首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Asexual, seedborne endophytic fungi in perennial grasses are often viewed as strong mutualists because fitness of the symbiont and host grass are closely coupled. However, at least for some native grasses, the asexual endophyte, Neotyphodium, acts parasitically, yet remains at high frequencies in natural populations. Most previous studies of Neotyphodium effects on host survival have been short term relative to the long life span of the perennial grass host. We therefore tested the hypothesis that Neotyphodium alters the survival in various life stages and long-term survival of adult native Arizona fescue (Festuca arizonica). To test the former, we planted 40 infected (E+) and 40 uninfected (E−, endophyte removed) seeds from four different maternal plants in the field under ambient conditions. We followed survival of seeds, seedlings, and adult plants over a 5-year period. To test the latter, we determined the infection of 1633 adult plants and followed their survival over the next 5–7 years. E+ seeds did not differ from uninfected seeds in terms of overall survival from seed germination to seedling to adult. However, the shape of the survival curve differed, with E+ plants showing higher mortality in early life stages. E+ adult plants did not differ from E− plants in long-term survival. Survival was generally very high during the study, which included a severe and prolonged drought. Infection by asexual Neotyphodium does not increase survival in early life stages or that of adult plants. Because asexual, vertically transmitted symbionts are predicted by evolutionary theory to be strong mutualists, the persistence of high infection frequencies in natural populations without long-term benefits to the host remains enigmatic. One possible explanation is that the long life span of the perennial host and low seedling recruitment may obscure either the costs or benefits of endophyte infection.  相似文献   

2.
Seedborne systemic endophytic fungi of grasses are thought to be plant mutualists, because they have been shown to improve their host’s resistance against biotic and abiotic stresses. The interactions in plant–endophyte associations vary from mutualistic to parasitic with environmental conditions and the genotypes of interacting species. The possible pros and cons of endophytic fungi are expected to be most evident during the seedling establishment, where host fitness is most directly affected. If this holds true, endophytes may play a focal role in local adaptation of hosts to different environments. We examined if endophyte-infected and uninfected seeds and seedlings of two native grass species, Festuca rubra and F. ovina, differ in seed germination and seedling growth rates under greenhouse conditions. The germination of F. rubra seeds was also studied in the field. This is the first time that the effects of Epichloë endophyte on seedling establishment of fine fescues from natural populations have been experimentally evaluated. Mother plant (seed family) had a marked effect on many response variables in both grass species. Length and mean biomass of tillers of endophyte-infected (E+) F. ovina seedlings were lower, but root:shoot ratios were higher than in endophyte-free (E?) seedlings. In F. rubra, the effects of the endophyte were dependent on the habitat where the seeds were collected. The E+ seeds from river banks germinated faster than E+ seeds from meadows, and E+ seedlings from the river banks produced fewer but taller and heavier tillers than the other seedlings. Our data suggest that the effects of the endophyte infection on the seedling stage of fine fescues are dependent the species of grass, host genetic background and mother plant habitat. The germination strategy and growth form of E+ red fescue seedlings from river banks may be beneficial to surviving in the harsh conditions of that habitat.  相似文献   

3.
不同育秧方式和插植密度下晚籼稻群体动态结构存在差异。旱育秧群体分蘖速度快,分蘖能力强。稀植可促进个体分蘖多发、有效穗数增多,但旱育稀植并无分蘖早发的优势。旱育稀植使主茎基部叶片变短而上部叶片变长,生育后期叶面积消长平稳,地上部干物质积累较多。旱育秧、稀植都使主茎叶总数增多,全生育期延长。  相似文献   

4.
Montané F  Casals P  Dale MR 《PloS one》2011,6(12):e28652
We used a multi-method approach to analyze the spatial patterns of shrubs and cover types (plant species, litter or bare soil) in grassland-shrubland ecotones. This approach allows us to assess how fine-scale spatial heterogeneity of cover types affects the patterns of Cytisus balansae shrub encroachment into mesic mountain grasslands (Catalan Pyrenees, Spain). Spatial patterns and the spatial associations between juvenile shrubs and different cover types were assessed in mesic grasslands dominated by species with different palatabilities (palatable grass Festuca nigrescens and unpalatable grass Festuca eskia). A new index, called RISES ("Relative Index of Shrub Encroachment Susceptibility"), was proposed to calculate the chances of shrub encroachment into a given grassland, combining the magnitude of the spatial associations and the surface area for each cover type. Overall, juveniles showed positive associations with palatable F. nigrescens and negative associations with unpalatable F. eskia, although these associations shifted with shrub development stage. In F. eskia grasslands, bare soil showed a low scale of pattern and positive associations with juveniles. Although the highest RISES values were found in F. nigrescens plots, the number of juvenile Cytisus was similar in both types of grasslands. However, F. nigrescens grasslands showed the greatest number of juveniles in early development stage (i.e. height<10 cm) whereas F. eskia grasslands showed the greatest number of juveniles in late development stages (i.e. height>30 cm). We concluded that in F. eskia grasslands, where establishment may be constrained by the dominant cover type, the low scale of pattern on bare soil may result in higher chances of shrub establishment and survival. In contrast, although grasslands dominated by the palatable F. nigrescens may be more susceptible to shrub establishment; current grazing rates may reduce juvenile survival.  相似文献   

5.
粉煤灰基质上草坪草苗期生长状况及其评价   总被引:8,自引:2,他引:6  
在未施肥的条件下,采用盆栽试验对粉煤灰、粉煤灰 泥炭土、粉煤灰 黄砂土、泥炭土、黄砂土5种基质上8种草坪草的苗期生长状况进行了研究。结果表明,白三叶、红三叶、黑麦草、高羊茅和马蹄金种子在粉煤灰基质上出苗快,其出苗率、苗高、分蘖数均高于粉煤灰 泥炭土和粉煤灰 黄砂土基质;但在后期出现叶片纤细、叶绿色浅淡。剪股颖在粉煤灰基质上出苗率低,结缕草和紫羊茅在粉煤灰基质上不出苗。  相似文献   

6.
Woody encroachment in savannas is a worldwide concern, and there is growing consensus that anthropogenic activities play a central role in changing tree – grass interactions. We evaluated the influence of livestock grazing and neighborhood interactions on seedling emergence and survival of the native tree Acacia caven in wet savannas of northeastern Argentina. We hypothesized that grazing and grass competition act as biotic barriers limiting tree recruitment, but the relative magnitude of such barriers differs according to grass patch type. In two consecutive years (cohort 1 and 2) we sowed seeds and transplanted seedlings of Acacia in two grass patch types (prostrate/palatable and tussock/unpalatable grasses) in both, grazed and ungrazed plots. Each grass patch type was further manipulated to create three levels of grass competition (unclipped control, above-ground biomass removal and total biomass removal).Cattle grazing diminished seedling emergence of both cohorts and seedling survival of cohort 1. The effect of grass competition changed according to grass patch type. Prostrate grass cover enhanced emergence but lowered early survival, while tussock grass cover and also its total biomass removal facilitated early survival. During the second year, a severe drought drastically reduced Acacia recruitment, and it was strong enough to eliminate any grazing effects although the effect of grass competition on seedling establishment remained significant.Our results suggest that grazing and grass competition additively diminished the risk of woody establishment in this wet savanna. However, the stocking rate should be carefully balanced, thus contributing to the maintenance of a competitive grass cover to limit tree recruitment.  相似文献   

7.
As water stress, including drought and waterlogging, can severely affect plant growth, this study investigated the effects of an endophyte from the genus Epichloë on two different ecotypes of Festuca sinensis grass under five soil water conditions in a controlled greenhouse experiment. Changes in F. sinensis plants grown with (E+) and without the endophyte (E−) were evaluated as they were subjected to different water treatments (20%, 35%, 50%, 65% and 80% relative saturation moisture content, RSMC). Growth parameters such as plant height, number of tillers, blade width, stem diameter, root length, total biomass, root-shoot ratio and relative water content were determined. The results showed that drought and waterlogging significantly (P < 0.05) inhibited the growth of F. sinensis. The presence of the endophyte significantly (P < 0.05) increased plant growth and root-shoot ratio under drought and waterlogged conditions. In addition, the plant height, number of tillers, blade width, stem diameter and total biomass in seedlings of both ecotypes reached the maximum at 65% RSMC, which suggests the optimal water condition. These findings also show that moderate drought (35% and 50% RSMC) could promote root growth of grass seedlings. Therefore, endophytic infections can result in enhanced host plant resistance to drought and waterlogged conditions.  相似文献   

8.
Aims In cool-season grasses, systemic and vertically transmitted Epichlo? infections often provide a suite of benefits including increased growth, reproduction and competitive abilities. However, these effects of Epichlo? endophytes on their hosts often depend upon host and endophyte genotype and environmental factors.Methods Achnatherum robustum (sleepygrass) harbors at least two Epichlo? species within natural populations in the Southwest USA. We tested the effects of endophyte infection and species, host population and plant genotype (by experimentally removing the endophyte), and soil moisture (a key limiting factor) on growth and drought stress response of infected A. robustum plants from two populations (Weed and Cloudcroft) in the Sacremento Mountains of New Mexico, USA).Important findings Although the two populations harbor distinct Epichlo? species each with very different chemoprofiles, neither endophyte status (infected vs. uninfected) nor endophyte species affected most growth parameters at 8 or 25 weeks of the experiment, except for leaf length. In high water treatment, infected plants from the Weed population had longer leaf length compared with uninfected plants. In contrast, the population of origin affected all growth parameters, including plant height, leaf number, length and width, tiller number and shoot and root biomass, as well as wilting time. Grasses from the Cloudcroft population generally showed greater growth than grasses from the Weed population. Endophyte infection did affect wilting time, with infection in the Weed population generally reducing time to wilting under low and high water, whereas infection in the Cloudcroft population reduced time to wilting only under high water conditions. Our results suggest that plant population and their associated plant genotypes may play a much larger role in endophyte–host grass interactions in varying environments than previously thought. Asexual Epichlo? species may be compatible with only specific host genotypes within populations such that the phenotypic effects due to population may be greater than phenotypic changes influenced by variation in the endophyte.  相似文献   

9.
Large and high nitrogen (N) concentration seedlings frequently have higher survival and growth in Mediterranean forest plantations than seedlings with the opposite traits, which has been linked to the production of deeper and larger root systems in the former type of seedlings. This study assessed the influence of seedling size and N concentration on root growth dynamics and its relation to shoot elongation in Aleppo pine (Pinus halepensis Mill.) seedlings. We cultivated seedlings that differed in size and tissue N concentration that were subsequently transplanted into transparent methacrylate tubes in the field. The number of roots, root depth, and the root and shoot elongation rate (length increase per unit time) were periodically measured for 10 weeks. At the end of the study, we also measured the twig water potential (ψ) and the mass of plant organs. New root mass at the end of the study increased with seedling size, which was linked to the production of a greater number of new roots of lower specific length rather than to higher elongation rate of individual roots. Neither plant size nor N concentration affected root depth. New root mass per leaf mass unit, shoot elongation rate, and pre-dawn ψ were reduced with reduction in seedling size, while mid-day ψ and the root relative growth rate were not affected by seedling size. N concentration had an additive effect on plant size on root growth but its overall effect was less important than seedling size. Shoot and roots had an antagonistic elongation pattern through time in small seedlings, indicating that the growth of both organs depressed each other and that they competed for the same resources. Antagonism between shoot and root elongation decreased with plant size, disappearing in large and medium seedlings, and it was independent of seedling N concentration. We conclude that root and shoot growth but not rooting depth increased with plant size and tissue N concentration in Aleppo pine seedlings. Since production of new roots is critical for the establishment of planted seedlings, higher absolute root growth in large seedlings may increase their transplanting performance relative to small seedlings. The lack of antagonism between root and shoot growth in large seedlings suggests that these plants can provide resources to sustain simultaneous growth of both organs.  相似文献   

10.
Superior growth and persistence has been reported in endophyte-infectedgrasses; however, findings may have been confounded by experimentconditions including plant genotype. A controUed-environmentstudy was designed to address some growth characteristics offour tall fescue (Festuca arundinacea Schreb.) accessions asinfluenced by endophyte (Acremonium coenophiahim Morgan-Joneset Gams) and water regime. Endophyte-infected plants were collected,vegetatively propagated and some treated with propiconazole(11 kg a.i. ha–1) to develop non-infected isolines ofeach accession. The phenotypically diverse accessions, eachrepresented by infected and non-infected isolines, were grownwith adequate (–0–03 MPa), or a series of deficit(<–1·5 MPa) and recovery water regimes, replicatedthree times. Plant growth characteristics were measured during(leaf elongation and tillering) and upon conclusion (phytomassproduction, tillering, and leaf area) of the study. Leaf elongation,as a function of leaf length, was significantly different amongaccessions, and generally decreased with water deficit althoughsome non-infected isolines were not affected. Water deficitdepressed tiller production in virtually all accessions whileendophyte effects depended upon accession. Leaf blade yieldwas not significantly influenced by endophyte status or interactionof endophyte, with water regime and accession; however, pseudostem(stem base and leaf sheath), root and dead leaf yields wereaffected in some cases. Non-structural carbohydrate concentrationin all plant parts except roots, was decreased by water deficit,whereas root non-structural carbohydrate concentration tendedto increase with water deficit. Non-structural carbohydratesof all plant parts was not influenced by endophyte status. Tallfescue-endophyte association responses vary due to genotype,therefore a simple generalization of endophyte impact upon tallfescue productivity and persistence is not possible based uponthe results of this study Festuca arundinacea Schreb., Acremonium coenophiahim Morgan-Jones et Gams, leaf elongation, phytomass production, tillering, water deficit, non-structural carbohydrate  相似文献   

11.
A popular hypothesis for tree and grass coexistence in savannas is that tree seedlings are limited by competition from grasses. However, competition may be important in favourable climatic conditions when abiotic stress is low, whereas facilitation may be more important under stressful conditions. Seasonal and inter-annual fluctuations in abiotic conditions may alter the outcome of tree–grass interactions in savanna systems and contribute to coexistence. We investigated interactions between coolibah (Eucalyptus coolabah) tree seedlings and perennial C4 grasses in semi-arid savannas in eastern Australia in contrasting seasonal conditions. In glasshouse and field experiments, we measured survival and growth of tree seedlings with different densities of C4 grasses across seasons. In warm glasshouse conditions, where water was not limiting, competition from grasses reduced tree seedling growth but did not affect tree survival. In the field, all tree seedlings died in hot dry summer conditions irrespective of grass or shade cover, whereas in winter, facilitation from grasses significantly increased tree seedling survival by ameliorating heat stress and protecting seedlings from herbivory. We demonstrated that interactions between tree seedlings and perennial grasses vary seasonally, and timing of tree germination may determine the importance of facilitation or competition in structuring savanna vegetation because of fluctuations in abiotic stress. Our finding that trees can grow and survive in a dense C4 grass sward contrasts with the common perception that grass competition limits woody plant recruitment in savannas.  相似文献   

12.
Reduced recruitment of blue oak (Quercus douglasii) seedlings in California grasslands and woodlands may result from shifts in seasonal soil water availability coincident with replacement of the native perennial herbaceous community by Mediterranean annuals. We used a combination of container and field experiments to examine the interrelationships between soil water potential, herbaceous neighborhood composition, and blue oak seedling shoot emergence and growth. Neighborhoods of exotic annuals depleted soil moisture more rapidly than neighborhoods of a perennial grass or "no-neighbor" controls. Although effects of neighborhood composition on oak seedling root elongation were not statistically significant, seedling shoot emergence was significantly inhibited in the annual neighborhoods where soil water was rapidly depleted. Seedling water status directly reflected soil water potential, which also determined the extent and duration of oak seedling growth during the first year. End-of-season seedling height significantly influenced survival and growth in subsequent years. While growth and survival of blue oak seedlings may be initially constrained by competition with herbaceous species, subsequent competition with adult blue oak trees may further contribute to reduced sapling recruitment.  相似文献   

13.
Goergen  Erin  Daehler  Curtis C. 《Plant Ecology》2002,161(2):147-156
In the Hawaiian Islands, native Heteropogon contortus (pili grass) is being replaced by alien grasses, one of which is Pennisetum setaceum (fountain grass). Both grasses depend on seeds for population growth. To help understand factors promoting the spread of the alien and decline of the native, we investigated the effects of physical disturbance, nutrient addition, and seed supplementation on seedling recruitment in experimental field plots. In the first year, our field site experienced an unusual drought, and seedling recruitment was greater for H. contortus than for P. setaceum under all treatments. Disturbance increased recruitment of H. contortus seedlings during some sampling periods. Recruitment was not significantly increased by seed additions for either species despite our finding of only 49 and 4 seeds m–2 in the seed bank for H. contortus and P. setaceum, respectively. In the first year, most P. setaceum seedlings died between monthly surveys. We resurveyed our field plots in a second, wetter year and found the pattern was reversed: recruitment of P. setaceum seedlings was greater than H. contortus seedlings in most treatments. Greenhouse comparisons of seedling survival under three drought regimes (water every 5,7 and 10 days) revealed that H. contortus seedlings tolerate drought better than P. setaceum seedlings. Seedling recruitment for these species in the leeward Hawaiian Islands appears to be primarily dependent on water availability, with the alien having the advantage in wetter years. Once seedlings of the long-lived alien become established, the alien seems capable of maintaining its dominance over H. contortus, even during periods of drought.  相似文献   

14.
有关醉马草(Achnatherum inebrians)内生真菌(Epichloë gansuensis, E. inebrians)共生体的研究, 代表了我国禾草内生真菌研究领域的重要方向, 使中国的醉马草-内生真菌与美国的苇状羊茅(Festuca arundinacea)-内生真菌(E. coenophiana)和新西兰的多年生黑麦草(Lolium perenne)-内生真菌(E. festucae var. lolii)成为禾草内生真菌国际三大研究分支。该文综述了近30年来对醉马草内生真菌共生体的系统研究, 包括: 内生真菌的分布、带菌率、检测方法、多样性, 内生真菌提高宿主的抗旱、耐寒、耐盐碱、耐重金属、抗虫、抗病等抗逆性及其机理, 共生体产生的生物碱等次生代谢物, 对草食动物的毒性, 及其在草地生态系统中的作用等。研究者实验证实了醉马草本身无毒, 只有当内生真菌与醉马草共生并产生麦角新碱和麦角酰胺等麦角类生物碱后才能导致采食醉马草家畜中毒。文章展望了醉马草内生真菌基因组学和功能分析, 利用杀菌剂杀死内生真菌进行醉马草脱毒, 利用无毒内生真菌菌株进行饲用醉马草新品种选育, 利用有毒醉马草内生真菌共生体进行抗虫防鸟的机场绿化新品种选育及生物源农药与医药开发等。  相似文献   

15.
The presence of the endophytic fungusAcremonium coenophialum Morgan-Jones et Gams in tall fescue (Festuca arundinacea Schreb.) induces toxicity when this grass is grazed by cattle; however, there is evidence that removing the endophyte reduces the stand vigor and longevity of fescue. A field trial was conducted to determine the effects of water supply and the presence of the endophytic fungus on plant growth, drought tolerance, and soil nematode populations in Kentucky 31 tall fescue. The design included two factors, level of endophyte infection (0 and 75%) and irrigation regime (none, low, and high). Where water deficits occurred, herbage yield and leaf area were lower, and percentage dead tissue and canopy minus air temperature were greater in endophyte-free compared with endophyte-infected fescue. Soil populations ofPratylenchus scribneri andTylenchorhynchus acutus were substantially higher in the noninfected than in the endophyte-infected plots. The endophyte apparently confers drought tolerance to Kentucky 31 tall fescue, and this effect may be at least partially mediated through enhanced resistance to soil-borne nematodes.Published with the approval of the Director of the Ark. Agric. Exp. Stn.  相似文献   

16.
In tropical forests light and water availability are the most important factors for seedling growth and survival but an increasing frequency of drought may affect tree regeneration. One central question is whether drought and shade have interactive effects on seedling growth and survival. Here, we present results of a greenhouse experiment, in which seedlings of 10 Ghanaian tree species were exposed to combinations of strong seasonal drought (continuous watering versus withholding water for nine weeks) and shade (5% irradiance versus 20% irradiance). We evaluated the effects of drought and shade on seedling survival and growth and plasticity of 11 underlying traits related to biomass allocation, morphology and physiology. Seedling survival under dry conditions was higher in shade than in high light, thus providing support for the “facilitation hypothesis” that shade enhances plant performance through improved microclimatic conditions, and rejecting the trade-off hypothesis that drought should have stronger impact in shade because of reduced root investment. Shaded plants had low biomass fraction in roots, in line with the trade-off hypothesis, but they compensated for this with a higher specific root length (i.e., root length per unit root mass), resulting in a similar root length per plant mass and, hence, similar water uptake capacity as high-light plants. The majority (60%) of traits studied responded independently to drought and shade, indicating that within species shade- and drought tolerances are not in trade-off, but largely uncoupled. When individual species responses were analysed, then for most of the traits only one to three species showed significant interactive effects between drought and shade. The uncoupled response of most species to drought and shade should provide ample opportunity for niche differentiation and species coexistence under a range of water and light conditions. Overall our greenhouse results suggest that, in the absence of root competition shaded tropical forest tree seedlings may be able to survive prolonged drought.  相似文献   

17.
In semiarid south Texas, land conversion has reduced thornscrub forests by greater than 95%, and stressors, including competition with invasive grasses, mammalian herbivory, and drought, threaten the success of restoration efforts. This study assessed the effectiveness of multiple restoration treatments aimed at improving survival and growth of thornscrub forest seedlings planted in old agricultural fields. In January 2013, we treated greater than 1,100 seedlings with grass‐specific herbicide, herbivore exclosures, and shelter tubes, used separately or combined. We further evaluated the effects of shelter tube duration (0, 6, 12, and 18 months). For each seedling, we quantified surrounding invasive grass cover, browse intensity, height, and basal diameter every 4 months until September 2014. Herbicide application decreased invasive grass cover approximately 5‐fold and increased seedling survival (23%) and basal diameter (26%). Shelter tube application for 12 and 18 months increased seedling survival (10%) and height (43 and 74%, respectively), whereas seedlings treated with tubes for only 6 months performed similar to those left untreated. Exclosures had no impact on seedling survival but increased seedling height (23%) and basal diameter (26%). We found no significant interactive effects of treatments. Overall, herbicide most effectively increased seedling survival and basal diameter growth, whereas shelter tubes proved most useful for promoting height growth. Combined, these treatments increased implementation and maintenance costs 2‐fold, but minimized seedling mortality and maximized restoration potential. These findings highlight the necessity of post‐planting seedling management to reduce stress from invasive grasses, mammalian herbivory, and drought and improve restoration potential in semiarid thornscrub forests.  相似文献   

18.
The growth-rates and chromosome numbers of plants taken froma natural population of hybrids between perennial rye grassand meadow fescue were determined. The growth-rates of diploidhybrids resembled that of rye grass while those of the triploidswere similar to that of meadow fescue. Experiments on plantsgrown singly and in competition showed that fescue was adverselyaffected by low temperature and rye grass by low light and alsoby the reduced nutrient supply arising from competition. The persistence of the sterile hybrids is explained by theirrecurrent formation coupled with greater longevity and vegetativespread, arising from growth characteristics intermediate betweenthose of their parents. The persistence of rye grass and thedisappearance of fescue when periodically grazed appear to resultfrom the earlier growth and more rapid rate of tillering ofthe former. However, rye grass has fewer and smaller meristemsavailable for regrowth if allowed to grow until anthesis, andunder these conditions fescue dominates. The intermediate growthcharacters of the hybrids allow them to survive spring grazingmore readily than meadow fescue and cutting for hay more readilythan rye grass.  相似文献   

19.
《植物生态学报》2018,42(8):793
有关醉马草(Achnatherum inebrians)内生真菌(Epichloë gansuensis, E. inebrians)共生体的研究, 代表了我国禾草内生真菌研究领域的重要方向, 使中国的醉马草-内生真菌与美国的苇状羊茅(Festuca arundinacea)-内生真菌(E. coenophiana)和新西兰的多年生黑麦草(Lolium perenne)-内生真菌(E. festucae var. lolii)成为禾草内生真菌国际三大研究分支。该文综述了近30年来对醉马草内生真菌共生体的系统研究, 包括: 内生真菌的分布、带菌率、检测方法、多样性, 内生真菌提高宿主的抗旱、耐寒、耐盐碱、耐重金属、抗虫、抗病等抗逆性及其机理, 共生体产生的生物碱等次生代谢物, 对草食动物的毒性, 及其在草地生态系统中的作用等。研究者实验证实了醉马草本身无毒, 只有当内生真菌与醉马草共生并产生麦角新碱和麦角酰胺等麦角类生物碱后才能导致采食醉马草家畜中毒。文章展望了醉马草内生真菌基因组学和功能分析, 利用杀菌剂杀死内生真菌进行醉马草脱毒, 利用无毒内生真菌菌株进行饲用醉马草新品种选育, 利用有毒醉马草内生真菌共生体进行抗虫防鸟的机场绿化新品种选育及生物源农药与医药开发等。  相似文献   

20.
In neotropical alpine grasslands (páramo), the natural tussock grass vegetation is extensively grazed and occasionally burned. The low productivity of the tussock grass seems to be the reason for the disappearance of this growth form in the most frequently intervened areas. The structure, microclimate and leaf elongation rates of new emerging leaves were studied for the dominant tussock grass species Calamagrostis effusa, at an undisturbed, a moderately grazed (7 year after fire) and a heavily grazed (3.5 years after fire) site. In absence of grazing and burning, the tussocks had a high standing crop (1.07±0.09 kg DW · m-2) and leaf area per projected tussock cover (LAI: 9.6±1.4). Two thirds of the total mass was dead and more than half of the leaves were in horizontal position. The tussock growth form protects the meristems from severe climatic conditions. At midday, the temperature was higher at meristem level than in the rest of the tussock. At this level, photosynthetic irradiance (PI) was almost extinct at 2.9±0.74% of PI above the vegetation. The red/far red ratio (R/FR) was strongly decreased. Initial leaf elongation of new born leaves was 2.3 mm · day-1, and constant during the year; estimated net annual production was 198±73.8 g m-2. At the moderately grazed and the heavily grazed study sites, the tussocks were smaller, greener and more erect than those at the undisturbed site. More PI reached the meristems and R/FR was higher at the base of grazed tussocks. Leaf elongation rates were lower. Most of the litter disappeared during the fires. The lower elongation rate of leaves in the grazed areas might be a response to defoliation, resulting in increased tillering and a lack growth associated with poor temperature insulation and more UV-B damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号