首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
一种优化的MALDI-TOF质谱分析多肽C端序列方法   总被引:4,自引:0,他引:4  
利用基质辅助激光解吸飞行时间 (MALDI TOF)质谱技术 ,测定羧肽酶Y消化蛋白质和多肽 .所产生的缩短肽片段的质量 ,在一张谱图上得到各个不同酶解时间所形成的肽质量梯度 .根据谱图中相邻两肽峰的质量差得到切去氨基酸的信息 ,从而读出C端氨基酸序列 .在pmol水平下对人促肾上腺皮质激素片段 (ACTH 1 3 9) ,人血管紧张肽片段 (angiotensin Ⅰ ,angiotensin Ⅱ )的C端序列进行了测定 .讨论了在不同浓度 ,不同时间 ,不同温度下酶解所得到的序列测定结果 .在优化条件下 ,人ACTH片段得到了C端 2 0个氨基酸残基顺序 ,为目前C端序列分析所得到的最长序列  相似文献   

2.
糖蛋白分析一直是蛋白质分析鉴定的难点,为建立准确灵敏的糖蛋白分析方法。采用液相色谱-电喷雾质谱法(LC-ESI-MS)对糖蛋白-牛胰核糖核酸酶B(RNase B)的酶解肽谱进行分析,证实其一级结构。通过比较糖苷酶处理酶解肽段前后的肽谱,确定糖基化位点,通过过串联质谱(MS/MS)解析了Asn连接的糖型结构及去糖后肽段的氨基酸序列。糖型结构经α-甘露糖革酶处理和质谱分析确定为高甘露糖型。此外,还对糖  相似文献   

3.
糖蛋白分析一直是蛋白质分析鉴定的难点, 为建立准确灵敏的糖蛋白分析方法。采用液相色谱电喷雾质谱法(LCESIMS) 对糖蛋白———牛胰核糖核酸酶B(RNase B)的酶解肽谱进行分析, 证实其一级结构。通过比较糖苷酶处理酶解肽段前后的肽谱, 确定糖基化位点, 并通过串联质谱( MS/MS) 解析了Asn 连接的糖型结构及去糖后肽段的氨基酸序列。糖型结构经α甘露糖苷酶处理和质谱分析确定为高甘露糖型。此外, 还对糖型不均一造成的几种糖肽进行了相对定量。这一方法在pmol 水平上, 同时分析糖蛋白的一级结构和糖结合位点及糖型, 对含N糖链的糖蛋白的分析具有普遍意义。  相似文献   

4.
同源比对黑曲霉XZ-3S木聚糖酶基因xyn ZF-2氨基酸序列,模拟构建木聚糖酶三维结构,确定能够提高酶热稳定性的最佳突变位点。在C-端引入二硫键,突变xyn ZF-2 205位点的色氨酸和52位点的丙氨酸为半胱氨酸,获取突变基因T205C-A52C,表达于大肠杆菌BL21(DE3)。酶学性质比较发现,突变酶Xyn ZFT205C-A52C的最适温度为50℃,比原酶Xyn ZF-2提高了10℃;50℃保温5 min,突变酶相对酶活性为55.36%,原酶相对酶活性为32.62%;原酶与突变酶最适p H均为5.0,但相同p H下突变酶的相对酶活性较原酶高;突变酶的p H稳定区间由原酶的5.0~9.0扩大为3.0~9.0。因此,定点突变T205C和A52C在C-端引入二硫键能提高黑曲霉木聚糖酶Xyn ZF-2热稳定性及p H稳定性。  相似文献   

5.
经亲和层析纯化的河蚌 C反应蛋白 ( CRP)具有 SDS- PAGE纯度 ,用经改进的双偶联 Ed-man方法测得其 N端残基为谷氨酸 ,而不是高等动物 (人与家兔 ) C反应蛋白 N端的焦谷氨酸 .河蚌 C反应蛋白 N端的一级结构由固相 Edman方法测得 ,依次为 H2 N- E- T- A- Y- S- C- I- T- A- V- ;C端的一级结构由羧肽酶 A降解法测得 ,依次为 - L/V- S- S- T- Y- COOH,也不同于人和家兔的 C反应蛋白 .在河蚌 CRP的胰蛋白酶酶解肽段中 ,其 N端及 C端的结构也得到了证实 .河蚌 C反应蛋白经 V8蛋白内切酶酶解 ,溴化氰裂解 ,肽段经 HPLC反相柱分离 ,共得到 35个肽段 ,所有肽段的氨基酸序列均由气相氨基酸自动分析仪测得 .结合河蚌 C反应蛋白的胰蛋白酶酶解肽段的分析结果 ,其一级结构已初步拼接完成 .在其一级结构中发现有类似于其它 CRP的 Ca2 + 结合部位和磷酸胆碱结合部位 .河蚌 C反应蛋白的分子结构中存在微观不均一性 .从已知河蚌 C反应蛋白的分子特点 ,包括分子量 ,糖基化比例 ,一级结构不均一等特点 ,可以推测它与高等动物的免疫蛋白有许多相关之处 .对于河蚌 C反应蛋白分子结构的分析 ,将有助于免疫系统蛋白的发生 ,进化等方面的研究  相似文献   

6.
虎纹捕鸟蛛毒素V是从虎纹捕鸟蛛毒液中分离得到的一种昆虫毒素.它含有35个氨基酸残基,其中6个半胱氨酸形成三对二硫键.首先采用多酶将天然的肽链裂解后,通过MALDI-TOF质谱分析酶解肽段,推断出1对二硫键位于Cys9-Cys21,然后利用改进的部分还原分步测序法,确定虎纹捕鸟蛛毒素V的另外2对二硫键的配对方式为Cys2-Cysl6和Cys15-Cys28.因此,虎纹捕鸟蛛毒素V的3对二硫键分别以Cys2-Cys16,Cys9一Cys21,Cys15一Cys28(即1-4、2-5和3-6)的方式配对.  相似文献   

7.
目的:探索并确定甘精胰岛素的最佳酶解条件,建立酶解更完全、特异性更强的甘精胰岛素肽图分析方法。方法:采用0.4 mol/L Tris-HCl(pH9.0)溶液作为酶解缓冲液,V8蛋白酶与甘精胰岛素之比为1 U∶10μg,于37℃反应1 h后加入磷酸终止反应,采用RP-HPLC分离目标肽段,采用液相色谱-质谱联用(LC-MS)方法鉴定酶解产生的肽段。结果:甘精胰岛素基本完全酶解,未消化的主成分较《欧洲药典》9.5版(EP9.5)方法大幅减少,时间缩短了1/2,酶解的完全性与有效性大幅提高。产生的4个目标肽段可通过RP-HPLC清晰呈现并有效分离,肽段Ⅱ和Ⅲ的分离度大于25.0,拖尾因子均小于1.5,且各肽段与对照品的相对保留时间在1.00±0.01范围内。4个目标肽段和2个非特异肽段均由质谱鉴定出。较好地克服了现行EP9.5甘精胰岛素分析方法酶解反应的完全性较差、非特异酶解肽段含量较高、理论目标肽段Ⅳ及Ⅰ含量过低等不利于表征目标肽段并确证其氨基酸序列正确性的缺陷。选取B32脱精氨酸甘精胰岛素评价方法的专属性,证实本方法专属性良好;6次重复测定各肽段的保留时间及峰面积的RSD为0.05%~0.20%,考察不同实验人员在不同时间处理样品得到结果的变异程度,RSD为0.01%~0.36%,表明方法的中间精密度较好。V8酶量为15~25 U、柱温为38~42℃、采用3个不同厂家的色谱柱时测定的相对保留时间的RSD为0.12%~0.26%,表明方法的耐用性较好。酶解后的样品于6℃存放24 h及-20℃储存7 d,稳定性较好。结论:实现了甘精胰岛素主成分的高效特异酶解及目标肽段的有效分离,该方法专属性、重复性、中间精密度及耐用性均表现良好,可用于甘精胰岛素的结构确证及专属性鉴别。  相似文献   

8.
戊二酰 7 氨基头孢烷酸酰化酶 (即GL 7ACA酰化酶 ,EC .3.5 .1.11)的催化中心通常在 β亚基N端的第一个氨基酸 ,底物亲和标记的研究亦显示N端存在着结合靶点 ,因而该区域的结构可能与酶的功能密切相关。对C130 β亚基N端的 2~ 8位氨基酸残基分别进行了肽段置换和定点突变研究。将N端前 8位肽段置换为来源于Arthrobacterviscosus的青霉素G酰化酶 (PAC)的对应序列后 ,C130酰化酶活力丧失 ;而置换为来源于E .coli的青霉素G酰化酶 (PGA)的对应序列后 ,酰化酶活力仍然保留 ,但Km 值从 0 .44× 10 -3 mol·L-1增大为 0 .5 5× 10 -3mol·L-1,kcat值由 4.92s-1降低为 1.6 4s-1。另对C130 β亚基N端 2~ 4位氨基酸残基作了单点突变 :第 4位的Trp为可能的底物类似物结合位点 ,被变为Tyr后 ,它对底物GL 7ACA的结合能力略为减弱 ,kcat则降低为 2 .2 9s-1;而变为Leu后 ,Km 为 0 .34× 10 -3 mol·L-1,kcat为 3.15s-1;第 3位的Ser变为Met、Ala及Cys后 ,随着Km值逐渐降低 ,kcat也有所降低 ,而S3 M、S3 A突变体的kcat/Km 值比野生型的分别增加了 2 2 .3%和 39.3% ;将活性中心Ser(β1)邻位的Asn(β2 )变为Gln后 ,C130酶活大幅度下降 ,kcat减为 0 .47s-1。上述结果表明 ,C130 β亚基N端的前几个氨基酸残基均可对酶的功能  相似文献   

9.
肽质谱指纹图分析是一种常用的蛋白质的鉴定方法.为了提高这种方法鉴定蛋白质时序列覆盖率和准确度,以6个标准蛋白质为分析样品,对几种不同的酶解肽段的浓缩、脱盐和点样方法进行了检验和优化.结果发现,将酶解肽段的浓缩体积控制在5μl以下和采用10mmolL柠檬酸铵缓冲液板上脱盐能提高蛋白质鉴定的准确度;在点样的时候,采用先点样品再点基质的方法能明显提高匹配肽段的个数和信噪比.这些优化的样品制备方法明显地提高了MALDITOF质谱肽质谱指纹图分析方法鉴定蛋白质的可靠性.  相似文献   

10.
重组单抗药物的肽图分析   总被引:1,自引:0,他引:1  
建立了重组单抗药物的肽图分析方法。在变性条件下向抗体溶液加入还原剂,打开抗体内部所有交联的二硫键,再加入烷基化试剂封闭所有的自由巯基,使抗体分子在溶液中以游离伸展肽链的形式存在。加入胰蛋白酶,将充分伸展的肽链酶解成小的肽段。用反相高效液相色谱层析分析肽图谱。对连续3批中试产品及理化测定对照品进行肽图分析,各样品均能酶解完全,批间肽图谱一致。该方法实用有效,适于进行重组单抗等结构复杂的大分子蛋白药物的肽图检查分析。  相似文献   

11.
The complete peptide map of purified recombinant human interleukin 5 (rhIL-5) was determined to verify its primary structure, glycosylation sites, and disulfide bonding structure. Each peptide fragment generated by Achromobacter protease I (API) digestion was purified and characterized by amino acid analysis and amino acid sequence analysis. After digestion with API, we could identify all the peptides which were expected from human IL-5 cDNA sequence. The analyses of sulfhydryl content in rhIL-5 molecule and disulfide-containing peptide obtained from API digestion indicated that active form of rhIL-5 existed as an antiparallel dimer linked by two pairs of Cys-44 and Cys-86. In addition, we concluded that Thr-3 and Asn-28 were glycosylated. The results indicate that primary structure of rhIL-5 is highly homogeneous and observed heterogeneity is due to the difference in the content of carbohydrate.  相似文献   

12.
Muscarinic acetylcholine receptors purified from porcine cerebra or atria were covalently labeled with [3H]propylbenzilylcholine mustard ([3H]PrBCM), and then the labeled receptors were subjected to limited hydrolysis with trypsin, V8 protease, and lysyl endopeptidase, followed by analysis involving sodium dodecyl sulfate-polyacrylamide gel electrophoresis, fluorography, autoradiography, or immunostaining. The labeled peptides were located on the basis of their reactivity with antibodies raised against three synthetic peptides with partial sequences of the m1 or m2 receptor, and of their sensitivity to endoglycosidase F, which was taken as evidence that they contain glycosylation sites near the N terminus. The [3H]PrBCM-binding site in both cerebral and atrial receptors was found to be located between the N terminus and the second intracellular loop, because the size of the smallest deglycosylated peptide that contained both the [3H]PrBCM-binding and glycosylation sites was approximately 16 kDa. Cerebral receptors were 32P-phosphorylated with protein kinase C, and the major phosphorylation sites in cerebral muscarinic receptors were found to be located in a C-terminal segment including a part of the third intracellular loop, because a 32P-labeled peptide of 12-14 kDa reacted with anti-(m1 C-terminal peptide) antiserum. The presence of an intramolecular disulfide bond, probably between Cys 98 and Cys 178 in the first and second extracellular loops, respectively, was suggested by the finding that a peptide of approximately 17 kDa containing the [3H]PrBCM-binding site, but not the glycosylation sites, was partly converted to a peptide of approximately 12 kDa on treatment with beta-mercaptoethanol.  相似文献   

13.
Erv2p is a small, dimeric FAD-dependent sulfhydryl oxidase that generates disulfide bonds in the lumen of the endoplasmic reticulum. Mutagenic and structural studies suggest that Erv2p uses an internal thiol-transfer relay between the FAD-proximal active site cysteine pair (Cys121-Cys124) and a second cysteine pair (Cys176-Cys178) located in a flexible, substrate-accessible C-terminal tail of the adjacent dimer subunit. Here, we demonstrate that Cys176 and Cys178 are the only amino acids in the tail region required for disulfide transfer and that their relative positioning within the tail peptide is important for activity. However, intragenic suppressor mutations could be isolated that bypass the requirement for Cys176 and Cys178. These mutants were found to disrupt Erv2p dimerization and to increase the activity of Erv2p for thiol substrates such as glutathione. We propose that the two Erv2p subunits act together to direct the disulfide transfer to specific substrates. One subunit provides the catalytic domain composed of the active site cysteine residues and the FAD cofactor, while the second subunit appears to have two functions: it facilitates disulfide transfer to substrates via the tail cysteine residues, while simultaneously shielding the active site cysteine residues from non-specific reactions.  相似文献   

14.
We have assigned the disulfide structure of Md-65 agouti-related protein (Md65-AGRP) using differential reduction and alkylation followed by direct sequencing analysis. The mature human AGRP is a single polypeptide chain of 112 amino acid residues, consisting of an N-terminal acidic region and a unique C-terminal cysteine-rich domain. The C-terminal domain, a 48 amino acid peptide named Md65-AGRP, was expressed in Escherichia coil cells and refolded under different conditions from the mature recombinant protein. The disulfide bonds in the cystine knot structure of Md65-AGRP were partially reduced using tris(2-carboxyethyl) phosphine (TCEP) under acidic conditions, followed by alkylation with N-ethylmaleimide (NEM). The procedure generated several isoforms with varying degrees of NEM alkylation. The multiple forms of Md65-AGRP generated by partial reduction and NEM modification were then completely reduced and carboxymethylated to identify unreactive disulfide bonds. Differentially labeled Md65-AGRP were directly sequenced and analyzed by MALDI mass spectrometry. The results confirmed that Md65-AGRP contained the same disulfide structure as that of Md5-AGRP reported previously [Bures, E. J., Hui, J. O., Young, Y. et al. (1998) Biochemistry 37, 12172-12177].  相似文献   

15.
Proteomic techniques, such as HPLC coupled to tandem mass spectrometry (LC-MS/MS), have proved useful for the identification of specific glycosylation sites on glycoproteins (glycoproteomics). Glycosylation sites on glycopeptides produced by trypsinization of complex glycoprotein mixtures, however, are particularly difficult to identify both because a repertoire of glycans may be expressed at a particular glycosylation site, and because glycopeptides are usually present in relatively low abundance (2% to 5%) in peptide mixtures compared to nonglycosylated peptides. Previously reported methods to facilitate glycopeptide identification require either several pre-enrichment steps, involve complex derivatization procedures, or are restricted to a subset of all the glycan structures that are present in a glycoprotein mixture. Because the N-linked glycans expressed on tryptic glycopeptides contribute substantially to their mass, we demonstrate that size exclusion chromatography (SEC) provided a significant enrichment of N-linked glycopeptides relative to nonglycosylated peptides. The glycosylated peptides were then identified by LC-MS/MS after treatment with PNGase-F by the monoisotopic mass increase of 0.984 Da caused by the deglycosylation of the peptide. Analyses performed on human serum showed that this SEC glycopeptide isolation procedure results in at least a 3-fold increase in the total number of glycopeptides identified by LC-MS/MS, demonstrating that this simple, nonselective, rapid method is an effective tool to facilitate the identification of peptides with N-linked glycosylation sites.  相似文献   

16.
The beta subunit of lamb kidney (Na+,K+)-ATPase was isolated by size exclusion high performance liquid chromatography. Treatment of the beta subunit with formic acid yielded two peptide fragments which were purified via reversed phase high performance liquid chromatography. These peptides were identified by sodium dodecylsulfate polyacrylamide gel electrophoresis, amino acid analysis and N-terminal sequencing as (Pro 94-Ser 302), a largely hydrophilic peptide which comprises the major portion of the extracellular domain including six Cys residues which participate in disulfide bond formation and three glycosylation sites and a smaller peptide (Ala 1-Asp 93) which contains the single membrane spanning region and the intracellular domain.  相似文献   

17.
We used a N-biotinylated peptide analog of the C-terminal domain of the tumor suppressor protein, p21cip1/waf1 to elucidate peptide/protein interacting partners. The C-terminal domain of p21cip1/waf1 protein spanning 141-160 amino acid residues is known to bind PCNA and this interaction is important in many biological processes including cell-cycle control. This C-terminal 20-mer efficiently extracts PCNA in the presence of a variety of N- or C-terminally attached affinity tags. Using difference silver stained 2D gels combined with in-gel tryptic digests, we identified the difference spots using MALDI-TOF mass spectrometry-based peptide mass fingerprinting followed by a database search using PROFOUND against NCBIs human nonredundant protein sequence data bank. Identified spots include the p48 subunit of chromatin assembly factor-1, the heat shock 70 protein analog BiP, calmodulin, nucleolin and a spot similar in size to dimeric PCNA. In contrast, microcapillary ion-trap LC-MS/MS analysis of a tryptic digest of entire affinity extracts derived from both control and experimental runs followed by database searches using SEQUEST confirmed the presence of most of the above proteins. This strategy also identified hnRNPA1, HPSP90alpha, HSP40 and T-complex protein 1, a protein similar to prothymosin, and a possible allelic variant of the p21cip1/waf1 protein. The use of N-biotinylated peptide derived from the C-terminal domain of p21cip1/waf1 protein in proteomic analysis exemplified here suggests that peptides obtained from intracellular functional screens could also potentially serve as efficient baits to discover new drug targets.  相似文献   

18.
Mature seeds of lentil (Lens culinaris Medik.) were previously reported to contain an insecticidal cysteine-rich peptide, likely of the albumin-1 subunit b type. The purpose of this work was to determine the amino acid sequence of this insecticidal lentil peptide in an Eston lentil extract by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), after reduction of the disulfide bridges, alkylation of the cysteine residues and hydrolysis by pronase, trypsin, chymotrypsin and endoproteinase Asp-N. Sequences of key fragments were supported by monoisotopic mass measurements and by sequence ions from collision-induced dissociation (CID) experiments with a MALDI-TOF/TOF analyzer (MS/MS analysis). The new 37 amino acid sequence revealed strong similarities to a histidine-containing pea PA1b peptide and to soybean leginsulins but with a unique segment of RSSA in the middle. The lentil PA1b peptide sequence agreed completely with that derived from a L. culinaris genomic DNA sequence.  相似文献   

19.
The electrospray ionization (ESI)-tandem quadrupole/orthogonal-acceleration time-of-flight (Q-TOF) mass spectrometer combined with the nano-HPLC system was utilized to determine the glycosylation site and the glycan structure in glycoprotein TIME-EA4 (EA4) from Bombyx diapause eggs. LC-MS analysis of EA4 and deglycosylated EA4 indicated that the carbohydrate moiety of EA4 has the mass of 730.58 Da. Then, EA4 was digested with trypsin and chymotrypsin to identify the glycosylated peptide. The peptide fragment from G1y21 to Phe25 was found to carry the carbohydrate moiety. LC-MS/MS analysis of this peptide fragment revealed the sequence of the attached oligosaccharide and the glycosylation site at the same time. The present methodology utilizing the combination of the nano-HPLC system and a highly sensitive Q-TOF mass spectrometer is demonstrated to be quite effective for analyses of glycoproteins of relatively low purity and limited availability from natural sources.  相似文献   

20.
A cDNA encoding acetylcholinesterase (AChE) (EC 3.1.1.7) from Torpedo californica was isolated and from its nucleotide sequence the entire amino acid sequence of the processed protein and a portion of the leader peptide has been deduced. Approximately 70% of the tryptic peptides from the catalytic subunit of the 11 S form have been sequenced, and a comparison of the peptide sequences with the sequence inferred from the cDNA suggests that the cDNA sequence derives from mRNA for the 11 S form of the enzyme. The amino acid sequence is preceded by a hydrophobic leader peptide and contains an open reading frame encoding for 575 amino acids characteristic of a secreted globular protein. Eight cysteines, most of which are disulfide linked, are found along with four potential sites of N-linked glycosylation. The active-site serine is located at residue 200. Local homology is found with other serine hydrolases in the vicinity of the active site, but the enzyme shows striking global homology with the COOH-terminal portion of thyroglobulin. Further comparison of the amino acid sequences of the individual enzyme forms with other cDNA clones that have been isolated should resolve the molecular basis for polymorphism of the AChE species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号