首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The modelling of ion uptake by plants requires the measurement of kinetic and growth parameters under specific conditions. The objective of this study was to evaluate the effect of nine NH inf4 sup+ :NO inf3 sup− ratios on onions (Allium cepa L.). Twenty-eight to 84 day-old onion plants were treated with NH inf4 sup+ :NOf3/sup− ratios ranging from 0 to 100% of each ionic species in one mM solutions in a growth chamber. Maximum N influx (Imax) was assessed using the N depletion method. Except at an early stage, ionic species did not influence significantly Imax, the Michaelis constant (Km) and the minimum concentration for net uptake (Cmin). Imax for ammonium decreased from 101 to 59 pmole cm-2 s-1 while Imax for nitrate increased from 26 to 54 pmole cm-2 s-1 as the plant matured. On average, Km and Cmin values were 14.29 μM, and 5.06 μM for ammonium, and 11.90 μM and 4.54 μM for nitrate, respectively. In general, the effect of NH4 +:NO3 - ratios on root weight, shoot weight and total weight depended on plant age. At an early stage, maximum plant growth and N uptake were obtained with ammonium as the sole source of N. At later stages, maximum plant growth and N uptake were obtained as the proportion of nitrate increased in the nutrient solution. The was no apparent nutrient deficiency whatever NH4 +:NO3 - ratio was applied, although ammonium reduced the uptake of cations and increased the uptake of phosphorus. The research was supported by the Natural Sciences and Engineering Research Council of Canada.  相似文献   

2.
Summary Net nitrate uptake (J) intoPisum sativum L. seedlings has been investigated. J was high initially, but declined with time as NO 3 efflux (E) approached that of NO 3 influx (I). Both I and E were higher in plants which had been grown without N. J could be reversibly and immediately inhibited by 5 mmol m–3 NH 4 + , although plants grown in the presence of nitrate were less sensitive. A theoretical model which involves substrate cycling across the plasmalemma is shown to increase the sensitivity to substrate and effectors. It predicts that during growth of Pisum in N free media the cycling rate (E/I) is increased and the sensitivity of net flux of inhibition by NH 4 + is highest. The model also provides a means for control of cytoplasmic nitrate pool size [NO 3 ] c.  相似文献   

3.
Deprivation of nitrogen (N) increases assimilate partitioning towards roots at the expense of that to shoots. This study was done to determine the physiological basis of increased root growth of tea (sCammellia sinensis L.) under N shortage. Nine-month-old clonal tea (clone TRI2025) was grown in quartz sand under naturally lit glasshouse conditions. Three levels of N (0, 3.75 and 7.5 mM N) were incorporated in to the nutrient solution and applied daily. Plant growth, photosynthesis, root respiration and plant N contents were measured at 10-day intervals over a 45-day period. Root dry weight showed a sharp increase during the first 15 days after the plants were transferred to 0 mM N, whereas no such increase was shown in plants transferred to 7.5 mM N. In contrast, shoot dry weight increased at 7.5 mM N and was significantly greater than at 0 mM N, where no increase was observed. Due to the above changes, root weight ratio increased and leaf weight ratio decreased during the first 15 days of N deprivation. Leaf photosynthetic rates did not vary between N levels during the initial 15-day period. Thereafter, photosynthetic rates were greater at 7.5 mM and 3.75 mM N than at 0 mM N. Root respiration rate decreased at 0 mM N, whereas it increased at 3.75 and 7.5 mM N, probably because of the greater respiratory cost for nitrate uptake. Root respiratory costs associated with maintenance (R m) and nitrate uptake (R u) were calculated to investigate whether the sharp increase of root growth observed upon nitrogen deprivation was solely due to the reduced respiratory costs for nitrate uptake. The estimated values for R m and R u were 3.241 × 10–4 mol CO2 g–1 (root dry matter) s–1 and 0.64 mol CO2 (mol N)–1, respectively. Calculations showed that decreased respiratory costs for nitrate uptake could not solely account for the significant increase of root biomass upon N deprivation. Therefore, it is concluded that a significant shift in assimilate partitioning towards roots occurs immediately following N deprivation in tea.  相似文献   

4.
Nitrogen-starved sunflower plants (Helianthus annuus L. cv. Peredovic) cannot absorb NO 3 or NO 2 upon initial exposure to these anions. Ability of the plants to take up NO 3 and NO 2 at high rates from the beginning was induced by a pretreatment with NO 3 . Nitrite also acted as inducer of the NO 2 -uptake system. The presence of cycloheximide during NO 3 -pretreatment prevented the subsequent uptake of NO 3 and NO 2 , indicating that both uptake systems are synthesized de novo when plants are exposed to NO 3 . Cycloheximide also suppressed nitrate-reductase (EC 1.6.6.1) and nitrite-reductase (EC 1.7.7.1) activities in the roots. The sulfhydryl-group reagent N-ethylmaleimide greatly inhibited the uptake of NO 3 and NO 2 . Likewise, N-ethylmaleimide promoted in vivo the inactivation of nitrate reductase without affecting nitrite-reductase activity. Rates of NO 3 and NO 2 uptake as a function of external anion concentration exhibited saturation kinetics. The calculated Km values for NO 3 and NO 2 uptake were 45 and 23 M, respectively. Rates of NO 3 uptake were four to six times higher than NO 3 -reduction rates in roots. In contrast, NO 2 -uptake rates, found to be very similar to NO 3 -uptake rates, were much lower (about 30 times) than NO 2 -reduction rates. Removal of oxygen from the external solution drastically suppressed NO 3 and NO 2 uptake without affecting their reduction. Uptake and reduction were also differentially affected by pH. The results demonstrate that uptake of NO 3 and NO 2 into sunflower plants is mediated by energy-dependent inducible-transport systems distinguishable from the respective enzymatic reducing systems.Abbreviations CHI cycloheximide - NEM N-ethylmaleimide - NiR nitrite reductase - NR nitrate reductase - pHME p-hydroxymercuribenzoate This research was supported by grant PB86-0232 from the Dirección General de Investigatión Científica y Técnica (Spain). One of us (E.A.) thanks the Consejeria de Educación y Ciencia de la Junta de Andalucia for the tenure of a fellowship. We thank Miss G. Alcalá and Miss C. Santos for their valuable technical and secretarial assistance.  相似文献   

5.
Summary We studied root net uptake of ammonium (NH 4 + ) and nitrate (NO 3 ) in species of the genus Piper (Piperaceae) under high, intermediate and low photosynthetically active photon flux densities (PFD). Plants were grown hydroponically, and then transferred to temperature controlled (25° C) root cuvettes for nutrient uptake determinations. Uptake solutions provided NH 4 + and NO 3 simultaneously (both) or separately (single). In the first experiment, seven species of Piper, from a broad range of rainforest light habitats ranging from gap to understory, were screened for mineral nitrogen preference (100 M NH 4 + and/or 100 M NO 3 ) at intermediate PFD (100 mol m–2 s–1). Preference for NH 4 + relative to NO 3 , defined as the ratio of NH 4 + (both):NO 3 (both) net uptake, was higher in understory species than in gap species. Ammonium repression of NO 3 uptake, defined as the ratio of NO 3 (single): NO 3 (both) net uptake, was also higher in understory species as compared to gap species. In a second set of experiments, we examined the effect of nitrogen concentration (equimolar, 10 to 1000 M) on NH 4 + preference and NH 4 + repression of NO 3 net uptake at high (500 mol m–2 s–1) and low (50 mol m–2 s–1) PFD in a gap (P. auritum), generalist (P. hispidum) and understory species (P. aequale). All species exhibited negligible NH 4 + repression of NO 3 net uptake at high PFD. At low PFD, NH 4 + preference and repression of NO 3 net uptake occurred in all species (understory > generalist > gap), but only at intermediate nitrogen concentrations, i.e. between 10 and 200 M. Ammonium repression of net NO 3 uptake decreased or increased rapidly (in < 48 h) after transitions from low to high or from high to low PFD respectively. No significant diurnal patterns in NO 3 or NH 4 + net uptake were observed.CIWDPB publication # 1130  相似文献   

6.
Nitrate or ammonium nutrition in french bean   总被引:2,自引:0,他引:2  
Summary Bean Plants were grown in a greenhouse in sand irrigated with nutrient solutions containing either 2 mM NO 3 or 2 mM NH 4 + . After 45 days fresh weight of NH 4 + plants was half that of NO 3 plants. Cation concentration in NH 4 + plants was 30% less than in NO 3 plants. Amino acids (SER, ASN, GLN) accummulated 3 to 10 times more in NH 4 + plants. The concentration of organic acids (malic, malonic, citric) was 10 to 30 times higher in NO 3 plants. The ATP-costings for the synthesis of amino acids and organic acids in NH 4 + plants was half that of NO 3 ones: therefore it could not account for the reduction of growth in the ammonium-fed plants.  相似文献   

7.
Influx isotherms were obtained for nitrate and ammonium from three legumes, Cajanus cajan (L.) Millsp., Cicer arietinum L. and Arachis hypogaea L. and three cereals, Sorghum bicolor (L.) Moench., Pennisetum glaucum L. and Zea mays L. The transition in influx isotherms for both nitrogen sources was found to be within the concentration range (0.05–2.5 mM) tested. There were significant differences in Km and Vmax for ammonium between legumes and cereals. The difference in the kinetic properties for nitrate uptake between the two groups of plants only became apparent at the higher concentration tested. Legumes translocated absorbed nitrate and ammonium to shoots more rapidly than cereals. Results show that there are significant differences in uptake and translocation of ammonium and nitrate between legumes and cereals.  相似文献   

8.
Effects of N source and media-N and P levels were examined on growth, N uptake, and N2 fixation ofAzolla pinnata withAnabaena azollae association (azolla) at two inoculum-P concentrations. Each expeiment was conducted for 7 days in a growth chamber using azolla at a predetermined inoculum-P concentration and the growth media containing a combination of four levels of P (0, 15, 75, and 200 M) and three levels (0, 1, and 5 mM) of either15N-enriched NH 4 + as ammonium sulfate or15N-enriched NO 3 as potassium nitrate. Nitrogen uptake and N2 fixation were measured by15N isotopic dilution method. Tissue P and N, N uptake, and N2-fixation increased with increasing P concentration in the media regardless of the inoculum-P level of azolla. Increasing P concentration in the media increased growth of azolla at low inoculum P, but the effect on high inoculum-P azolla was either small or absen. High inoculum-P concentration resulted in increased growth, tissue-N and P concentrations, N uptake, and N2 fixation by azolla. Ammonium in the growth media caused larger increase in tissue-N and greater repression of N2 fixation than equimolar concentration of NO 3 . In the presence of NH 4 + or NO 3 , in the growth media, N uptake by azolla exceeded the corresponding decrease in N2 fixation, resulting in an overall increase in tissue-N concentration. Phosphorus in the media tended to negate the inhibitory effect of NH 4 + or NO 3 on N2 fixation. A multiple regression model showed that the effect of tissue-N on N2 fixation was negative while that of tissue-P was positive. Therefore, a relative change in tissue-N and P appeared to regulate N2 fixation. Tissue-N and P had similar effects on relative growth rate of azolla also. Inoculum-P level of azolla was important in determining the response to media-P.This research was supported by a grant from USAID under Indo-US Science and Technology Initiative.  相似文献   

9.
Henning Kage 《Plant and Soil》1995,176(2):189-196
An experiment was carried out to determine the relationship between nitrate uptake and nitrogen fixation of faba beans. Therefore inoculated and uninoculated faba beans were grown in nutrient solution with different nitrate concentrations. Nitrate uptake was measured every two days during the growing period. At the end of the experiment the nitrate uptake kinetics were determined with a short time depletion technique and nitrogen fixation was measured with the acetylene reduction method. A limitation of nitrate uptake due to nitrogen fixation was relatively small. Nitrate concentrations of approximately 1 mol m–3 and 5 mol m–3 decreased nitrogen fixation to values of 16% and 1% of the control plants which received no nitrate nitrogen. A reduction of nitrogen fixation was mainly due to a decrease of specific nitrogen fixation per unit nodule weight and to a lesser extent due to a reduction of nodule growth. Only the maximum nitrate influx (Imax) seemed to be influenced by nitrogen fixation. Michaelis-Menten constants (Km) and minimum NO inf3 -concentrations (Cmin) were not significantly influenced by nitrogen fixation.  相似文献   

10.
It is generally assumed that plant assimilation constitutes the major sink for anthropogenic Nitrate NO 3 deposited in temperate forests because plant growth is usually limited by nitrogen (N) availability. Nevertheless, plants are known to vary widely in their capacity for NO 3 uptake and assimilation, and few studies have directly measured these parameters for overstory trees. Using a combination of field and greenhouse experiments, we studied the N nutrition of Acer saccharum Marsh. in four northern hardwood forests receiving experimental NO 3 additions equivalent to 30 kg N ha–1 year–1. We measured leaf and fine-root nitrate reductase activity (NRA) of overstory trees using an in vivo assay and used 15N to determine the kinetic parameters of NO 3 uptake by excised fine roots. In two greenhouse experiments, we measured leaf and root NRA in A. saccharum seedlings fertilized with 0–3.5 g NO 3 –N m–2 and determined the kinetic parameters of NO 3 and NH 4 + uptake in excised roots of seedlings. In both overstory trees and seedlings, rates of leaf and fine root NRA were substantially lower than previously reported rates for most woody plants and showed no response to NO 3 fertilization (range = non-detectable to 33 nmol NO 2 g–1 h–1). Maximal rates of NO 3 uptake in overstory trees also were low, ranging from 0.2 to 1.0 mol g–1 h–1. In seedlings, the mean V max for NO 3 uptake in fine roots (1 mol g–1 h–1) was approximately 30 times lower than the V max for NH 4 + uptake (33 mol g–1 h–1). Our results suggest that A. saccharum satisfies its N demand through rapid NH 4 + uptake and may have a limited capacity to serve as a direct sink for atmospheric additions of NO 3 .  相似文献   

11.
The uptake of ammonium, nitrate and phosphate by laboratory-grown young sporophytes of Laminaria abyssalis was measured in a perturbed system (batch mode) at 18 °C and 35 ± 5 µE m–2 s–1 photon flux density. Uptake of all appeared to follow saturation-type nutrient uptake kinetics. The NO inf3 sup– (K s = 14.0 µM, V max = 5.0 µmol h–1 g–1 dry wt) and NH inf4 sup+ (K s = 4.6 µM, V max= 2.0 µmol h–1 g–1 dry wt) were taken up simultaneously, although NH inf4 sup+ was taken up more rapidly. Values of K 3 and V max for phosphate were, respectively, 2.21 µM and 0.83 µmol h–1 g–1 dry wt. Nitrate and phosphate were both consumed in similar rates (V max /Ks 0.37) at low concentrations. NH inf4 sup+ , thus, might be a more efficient form of N fertilizer if artificial enrichment of seawater is used.  相似文献   

12.
Summary The effects of short- and long-term exposure to a range in concentration of sea salts on the kinetics of NH inf4 sup+ uptake by Spartina alterniflora were examined in a laboratory culture experiment. Long-term exposure to increasing salinity up to 50 g/L resulted in a progressive increase in the apparent Km but did not significantly affect Vmax (mean Vmax=4.23±1.97 mole·g–1·h–1). The apparent Km increased in a nonlinear fashion from a mean of 2.66±1.10 mole/L at a salinity of 5 g/L to a mean of 17.56±4.10 mole/L at a salinity of 50 g/L. These results suggest that the long-term effect of exposure to total salt concentrations within the range 5–50 g/L was a competitive inhibition of NH inf4 sup+ uptake in S. alterniflora. No significant NH inf4 sup+ uptake was observed in S. alterniflora exposed to 65 g/L sea salts. Short-term exposure to rapid changes in salinity significantly affected both Vmax and Km. Reduction of solution salinity from 35 to 5 g/L did not change Vmax but reduced Km by 71%. However, exposing plants grown at 5 g/L salinity to 35 resulted in an decrease in Vmax of approximately 50%. Exposure of plants grown at 35 g/L to a total sea salt concentration of 50 g/L for 48h completely inhibited uptake of NH inf4 sup+ . For both experiments, increasing salinity led to an increase in the apparent Km similar to that found in response to long-term exposure. Our data are consistent with a conceptual model of changes in the productivity of S. alterniflora in the salt marsh as a function of environmental modification of NH inf4 sup+ uptake kinetics.  相似文献   

13.
Nitrate-selective microelectrodes were used to measure intracellular nitrate concentrations (as activities) in epidermal and cortical cells of roots of 5-d-old barley (Hordeum vulgare L.) seedlings grown in nutrient solution containing 10 mol · m–3 nitrate. Measurements in each cell type grouped into two populations with mean (±SE) values of 5.4 ± 0.5 mol · m–3 (n=19) and 41.8 ± 2.6 mol · m–3 (n = 35) in epidermal cells, and 3.2 ± 1.2 mol · m–3 (n = 4) and 72.8 ± 8.4 mol · m–3 (n = 13) in cortical cells. These could represent the cytoplasmic and vacuolar nitrate concentrations, respectively, in each cell type. To test this hypothesis, a single-cell sampling procedure was used to withdraw a vacuolar sap sample from individual epidermal and cortical cells. Measurement of the nitrate concentration in these samples by a fluorometric nitrate-reductase assay confirmed a mean vacuolar nitrate concentration of 52.6 ± 5.3 mol · m–3 (n = 10) in epidermal cells and 101.2 ± 4.8 mol · m–3 (n = 44) in cortical cells. The nitrate-reductase assay gave only a single population of measurements in each cell type, supporting the hypothesis that the higher of the two populations of electrode measurements in each cell type are vacuolar in origin. Differences in the absolute values obtained by these methods are probably related to the fact that the nitrate electrodes were calibrated against nitrate activity but the enzymic assay against concentration. Furthermore, a 28-h time course for the accumulation of nitrate measured with electrodes in epidermal cells showed the apparent cytoplasmic measurements remained constant at 5.0 ± 0.7 mol · m–3, while the vacuole accumulated nitrate to 30–50 mol · m–3. The implications of the data for mechanisms of nitrate transport at the plasma membrane and tonoplast are discussed.Symbol n 2 Chi-squared with n degrees of freedom R.-G.Z. was awarded a Sino-British Friendship Scholarship sponsored by the British Council and H.-W.K. was supported by an AFRC Linked Research Grant to A.D.T for collaboration with R.A.L. We wish to thank Dr. K. Goulding for advice on ion chromatography, Dr. K. Moore for assistance with statistical analysis and Dr. J.H. Williams for advice on the microsample analysis.  相似文献   

14.
Influx, efflux and net uptake of NO 3 was studied in Pisum sativum L. cv. Marma in short-term experiments where 13NO 3 was used to trace influx. The influx rate in N-limited plants was similar both during net uptake at external concentrations of around 50 M, and at low external NO 3 concentrations (4–6 M) when net uptake was practically zero. Efflux could be inferred from discrepancies between influx and net uptake but was never very high in the N-limited plants during net uptake. Close to the threshold concentration for not NO 3 uptake, efflux was high and equalled influx. Thus, the threshold concentration can be regarded as a NO 3 compensation point. The inclusion of NH 4 + in the outer medium decreased influx by about 40% but did not significantly affect efflux. The roles of NO 3 fluxes and nitrate-reductase activity in regulating/limiting NO 3 utilization are discussed.Abbreviations DW dry weight - FW fresh weight - RN relative nitrogen addition rate  相似文献   

15.
Summary The water and potassium content and the relative vacuolar volume ( = Vvacuole/Vcell) of mesophyll cells of the needles of healthy 21-yearold spruce trees [Picea abies (L.) Karst.] were determined. In 5-year-old needles was 0.626 ± 0.178 (ovx ± SD). Potassium concentrations in the bulk tissue water ranged from about 65 to 105 mM. Simulations were made using this information and a simple two-compartmental model of the cell with the bulk cytoplasm and the vacuole and assuming that the minimum cytoplasmic and vacuolar K+ concentrations are 100–150 mM and 10–15 mM respectively. It is shown that a K+ content of needles below 50 mmol/1 tissue water would be precarious for maintenance of normal physiological and metabolic performance.  相似文献   

16.
Summary A method is described for culturing plants at extremely low nutrient concentrations. Using a Braun infusion pump, a fixed amount of nitrate or ammonium was supplied continuously to plants growing in a culture vessel at a rate limiting the uptake of the plants. At a very low nitrogen concentration an equilibrium was established where uptake rate of the plants is equal to the rate of supply by the infusion pump. The nitrogen concentrations reached appeared to be in the order of 1 μM. The method compared the nitrate uptake byHypochaeris radicata L.ssp.radicata, H. radicata ssp.ericetorum Van Soest andUrtica dioica L. and ammonium uptake byH. radicata ssp.radicata andH. radicata ssp.ericetorum. Plants were cultivated in monocultures or in mixed cultures (two species per culture vessel). For the mixed cultures competition for nitrate (or ammonium) between the species was maintained for long periods. The capacities of the uptake systems of two subspecies ofH. radicata from places different in nitrogen supply and pH were adapted equally well to both low nitrate and low ammonium concentrations. Apparently factors other than nitrogen uptake play a part in the distribution of the subspecies. The capacity of the uptake system ofU. dioica, a nitrophilous species, was lower than that ofH. radicata ssp.radicata, a species from places poorer in nitrogen. This difference is related to the different distribution of the two species in the field. The present results are compared with those of previous experiments where Km and Vmax were measured and the significance of both parameters is discussed.  相似文献   

17.
Throughfall nitrogen of a 15-year-old Picea abies (L.) Karst. (Norway spruce) stand in the Fichtelgebirge, Germany, was labeled with either 15N-ammonium or 15N-nitrate and uptake of these two tracers was followed during two successive growing seasons (1991 and 1992). 15N-labeling (62 mg 15N m-2 under conditions of 1.5 g N m-2 atmospheric nitrogen deposition) did not increase N concentrations in plant tissues. The 15N recovery within the entire stand (including soils) was 94%±6% of the applied 15N-ammonium tracer and 100%±6% of the applied 15N-nitrate tracer during the 1st year of investigation. This decreased to 80%±24% and 83%±20%, respectively, during the 2nd year. After 11 days, the 15N tracer was detectable in 1-year-old spruce needles and leaves of understory species. After 1 month, tracer was detectable in needle litter fall. At the end of the first growing season, more than 50% of the 15N taken up by spruce was assimilated in needles, and more than 20% in twigs. The relative distribution of recovered tracer of both 15N-ammonium and 15N-nitrate was similar within the different foliage age classes (recent to 11-year-old) and other compartments of the trees. 15N enrichment generally decreased with increasing tissue age. Roots accounted for up to 20% of the recovered 15N in spruce; no enrichment could be detected in stem wood. Although 15N-ammonium and 15N-nitrate were applied in the same molar quantities (15NH 4 + : 15NO 3 - =1:1), the tracers were diluted differently in the inorganic soil N pools (15NH 4 + /NH 4 + : 15NO 3 - /NO 3 - =1:9). Therefore the measured 15N amounts retained by the vegetation do not represent the actual fluxes of ammonium and nitrate in the soil solution. Use of the molar ammonium-to-nitrate ratio of 9:1 in the soil water extract to estimate 15N uptake from inorganic N pools resulted in a 2–4 times higher ammonium than nitrate uptake by P. abies.  相似文献   

18.
R. Hita  J. Torrent 《Plant and Soil》2005,271(1-2):341-350
Zinc can be toxic to plants growing on soils in areas of the Guadiamar River valley (southwestern Spain) affected by the spillage of pyritic sludge in April 1998. The shoots and the soil around the roots of two wild plants (viz. Amaranthus blitoides S. Wats., November 2000; and Xanthium strumarium L., June 2001) growing in the sludge-affected areas were sampled with the purpose of relating Zn phytoavailability to soil properties. The soils were calcareous and non-calcareous Entisols and Inceptisols which, after remediation, contained ploughed-in residual sludge and unevenly distributed industrial lime. Chemical extracts from the soils suggested that much of the sphalerite (ZnS) originally present in the sludge had weathered and Zn was partly bound to carbonates and Fe oxides, the total Zn concentration ranging from 37 to 2407 mg kg –1. To identify the soil properties that influenced Zn phytoavailability under controlled conditions, the soil samples (n=63) were homogenized and oilseed rape (Brassica napus var. Karola) was pot-grown on them in a growth chamber. The concentrations of Zn in oilseed rape shoots and roots were below phytotoxic levels, with mean ± standard deviation values of 142 ± 128 and 244 ± 328 mg kg –1 dry matter, respectively. Citrate/bicarbonate-extractable Zn in soil (Zn cb) was found to be the best predictor for the Zn concentration in both shoots and roots. Also, the Zn cb/Olsen P ratio exhibited a high predictive power for Zn in shoots as the likely result of the Zn-P interaction in soil. The shoot Zn concentration in the wild plants, generally lay below phytotoxic levels (the mean ± standard deviation values were 261 ± 255 and 200 ± 228 mg kg –1 dry matter for Amaranthus blitoides and Xanthium strumarium, respectively) and was not correlated with soil properties – by exception, there was slight correlation between the Zn concentration in Amaranthus blitoides and Zn cb/Olsen P. Such a lack of correlation can be ascribed to the local small-scale soil heterogeneity caused by remediation practices. The Zn concentration in wild plants growing on CaCO 3-poor soils was weakly correlated with Zn cb/Olsen P; no similar correlation was found in CaCO 3-rich soils, however. The wild plants growing on CaCO 3-poor and CaCO 3-rich soils differed little in Zn concentration; this suggests that further addition of lime to reduce Zn phytoavailability may be unjustified.  相似文献   

19.
Ulva rigida was cultivated in 7501 tanks at different densities with direct and continuous inflow (at 2, 4, 8 and 12 volumes d–1) of the effluents from a commercial marine fishpond (40 metric tonnes, Tm, of Sparus aurata, water exchange rate of 16 m3 Tm–1) in order to assess the maximum and optimum dissolved inorganic nitrogen (DIN) uptake rate and the annual stability of the Ulva tank biofiltering system. Maximum yields (40 g DW m–2 d–1) were obtained at a density of 2.5 g FW 1–1 and at a DIN inflow rate of 1.7 g DIN m–2 d–1. Maximum DIN uptake rates were obtained during summer (2.2 g DIN M–2 d–1), and minimum in winter (1.1 g DIN m–2 d–1) with a yearly average DIN uptake rate of 1.77 g DIN m–2 d–1 At yearly average DIN removal efficiency (2.0 g DIN m–2 d–1, if winter period is excluded), 153 m2 of Ulva tank surface would be needed to recover 100% of the DIN produced by 1 Tm of fish.Abbreviations DIN= dissolved inorganic nitrogen (NH inf4 sup+ + NO inf3 sup– + NO inf2 sup– ); - FW= fresh weight; - DW= dry weight; - PFD= photon flux density; - V= DIN uptake rate  相似文献   

20.
Observations of near-bottom populations of Karenia brevis suggest that these cells may derive nutrients from the sediment–water interface. Cells undergoing a metabolic-mediated migration may be in close proximity to enhanced concentrations of nutrients associated with the sediment during at least a fraction of their diel cycle. In this study, the growth, uptake and assimilation rates of ammonium, nitrate, and urea by K. brevis were examined on a diel basis to better understand the potential role of these nutrients in the near-bottom ecology of this species. Three strains of K. brevis, C6, C3, and CCMP 2229, were grown under 12:12 light dark cycle under 30 μmol photons m−2 s−1 delivered to the surface plain of batch cultures. Nitrogen uptake was evaluated using 15N tracer techniques and trichloroacetic acid extraction was used to evaluate the quantity of nitrogen (N) assimilated into cell protein. Growth rates ranged from a low of 0.12 divisions day−1 for C6 and C3 grown on nitrate to a high of 0.18 divisions day−1 for C3 grown on urea. Diurnal maximum uptake rates, ρmax, varied from 0.41 pmol-N cell−1 h−1 for CCMP 2229 grown on nitrate, to 1.29 pmol-N cell−1 h−1 for CCMP 2229 grown on urea. Average nocturnal uptake rates were 29% of diurnal rates for nitrate, 103% of diurnal uptake rates for ammonium and 56% of diurnal uptake rates for urea. Uptake kinetic parameters varied between substrates, between strains and between day and night measurements. Highest maximum uptake rates were found for urea for strains CCMP2229 and C3 and for ammonium for strain C6. Rates of asmilation into protein also varied day and night, but overall were highest for urea. The comparison of maximal uptake rates as well as assimilation efficiencies indicate that ammonium and urea are utilized (taken up and assimilated) more than twice was fast as nitrate on a diel basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号