首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Annual changes in the spermatogenetic activity of the testis were studied histologically in the river sculpin. Coitus hangiongensis , sampled monthly from a river in southern Hokkaido, Japan. A pair of sperm reservoirs, consisting of many anastomosing lacunae, was present along the dorsomedian edge of the paired testes, and functioned also as a sperm-transporting system instead of the typical sperm duct. Spermatogenesis occurred actively in August, yielding an increasing number of mature spermatozoa in October. This process advanced, but slowly during the succeeding winter months, until March. The testis became functionally mature during the spawning period in April and May. In July, small numbers of spermatocytes were found to have appeared already, which indicated a relatively short period of post-spawning testicular regression. In November, germinal cysts containing aberrant binuclear spermatids began to appear within the seminal lobules. The paired nuclei of aberrant spermatids gradually enlarged, and the cells were released into the lumina of the seminal lobules simultaneously with the release of mature spermatozoa from the germinal cysts. During the functional maturity stage, lumina of seminal lobules which had expelled mature spermatozoa to sperm reservoirs became filled with these abnormal bodies. Discussion includes the occurrence of aberrant spermatids which resulted in the formation of 'spermatid masses' as has been described in other cottids.  相似文献   

2.
Five reproductive classes of cobia Rachycentron canadum , caught along the Gulf of Mexico and the south-east Atlantic coast of the U.S.A., are described during the annual reproductive cycle. These are based upon changes in the testicular germinal epithelium and the stages of germ cells that are present: early maturation, mid maturation, late maturation, regression and regressed. During early maturation, the germinal epithelium is continuous from the testicular ducts to the periphery of the testis and active spermatogenesis occurs throughout the testis. In mid maturation, the germinal epithelium near the ducts becomes discontinuous, but it remains continuous distally. In late maturation, a discontinuous germinal epithelium extends all along the lobules to the testicular periphery; lobules are swollen with sperm and there is minimal spermatogenesis. The regression class is characterized by a discontinuous epithelium throughout the testis, sperm storage and widely scattered spermatocysts. Spermatogonial proliferation also occurs along the lobule walls and at the periphery of the testis. In regressed testes, spermatogonia exist only in a continuous or discontinuous germinal epithelium, although residual sperm are nearly always present in the lobules and ducts. The presence or absence of sperm is not an accurate indicator of reproductive classes. At the periphery of the testis in the regression and regressed classes, the distal portions of lobules elongate as cords of cells containing spermatogonia and Sertoli cells. All reproductive classes can be identified in paraffin sections, although plastic sections provide better resolution. Using maturation classes defined by changes in the germinal epithelium to describe testicular development and spermatogenesis gives a more accurate picture than does using the traditional terminology.  相似文献   

3.
 Testis organization and spermatogenesis, with the emphasis on spermiogenesis, in Opistognathus whitehurstii are described by ultrastructural and histochemical methods. The germinal epithelium is extremely reduced and restricted to the periphery of the testis, while most of the organ is occupied by a highly developed system of testicular efferent ducts. A semicystic type of spermatogenesis is observed and in the germinal epithelium spermatogenesis occurs only until the spermatidal stage. Young spermatids are released into the lumen of the testicular lobules and mature to sperm within the efferent duct system. The epithelial cells of these ducts are involved in protein and glycogen secretion and in phagocytosis of degenerating germ cells and residual bodies cast off by developing spermatids. On the basis of these functions, the testicular efferent duct system cells are considered to be homologous to the Sertoli cells. A correlation between a highly developed testicular efferent duct system and semicystic spermatogenesis is examined and a possible functional meaning of this apparently unusual mode of sperm production is proposed. Accepted: 18 March 1997  相似文献   

4.
5.
Evolution and phylogeny of gonad morphology in bony fishes   总被引:3,自引:0,他引:3  
Gonad morphology at the gross anatomical or histological levelshas long been studied by fisheries biologists to identify annualreproductive cycles and length of breeding season, among othergoals. Comparative surveys across vertebrate taxa have not beendetailed enough, however, to describe fully the differencesand similarities among gonads of bony fishes and other vertebrates,and to use gonad morphology in phylogenetic systematic analyses.An emerging constant among vertebrates is the presence of agerminal epithelium composed of somatic and germ cells in bothmales and females. In females, the germinal epithelium linesthe ovarian lamellae. In males, arrangement of the germinalepithelium into compartments varies among osteichthyans: basaltaxa have an anastomosing tubular testis, whereas derived taxahave a lobular testis. The lobular testis is proposed as a synapomorphyof the Neoteleostei. The annual reproductive cycle is hypothesizedto be the source of morphological variation among testis types.Elongation of germinal compartments during early maturationmay result in a transition from anastomosing tubular to lobulartestes. In all male atherinomorphs surveyed, spermatogonia arerestricted to the distal termini of lobules rather than beingdistributed along the lobule; there is an epithelioid arrangementof Sertoli and germ cells rather than a germinal epithelium.Arrest of the maturation-regression phases is hypothesized tolead to formation of the atherinomorph testis. Atherinomorphsalso have a distinctive egg with fluid, rather than granular,yolk. Variation among germinal epithelia is interpreted in adeveloping phylogenetic framework to understand evolution ofgonad morphology and to propose gonad characters for phylogeneticanalyses.  相似文献   

6.
The swamp eel, Synbranchus marmoratus, is a protogynous, diandric species. During sex reversal, the ovarian germinal epithelium, which forms follicles containing an oocyte and encompassing follicle cells during the female portion of the life cycle, produces numerous invaginations, or acini, into the ovarian stroma. Within the acini, the gonia that formerly produced oocytes become spermatogonia, enter meiosis, and produce sperm. The acini are bounded by the basement membrane of the germinal epithelium. Epithelial cells of the female germinal epithelium, which formerly became follicle (granulosa) cells, now become Sertoli cells in the developing testis. Subsequently, lobules and testicular ducts form. The swamp eel testis has a lobular germinal compartment in both primary and secondary males, although the germinal compartment in testes of secondary males resides within the former ovarian lamellae. The germinal compartment, supported by a basement membrane, is composed of Sertoli and germ cells that give rise to sperm. Histological and immunohistochemical techniques were used to describe the five reproductive classes that were observed to occur during the annual reproductive cycle: regressed, early maturation, mid-maturation, late maturation, and regression. These classes are differentiated by the presence of continuous or discontinuous germinal epithelia and by the types of germ cells present. Synbranchus marmoratus has a permanent germinal epithelium. Differences between the germinal compartment of the testes of primary and secondary males were not observed.  相似文献   

7.
The present study investigates the relationship between the annual cycle of testicular development and external environment and the rate of spermatogenesis in the mosquitofish Gambusia affinis based on histological observations of testes. The annual reproductive cycle of the mosquitofish was divided into two periods, i.e., the spermatogenic period (May–October) and resting period (October–April). In the spermatogenic period, the transition from spermatogonia to spermatocytes begins and meiosis actively progresses. In the resting period, the transition from spermatogonia to spermatocytes ceases, meiosis of spermatocytes that already shifted by this period gradually progresses, and a considerable number of sperm balls are produced. Onset of spermatogenesis seems to be related to both a rise in water temperature and a prolonged photoperiod. 5-bromo-2-deoxyuridine (BrdU) was a useful in vivo marker of DNA synthesizing spermatogenic cells. The results of immunohistochemical detection of injected BrdU indicated that 5 days are needed for the conversion of spermatocytes to spermatids, 5 days for spermatids to spermatozoa, and 10 days for spermatozoa to sperm balls.  相似文献   

8.
金鱼精巢的细胞构造与精子的发生和形成   总被引:40,自引:2,他引:38  
  相似文献   

9.
The testis produces male gametes in the germinal epithelium through the development of spermatogonia and spermatocytes into spermatids and immature spermatozoa with the support of Sertoli cells. The flow of spermatozoa into the epididymis is aided by testicular secretions. In the epididymal lumen, spermatozoa and testicular secretions combine with epididymal secretions that promote sperm maturation and storage. We refer to the combined secretions in the epididymis as the sperm-milieu. With two-dimensional-PAGE matrix-assisted laser desorption ionization time-of-flight MS analysis of healthy testes from fertile accident victims, 725 unique proteins were identified from 1920 two-dimensional-gel spots, and a corresponding antibody library was established. This revealed the presence of 240 proteins in the sperm-milieu by Western blotting and the localization of 167 proteins in mature spermatozoa by ICC. These proteins, and those from the epididymal proteome (Li et al. 2010), form the proteomes of the sperm-milieu and the spermatozoa, comprising 525 and 319 proteins, respectively. Individual mapping of the 319 sperm-located proteins to various testicular cell types by immunohistochemistry suggested that 47% were intrinsic sperm proteins (from their presence in spermatids) and 23% were extrinsic sperm proteins, originating from the epididymis and acquired during maturation (from their absence from the germinal epithelium and presence in the epididymal tissue and sperm-milieu). Whereas 408 of 525 proteins in the sperm-milieu proteome were previously identified as abundant epididymal proteins, the remaining 22%, detected by the use of new testicular antibodies, were more likely to be minor proteins common to the testicular proteome, rather than proteins of testicular origin added to spermatozoa during maturation in the epididymis. The characterization of the sperm-milieu proteome and testicular mapping of the sperm-located proteins presented here provide the molecular basis for further studies on the production and maturation of spermatozoa. This could be the basis of development of diagnostic markers and therapeutic targets for infertility or targets for male contraception.  相似文献   

10.
We investigated the structure of the male reproductive system in Ichthyophis supachaii. The testis comprises a series of mulberry‐like lobes, each of which contains testis lobules occupied by germ cysts. A single cyst consists of synchronously developing germ cells. Six spermatogenic cell types, viz. primary spermatogonia, secondary spermatogonia, primary spermatocytes, secondary spermatocytes, spermatids and spermatozoa, have been identified and described. Notably, the testis of I. supachaii encompasses specific organization patterns of spermatids and spermatozoa during spermiogenesis. Spermiating cysts rupture and release spermatozoa to the collecting ducts, which are subsequently transported to the sperm duct, Wolffian duct and cloaca. We report for the first time ciliated cells in the epithelium of the caecilian Wolffian duct. The cloaca is divided into the urodeum and phallodeum. The urodeum has ciliated and glandular epithelia at its dorsolateral and ventral regions, respectively, as the lining of its internal surface. The muscular phallodeum is lined by ciliated epithelium. Paired Mullerian ducts lie parallel to the intestine and join the cloaca. The posterior portion of the duct is modified as the Mullerian gland. The most posterior region is non‐glandular and lined by ciliated epithelium. Our findings contribute further to information on the reproductive biology of caecilians in Thailand.  相似文献   

11.
12.
The cyclic changes in the testis of the five-spined stickleback Eucalia inconstans (Kirtland) were studied histologically. Specimens were trapped between July 1965 and July 1967 in a shallow pond near London, Ontario. A three-dimensional microscopic study showed a main vas deferens and a system of primary, secondary and tertiary tubules. The testis cycle was divided into seven arbitrary stages. Spawning takes place from mid-April to mid-July. This is followed by the division of primary spermatogonia which are located along the walls of the tubules, producing cysts of spermatogonia enclosed in connective tissue which is surrounded by a thin epithelium. Both primary and secondary spermatocytes develop within these cysts. Breakdown of the cysts occurs with the development of spermatids and spermiogenesis occurs while spermatids are free in the tubules. Over-wintering of mature sperm takes place. Development of mature sperm from primary spermatogonia takes about 156 days. Germinal epithelium is absent but primary germ cells are believed to be those cells occupying the spaces between the tubules of the testis. No tissue which might be implicated in hormone production was observed. Phagocytic invasion of the testis has been studied. Massive infiltration by phagocytes is believed to be responsible for the sudden increase in testis weight observed during spawning. These cells ingest sperm nuclei and groups of them have been observed in the lumen of the tubules and the vas deferens, probably on their way out of the body.  相似文献   

13.
14.
Spermatogenesis in male Atlantic halibut (Hippoglossus hippoglossus L.) was investigated by sampling blood plasma and testicular tissue from 15-39-month-old fish. The experiment covered a period in which all fish reached puberty and completed sexual maturation at least once. The germinal compartment in Atlantic halibut testis appears to be organized in branching lobules of the unrestricted spermatogonial type, because spermatocysts with spermatogonia were found throughout the testis. Spermatogenesis was characterized histologically, and staged according to the most advanced type of germ cell present: spermatogonia (Stage I), spermatogonia and spermatocytes (Stage II), spermatogonia, spermatocytes and spermatids (Stage III), spermatogonia, spermatocytes, spermatids and spermatozoa (Stage IV), and regressing testis (Stage V). Three phases could be distinguished: first, an initial phase with low levels of circulating testosterone (T; quantified by RIA) and 11-ketotestosterone (11-KT; quantified by ELISA), spermatogonial proliferation, and subsequently the initiation of meiosis marked by the formation of spermatocytes (Stage I and II). Secondly, a phase with increasing T and 11-KT levels and with haploid germ cells including spermatozoa present in the testis (Stage III and IV). Thirdly, a phase with low T and 11-KT levels and a regressing testis with Sertoli cells displaying signs of phagocytotic activity (Stage V). Circulating levels of 11-KT were at least four-fold higher than those of T during all stages of spermatogenesis. Increasing plasma levels of T and 11-KT were associated with increasing testicular mass throughout the reproductive cycle. The absolute level of, or the relation between, testis growth and circulating androgens were not significantly different in first time spawners compared to fish that underwent their second spawning season. These results provide reference levels for Atlantic halibut spermatogenesis.  相似文献   

15.
The viviparous lizards of the Sceloporus genus exhibit both seasonal and continuous spermatogenesis. The viviparous lizard Sceloporus mucronatus from Tecocomulco, Hidalgo, México, exhibits seasonal spermatogenesis. This study demonstrates the relationship between changes in testis volume, spermatogenesis activity, and Leydig cells during the male reproductive cycle of S. mucronatus. A recrudescence period is evident, which starts in the winter when testicular volume is reduced and climaxes in February, when the greatest mitotic activity of spermatogonia occurs. The testicular volume and Leydig cell index increase gradually during the spring with primary spermatocytes being the most abundant cell type observed within the germinal epithelium. In the summer, the secondary spermatocytes and undifferentiated round spermatids are the most abundant germinal cells. The breeding season coincides with spermiogenesis and spermiation; testicular volume also increases significantly as does the Leydig cell index where these cells increase in both cytoplasmic and nuclear volume. During fall, testicular regression begins with a significant decrease in testicular volume and germinal epithelium height, although there are remnant spermatozoa left within the lumen of the seminiferous tubules. During this time, the Leydig cell index is also reduced, and there is a decrease in cellular and nuclear volumes within these interstitial cells. Finally, during quiescence in late fall, there is reduced testicular volume smaller than during regression, and only spermatogonia and Sertoli cells are present within the seminiferous tubules. Leydig cells exhibit a low index number, their cellular and nuclear volumes are reduced, and there is a depletion in lipid inclusion cytoplasmically.  相似文献   

16.
The intrinsic yield of spermatogenesis and supporting capacity of Sertoli cells are the desirable indicators of sperm production in a species. The objective of the present study was to quantify intrinsic yield and the Sertoli cell index in the spermatogenic process and estimate testicular sperm reserves by histological assessment of fragments obtained by testicular biopsy of five adult jaguars in captivity. The testicular fragments were fixed in 4% glutaric aldehyde, dehydrated at increasing alcohol concentrations, included into hydroxyethyl methacrylate, and were cut into 4 μm thickness. In the seminiferous epithelium of the jaguar, 9.2 primary spermatocytes in pre-leptotene were produced by “A” spermatogonia. During the meiotic divisions only 3.2 spermatids were produced by a primary spermatocyte. The general spermatogenic yield of the jaguar was about 23.4 cells and each Sertoli cell was able to maintain about 19.2 germ cells, 11 of them were round spermatids. In each seminiferous epithelium cycle about 166 million spermatozoa were produced by each gram of testicular tissue. In adult jaguars, the general spermatogenic yield was similar to the yield observed in pumas, greater than that observed for the domestic cat, but less compared to most domestic animals.  相似文献   

17.
The microanatomy of the testes and testicular ducts (rete testis, ductuli efferentes, ductus epididymis and ductus deferens) of Leiolepis ocellata (Agamidae) was investigated using light microscopy including histochemistry. Each testis contains seminiferous tubules and interstitial tissues. The former house spermatogenic cells (spermatogonia A & B, preleptotene, primary and secondary spermatocytes, spermatids (steps 1–8) and spermatozoa) and Sertoli cells, while the latter comprise peritubular and intersitial tissues. The rete testis is an anastomosing duct, having intratesticular and extratesticular portions. The proximal region of ductuli efferentes has wider outer ductal and luminal diameters than those of the distal region. The convoluted ductus epididymis is subdivided into four regions (initial segment, caput, corpus and cauda), based on the ductal diameter, epithelium characteristics and cell components. The ductus deferens has the greatest diameter and is divided into the ductal and ampulla ductus deferens. The ductal portion is subdivided into the proximal and distal regions, based on the epithelium types and ductal diameters. The ampulla ductus deferens is a fibromuscular tube, having numerous mucosal folds projecting into the lumen. Spermiophagy is detectable in the ductus epididymis and ductus deferens. The present results contribute to improved fundamental knowledge on the microanatomy of the reptilian reproductive system.  相似文献   

18.
In insects, the alignment of neighboring spermatid in the late stages is nearly perfect, so that a transverse section of a cyst containing late spermatids transects all the spermatids at approximately the same level. However, the testicular cysts of spiders are spherical, most cysts are arranged in order of increasing maturity from the periphery to the center of the testis. For this reason, it is difficult to observe the whole spermatids within a single microscopic slide and count them. Therefore, we demonstrate microstructural reconstruction technique enabling to count exact number of sperm cells per cyst with aid of 3D volume rendering. For image processing and reconstruction, serially sectioned histologic specimens were scanned with microscopy and 3D images were reconstructed using Amira 5.3.2 software from the image stacks of the germ cells and surrounding testicular cysts subsequentially. With the information gathered by 3D reconstruction, it has finally been counted that exactly 32 (25) cells of the secondary spermatocytes per cyst. This means that most cysts in P. laura contain exactly 64 (26) spermatids or spermatozoa, which presumably arose from four synchronous mitotic and two meiotic divisions. In addition, the number of divisions occurring in a cyst appears to be constant for this spider because it has been known that the number of spermatids per cyst is characteristic for each species.  相似文献   

19.
长吻鮠精巢及精子结构的研究   总被引:11,自引:0,他引:11  
长吻鮠精巢高度分支呈指状。后1/3紫红色,由上皮细胞组成,既不产生精子,也不贮存精子。精巢的内部结构为叶型,由体细胞和生殖细胞构成,小叶的基本单位是小囊。精子头短而圆,主要为核占据,无顶体,核凹窝十分发达,有中心粒帽;尾极长,具侧鳍,轴丝基部有发达的囊泡状结构和线粒体。  相似文献   

20.
Doses of 1 Gy or more of X-irradiation killed all B spermatogonia present in the testis, and during the first 3 weeks after irradiation, virtually no new B spermatogonia were formed. The number of Apale spermatogonia decreased during the first cycle of the seminiferous epithelium while the number of Adark spermatogonia only began to decrease during the second cycle after irradiation. In this study, the duration of the cycle of the seminiferous epithelium in the rhesus monkey was estimated to be 10.5 days (SE = 0.2 days). This was determined following the depletion of germinal cells in the seminiferous epithelium during the first 3 weeks after irradiation. The duration of each of the 12 stages of the cycle was also determined. Our observations of the progress of germinal cell depletion revealed that after a dose of X-irradiation sufficient to kill all B spermatogonia, all spermatocytes disappeared from the testis within about 17 days, and all spermatids within about 31 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号