总被引:3,自引:1,他引:2  
Lin L  Yuan WJ  Chu XL  Xu H  Li L  Ren AJ 《生理学报》1999,51(5):533-540
本实验夹闭雄性SD大鼠冠状动脉左前降支(LAD)造成急性心肌缺血,观察LAD闭塞后1h内缺血性心律失常的发生。在LAD夹闭前2h,静脉注射本室设计的人内皮素-1mRNA反义寡核苷酸(AS-ODN)以阻断ET-1mRNA表达,观察AS-ODN对血浆ET-1浓度和急性缺血性心律失常的影响。  相似文献   

4.
马铃薯无病毒苗的获得与病毒检测   总被引:3,自引:0,他引:3  
马铃薯无病毒苗的获得与病毒检测李宪章李明福侯林林(中国科学院植物研究所,北京100093)ACQUIREMENTOFPOTATOVIRUS-FREEPLANTLETANDVIRUSDETECTIONLiXian-zhangLiMing-fuHouL...  相似文献   

5.
家蝇体内卵对CAT的摄入和传代的观察   总被引:2,自引:0,他引:2  
刘燕  刘维全 《动物学研究》1998,19(3):250-253
家蝇体内卵对CAT的摄入和传代的观察INTAKINGANDTRANSMISSIONOFINJECTEDCATGENEBYHOUSEFLYEGGS关键词CAT基因,家蝇,腹腔注射,基因转移KeywordsCAT-gene,Housefly,Abdomi...  相似文献   

6.
披针叶胡颓子果实营养成分的测定毛学文(天水师范高等专科学校,天水741000)DETERMINATIONOFNUTRIENTCONSTITUENTSINSEEDSOFELAEAGNUSLANCEOLATAMaoXue-wen(TianShuiTeac...  相似文献   

7.
Zhan CD  Pan JY 《生理学报》2000,52(6):450-454
在原代培养的新生大鼠心肌细胞上,探讨一氧化氮(NO)对血管紧张素Ⅱ(AⅡ)和内皮素-1(ET-1)诱导的心肌细胞肥大和原癌基因c-fos表达的影响。用Bradford法测定心肌细胞总蛋白含量(作为心肌细胞肥大的指标);用基因特异性引物和SuperScript一步法进行逆转录聚合酶链式反应(RT-PCR),检测大鼠心肌细胞原癌基因c-fos的表达(以GAPDH为内标)。结果显示,AⅡ和ET-1分别作  相似文献   

8.
本研究观察了低氧对大鼠肺组织和血管内皮一氧化氮合酶(NOS)活性及内皮衍生一氧化氮(EDNO)依赖性舒张反应的影响,以及NOS抑制剂(L-NAME)对常氧和低氧大鼠肺组织和血管内皮NOS活性及颈、肺动脉血压(CAPs、mPAP)的作用。结果表明常氧大鼠肺泡内无肌性血管内皮未见NOS活性,其肺血管床对EDNO依赖性舒血管物质BK没有反应,注射L-NAME后大鼠mPAP略有降低,CAPs有所升高。低氧大鼠肺泡内无肌性血管内皮显示NOS活性,对BK的EDNO依赖性舒张反应呈剂量依赖性增大,注射L-NAME使低氧大鼠mPAP显著降低(P<0.01),CAPs显著升高(P<0.05)。提示肺血管EDNO及其合酶在维持正常成年大鼠肺循环低压低阻中的生理作用值得进一步探讨;低氧引起肺血管内皮ecNOS活性增加和EDNO生成增多可能起到限制肺动脉压过度升高的调制作用,也可能对肺血管内皮产生毒性作用,反而促进肺动脉高压的发生和发展。  相似文献   

9.
蝽科—中国新纪录及印度篁蝽的补充描述(半翅目)关键词中国,蝽科,新记录ANEWCHINESERECORDOFPENTATOMIDAEANDACOMPLEMENTARYDESCRIPTIONOFFerneliusindicusDISTANT(Heter...  相似文献   

10.
一种适用于双向电泳凝胶的染色方法   总被引:6,自引:1,他引:5  
王台 《植物学通报》1996,13(4):56-57
一种适用于双向电泳凝胶的染色方法*王台(中国科学院植物研究所,北京100093)AMETHODTOSTAINTHEGELOFTWO-DIMENSIONALGELELECTROPHORESISWangTai(InstituteofBotany,Acad...  相似文献   

11.
12.
To investigate the possible involvement of endothelin-1 (ET-1), an endothelium-derived potent vasoconstrictor peptide, in the pathophysiology of hypertension, plasma ET-1 levels in 15-week-old spontaneously hypertensive rats (SHR) and DOCA-salt hypertensive rats were measured with a sandwich-type enzyme immunoassay. The vasocontractile effect of ET-1 in aortic helical preparations was significantly more sensitive in DOCA-salt hypertensive rats than in control sham-operated rats, but plasma levels of ET-1 did not differ between them. Plasma ET-1 levels in genetically hypertensive rats (SHR and stroke-prone SHR) were significantly lower than those in age-matched normotensive Wistar-Kyoto (WKY) rats. The plasma concentrations of big ET-1, a precursor of ET-1, in both SHR and SHR-SP were significantly lower than those of WKY, suggesting that the production of ET-1 is decreased in rats of genetic hypertension. Although the vascular reactivity to ET-1 increased in both DOCA-salt hypertensive and genetically hypertensive rats, present findings of the plasma ET-1 levels suggest that the role of ET-1 in the vascular control system may be different in DOCA-salt hypertensive rats and genetically hypertensive rats.  相似文献   

13.
Endothelin-1 (ET-1) has been implicated in hypertension, heart failure, atherosclerosis, and pulmonary hypertension. In all these conditions, plasma immunoreactive ET-1 levels are elevated, and tissue ET-1 expression is increased. Clinical trials have demonstrated potentially important benefits of ET antagonism among patients with essential hypertension, pulmonary hypertension, and heart failure. It is unknown whether ET antagonism affects the production of ET-1 in stroke-prone spontaneously hypertensive rat (SHRSP) heart at the typical hypertensive stage. The objective of this study was to investigate the effects of ET blockade on the expression levels of plasma and cardiac ET-1 in SHRSPs. SHRSPs were treated for 3 months with SB209670 (ET(A)/ET(B) dual receptor antagonist) or with saline (vehicle) commencing at the prehypertensive stage (age 6 weeks). Plasma and left ventricular ET-1 peptide levels were measured using enzyme-linked immunoabsorbent assay. Compared with age-matched control Wistar-Kyoto rats, peptide levels of ET-1 were significantly upregulated in vehicle-treated SHRSP heart; this upregulation was reversed by long-term ET antagonism. Plasma ET-1 levels were also significantly increased in vehicle-treated SHRSPs and were normalized by ET antagonism. mRNA expression of preproET-1, which is the source of ET-1 peptide production, was significantly increased in vehicle-treated SHRSP heart and was normalized by ET antagonism. Marked cardiac hypertrophy and fibrosis at the histologic level in SHRSPs were ameliorated by ET antagonism, and left ventricular hypertrophy as seen on echocardiography in SHRSPs was suppressed by ET blockade. After ET antagonism, systolic blood pressures were reduced in SHRSPs; diastolic blood pressures were unchanged. The reversal effect of the upregulated ET system in SHRSP heart by ET antagonism might be independent of blood pressure change. By suppressing the upregulated ET system, ET antagonism might be beneficial in arresting cardiac remodeling.  相似文献   

14.
In clinical studies, sleep apnea is associated with hypertension, oxidative stress, and increased circulating endothelin-1 (ET-1). We previously developed a model of sleep apnea by exposing rats to eucapnic intermittent hypoxia (IH-C) during sleep, which increases both blood pressure and plasma levels of ET-1. Because similar protocols in mice increase tissue and plasma markers of oxidative stress, we hypothesized that IH-C generation of reactive oxygen species (ROS) contributes to the development of ET-1-dependent hypertension in IH-C rats. To test this, male Sprague-Dawley rats were instrumented with indwelling blood pressure telemeters and drank either plain water or water containing the superoxide dismutase mimetic, Tempol (4-hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl, 1 mM). Mean arterial pressure (MAP) and heart rate (HR) were recorded for 3 control days and 14 treatment days with rats exposed 7 h/day to IH-C or air/air cycling (Sham). On day 14, MAP in IH-C rats treated with Tempol (107 +/- 2.29 mmHg) was significantly lower than in untreated IH-C rats (118 +/- 9 mmHg, P < 0.05). Tempol did not affect blood pressure in sham-operated rats (Tempol = 101 +/- 3, water = 101 +/- 2 mmHg). Immunoreactive ET-1 was greater in plasma from IH-C rats compared with plasma from sham-operated rats but was not different from Sham in Tempol-treated IH-C rats. Small mesenteric arteries from IH-C rats but not Tempol-treated IH-C rats had increased superoxide levels as measured by ferric cytochrome c reduction, lucigenin signaling, and dihydroethidium fluorescence. The data show that IH-C increases ET-1 production and vascular ROS levels and that scavenging superoxide prevents both. Thus oxidative stress appears to contribute to increases in ET-1 production and elevated arterial pressure in this rat model of sleep apnea-induced hypertension.  相似文献   

15.
The role of endothelin (ET-1) in mediating the development of blood pressure was investigated in the spontaneously hypertensive (SHR) rat using the Wistar-Kyoto (WKY) rat as the normotensive control. The following were characterized in both rat strains: age-dependent changes in mean arterial blood pressure (MAP), tissue (blood, lung, heart, and kidney) levels of immunoreactive ET-1 like related peptides (ET-1RP), aortic ring responses to ET-1, and specific high-affinity tissue (lung, atrium, ventricle, aorta, and kidney) binding sites for 125I-labelled ET-1. Commencing at age 10 weeks through to 12 weeks, SHR rats but not WKY rats developed a significant increase in MAP (from 152 +/- 7 to 189 +/- 3 mmHg) (1 mmHg = 133.32 Pa). However, in both WKY and SHR rats immunoreactive levels of ET-1RP increased (100 and 80%, respectively) throughout the same measurement period. The potency of ET-1 to contract aortic rings from SHR rats was slightly but not significantly greater than that for aortic rings from WKY rats, although aortic rings from SHR rats contracted in the presence of 0.5 nM ET-1, while those from WKY rats did not. The levels of immunoreactive ET-1RP were significantly reduced (32%) in the kidney and unchanged in the heart and lung of SHR rats compared with WKY rats. Specific 125I-labelled ET-1 binding sites displayed an increase and a significant decrease (24%) of density in the atrium and ventricle, respectively, a significant increase (31%) of affinity in the lung, and were unchanged in the kidney and aorta of SHR rats compared with WKY rats following the development of hypertension. The lack of a correlation between circulating levels of immunoreactive ET-1RP and the development of hypertension coupled with a lack of significant differences in vascular reactivity suggest that ET-1 is not the sole mediator of hypertension in this animal model. However, the tissue-specific changes in immunoreactive ET-1RP and 125I-labelled ET-1 binding sites suggest that ET-1 may be a partial mediator of hypertension and is subject to compensatory changes in response to the increased total peripheral resistance in SHR rats.  相似文献   

16.
Recent studies have shown that angiotensin-converting enzyme (ACE) inhibitors attenuate endothelin-1 (ET-1)-induced hypertension, but the mechanisms for this effect have not been clarified. Initial experiments were conducted to contrast the effect of the ACE inhibitor enalapril, the combined ACE-neutral endopeptidase inhibitor omapatrilat, and the angiotensin II receptor antagonist candesartan on the hypertensive and renal response to ET-1 in anesthetized Sprague-Dawley rats. Acute intravenous infusion of ET-1 (10 pmol x kg(-1) x min(-1)) for 60 min significantly increased mean arterial pressure (MAP) from 125 +/- 8 to 145 +/- 8 mmHg (P < 0.05) and significantly decreased glomerular filtration rate (GFR) from 0.31 +/- 0.09 to 0.13 +/- 0.05 ml x min(-1) x 100 g kidney wt(-1). Pretreatment with enalapril (10 mg/kg iv) before ET-1 infusion inhibited the increase in MAP (121 +/- 4 vs. 126 +/- 4 mmHg) before and during ET-1 infusion, respectively (P < 0.05) without blocking the effect of ET-1 on GFR. In contrast, neither omapatrilat (30 mg/kg) nor candesartan (10 mg/kg) had any effect on ET-1-induced increases in MAP or decreases in GFR. To determine whether the effect of enalapril was due to the decrease in angiotensin II or increase in kinin formation, rats were given REF-000359 (1 mg/kg iv), a selective B(2) receptor antagonist, with or without enalapril before ET-1 infusion. REF-000359 completely blocked the effect of enalapril on ET-1 infusion (MAP was 117 +/- 5 vs. 135 +/- 5 mmHg before and during ET-1 infusion, respectively, P < 0.05). REF-000359 alone had no effect on the response to ET-1 infusion (MAP was 117 +/- 4 vs. 144 +/- 4 mmHg before and during ET-1 infusion, respectively, P < 0.05). REF-000359 with or without enalapril had no significant effect on the ability of ET-1 infusion to decrease GFR. These findings support the hypothesis that decreased catabolism of bradykinin and its subsequent vasodilator activity oppose the actions of ET-1 to increase MAP.  相似文献   

17.
While soluble fms-like tyrosine kinase-1 (sFlt-1) and endothelin-1 (ET-1) have been implicated in the pathogenesis of preeclampsia (PE), the mechanisms whereby increased sFlt-1 leads to enhanced ET-1 production and hypertension remain unclear. It is well documented that nitric oxide (NO) production is reduced in PE; however, whether a reduction in NO synthesis plays a role in increasing ET-1 and blood pressure in response to chronic increases in plasma sFlt-1 remains unclear. The purpose of this study was to determine the role of reduced NO synthesis in the increase in blood pressure and ET-1 in response to sFlt-1 in pregnant rats. sFlt-1 was infused into normal pregnant (NP) Sprague-Dawley rats (3.7 μg·kg(-1)·day(-1) for 6 days beginning on day 13 of gestation) treated with the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (100 mg/l for 4 days) or supplemented with 2% L-Arg (in drinking water for 6 days beginning on day 15 of gestation). Infusion of sFlt-1 into NP rats significantly elevated mean arterial pressure compared with control NP rats: 116 ± 2 vs. 103 ± 1 mmHg (P < 0.05). NO synthase inhibition had no effect on the blood pressure response in sFlt-1 hypertensive pregnant rats (121 ± 3 vs. 116 ± 2 mmHg), while it significantly increased mean arterial pressure in NP rats (128 ± 4 mmHg, P < 0.05). In addition, NO production was reduced ~70% in isolated glomeruli from sFlt-1 hypertensive pregnant rats compared with NP rats (P < 0.05). Furthermore, prepro-ET-1 in the renal cortex was increased ~3.5-fold in sFlt-1 hypertensive pregnant rats compared with NP rats. Supplementation with L-Arg decreased the sFlt-1 hypertension (109 ± 3 mmHg, P < 0.05) but had no effect on the blood pressure response in NP rats (109 ± 3 mmHg) and abolished the enhanced sFlt-1-induced renal cortical prepro-ET expression. In conclusion, a reduction in NO synthesis may play an important role in the enhanced ET-1 production in response to sFlt-1 hypertension in pregnant rats.  相似文献   

18.
Insulin stimulates production of NO in vascular endothelium via activation of phosphatidylinositol (PI) 3-kinase, Akt, and endothelial NO synthase. We hypothesized that insulin resistance may cause imbalance between endothelial vasodilators and vasoconstrictors (e.g., NO and ET-1), leading to hypertension. Twelve-week-old male spontaneously hypertensive rats (SHR) were hypertensive and insulin resistant compared with control Wistar-Kyoto (WKY) rats (systolic blood pressure 202 +/- 11 vs. 132 +/- 10 mmHg; fasting plasma insulin 5 +/- 1 vs. 0.9 +/- 0.1 ng/ml; P < 0.001). In WKY rats, insulin stimulated dose-dependent relaxation of mesenteric arteries precontracted with norepinephrine (NE) ex vivo. This depended on intact endothelium and was blocked by genistein, wortmannin, or N(omega)-nitro-l-arginine methyl ester (inhibitors of tyrosine kinase, PI3-kinase, and NO synthases, respectively). Vasodilation in response to insulin (but not ACh) was impaired by 20% in SHR (vs. WKY, P < 0.005). Preincubation of arteries with insulin significantly reduced the contractile effect of NE by 20% in WKY but not SHR rats. In SHR, the effect of insulin to reduce NE-mediated vasoconstriction became evident when insulin pretreatment was accompanied by ET-1 receptor blockade (BQ-123, BQ-788). Similar results were observed during treatment with the MEK inhibitor PD-98059. In addition, insulin-stimulated secretion of ET-1 from primary endothelial cells was significantly reduced by pretreatment of cells with PD-98059 (but not wortmannin). We conclude that insulin resistance in SHR is accompanied by endothelial dysfunction in mesenteric vessels with impaired PI3-kinase-dependent NO production and enhanced MAPK-dependent ET-1 secretion. These results may reflect pathophysiology in other vascular beds that directly contribute to elevated peripheral vascular resistance and hypertension.  相似文献   

19.
20.
Vascular capacitance is reduced by endothelin-1 (ET-1) in deoxycorticosterone (DOCA)-salt hypertensive rats. This may contribute to hypertension development. Because the splanchnic blood vessels (especially veins) are important in determining vascular capacitance, we tested the hypothesis that ET-1 levels in the splanchnic vasculature are elevated in hypertensive DOCA-salt compared with normotensive rats. Tissue ET-1 content was measured by ELISA in aorta, vena cava, superior mesenteric artery and vein, and small mesenteric arteries and veins from normotensive sham-operated (sham) and 4-wk DOCA-salt rats. We also determined ET-1 concentration in aortic and portal venous blood (draining the nonhepatic splanchnic organs) in anesthetized and conscious sham and DOCA-salt rats before and after acute blockade of ETB receptor-mediated plasma clearance of ET-1. Results showed a higher ET-1 content in veins than in arteries of similar size. However, ET-1 content was similar in vessels from sham and DOCA-salt rats, except in aorta and superior mesenteric artery, where ET-1 content was greater in DOCA-salt rats. ET-1 concentration was significantly higher in portal venous than in aortic blood, indicating net nonhepatic splanchnic release (nNHSR) of ET-1. However, nNHSR of ET-1 was similar in sham and DOCA-salt rats. Although nNHSR of ET-1 increased significantly after ETB receptor blockade in sham rats, it was completely unchanged in DOCA-salt rats. These data suggest that, despite the absence of ETB receptor-mediated plasma clearance of ET-1, neither the venous peptide content nor the net release of ET-1 is increased in the splanchnic vasculature of DOCA-salt rats. These results argue against the hypothesis that increased venomotor tone in DOCA-salt hypertension is caused by increased ET-1 concentration around splanchnic venous smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号