首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipases secreted by Metarhizium anisopliae, an important biological control agent, could potentially be involved in the host infection process. Here, we present the activity profile during the host infection process and the effect of lipase activity inhibitor ebelactone B on infection. The previous treatment of spores with lipase activity inhibitor, ebelactone B, completely inhibited lipolytic activity and prevented the infection of the Rhipicephalus (Boophilus) microplus host. The results herein presented prove, for the first time, the importance of lipase activity in M. anisopliae host infection process. The filamentous fungus Metarhizium anisopliae is one of the most important and studied biological agents for the control of several arthropod pests, including the cattle tick Rhipicephalus (Boophilus) microplus. Lipases secreted by M. anisopliae could potentially be involved in the host infection process. This work presents the activity profile during the host infection process and the effect of lipase activity inhibitor ebelactone B on infection. During the course of tick exposure to spores (6-120 h) lipase activity increased from 0.03 ± 0.00 U to 0.312 ± 0.068 U using rho NP palmitate as substrate. In zymograms, bands of lipase activity were detected in ticks treated with spores without inhibitor. The previous treatment of spores with lipase activity inhibitor, ebelactone B, completely inhibited lipolytic activity, at all times specified, and prevented the infection of the R. microplus host. Spores treated with the inhibitor did not germinate on the tick, although this effect was not observed in the culture medium. The results herein presented prove, for the first time, the importance of lipase activity in M. anisopliae host infection process.  相似文献   

2.
Termites, Coptotermes formosanus Shiraki, reared individually, were highly susceptible to entomopathogenic fungi, Paecilomyces fumosoroseus and Beauveria brongniartii and Metarhizium anisopliae, while termites reared in groups were highly resistant. Quantitative assays with an epifluoresent microscope revealed a significant difference in the number of conidia attachments among three entomopathogenic fungi. The conidia of B. brongniartii and P. fumosoroseus bound to termite cuticles more effectively than M. anisopliae conidia. Our results also suggested that self-grooming behavior is less effective, but mutual grooming is very effective in the removal of conidia from cuticles of their nestmates. Statistical analysis of removal rates indicated that conidia of P. fumosoroseus and B. brongniartii were removed more rapidly than M. anisopliae conidia from termite cuticles.  相似文献   

3.
采用RT-PCR方法从本实验室分离筛选到的金龟子绿僵小孢变种Metarhizium anisopliae vat.anisopliae中,扩增得到PrlA基因全长,此基因全长为1242bp,经Blastn分析此基因序列与M.anopliae的PrlA基因(M73795)同源率为98%。以pET- 22b( )为基础载体,构建pET-PrlA重组表达载体,在大肠杆菌(Escherichia.coli)BL 21(DE3)中进行表达。经SDS—PAGE分析,获得了约42kDa大小的重组目的蛋白,目的蛋白占表达总蛋白含量的63.2%。将表达的PrlA蛋白切胶回收后制备成抗原,免疫家兔4次后,采血收集抗血清,用ELISA测定效价为1/10000。结果表明,获得的抗体可用于更进一步的研究,将有利于我们进一步了解M.anisopliaeis的侵染机理,弄清楚各Pr蛋白酶的作用方式和对寄主的选择优势,提高生防控制的有效性。  相似文献   

4.
The potential of Hirsutella thompsonii Fisher and Metarhizium anisopliae (Metschinkoff) as biological control agents of the parasitic mite, Varroa destructor Anderson and Trueman was evaluated in the laboratory and in observation hives. In the laboratory, time required for 90% cumulative mortality of mites (LT(90)) was 4.16 (3.98-4.42) days for H. thompsonii and 5.85 (5.48-7.43) days for M. anisopliae at 1.1 x 10(3) conidia mm(-2). At a temperature (34+/-1 degrees C) similar to that of the broodnest in a honey bee colony, Apis mellifera L., H. thompsonii [LC(90)=9.90 x 10(1) (5.86-19.35) conidia mm(-2) at Day 7] and M. anisopliae [LC(90)=7.13 x 10(3) (2.80-23.45) conidia mm(-2) at Day 7] both showed significant virulence against V. destructor. The applications of H. thompsonii to observation hives resulted in significant mortality of mites, and reduction of the number of mites per bee 21 and 42 days post-treatments. The treatments did not significantly affect the mite population in sealed brood. However, the fungus must have persisted because infected mites were still observed [82.97+/-(0.6)%] 42 days post-treatment. In addition, the fungus was found to sporulate on the host. A small percentage [2.86+/-(0.2)%] of dead mites found in the control hives also showed fungal infection, suggesting that adult bees drifted between hives and disseminated the fungus. H. thompsonii was harmless to the honey bees at the concentrations applied and did not have any deleterious effects on the fecundity of the queens. Microbial control with fungal pathogens provides promising new avenues for control of V. destructor and could be a useful component of an integrated pest management program for the honey bee industry.  相似文献   

5.
Metarhizium anisopliae is a well-characterized biocontrol agent of a wide range of insects including cane grubs. In this study, a two-dimensional (2D) electrophoresis was used to display secreted proteins of M. anisopliae strain FI-1045 growing on the whole greyback cane grubs and their isolated cuticles. Hydrolytic enzymes secreted by M. anisopliae play a key role in insect cuticle-degradation and initiation of the infection process. We have identified all the 101 protein spots displayed by cross-species identification (CSI) from the fungal kingdom. Among the identified proteins were 64-kDa serine carboxypeptidase, 1,3 beta-exoglucanase, Dynamin GTPase, THZ kinase, calcineurin like phosphoesterase, and phosphatidylinositol kinase secreted by M. ansiopliae (FI-1045) in response to exposure to the greyback cane grubs and their isolated cuticles. These proteins have not been previously identified from the culture supernatant of M. anisopliae during infection. To our knowledge, this the first proteomic map established to study the extracellular proteins secreted by M. ansiopliae (FI-1045) during infection of greyback cane grubs and its cuticles.  相似文献   

6.
The possible contribution of extracellular constitutively produced chitin deacetylase by Metarhizium anisopliae in the process of insect pathogenesis has been evaluated. Chitin deacetylase converts chitin, a beta-1,4-linked N-acetylglucosamine polymer, into its deacetylated form chitosan, a glucosamine polymer. When grown in a yeast extract-peptone medium, M. anisopliae constitutively produced the enzymes protease, lipase, and two chitin-metabolizing enzymes, viz. chitin deacetylase (CDA) and chitosanase. Chitinase activity was induced in chitin-containing medium. Staining of 7.5% native polyacrylamide gels at pH 8.9 revealed CDA activity in three bands. SDS-PAGE showed that the apparent molecular masses of the three isoforms were 70, 37, and 26 kDa, respectively. Solubilized melanin (10microg) inhibited chitinase activity, whereas CDA was unaffected. Following germination of M. anisopliae conidia on isolated Helicoverpa armigera, cuticle revealed the presence of chitosan by staining with 3-methyl-2-benzothiazoline hydrazone. Blue patches of chitosan were observed on cuticle, indicating conversion of chitin to chitosan. Hydrolysis of chitin with constitutively produced enzymes of M. anisopliae suggested that CDA along with chitosanase contributed significantly to chitin hydrolysis. Thus, chitin deacetylase was important in initiating pathogenesis of M. anisopliae softening the insect cuticle to aid mycelial penetration. Evaluation of CDA and chitinase activities in other isolates of Metarhizium showed that those strains had low chitinase activity but high CDA activity. Chemical assays of M. anisopliae cell wall composition revealed the presence of chitosan. CDA may have a dual role in modifying the insect cuticular chitin for easy penetration as well as for altering its own cell walls for defense from insect chitinase.  相似文献   

7.
The interaction between two pathogens, the microsporidian Paranosema locustae Canning and the fungus Metarhizium anisopliae var. acridum Driver and Milner was studied under laboratory conditions in an attempt to develop an improved method of microbial control for the desert locust, Schistocerca gregaria Forsk?l. Fifth-instar locust nymphs, reared in the laboratory, were treated with various concentrations of one of the two pathogens or with both pathogens. The numbers of locusts killed were recorded each day and the production of pathogen spores within the dead locusts was assessed at the end (day 21) of each experiment. Locust nymphs treated with both P. locustae and M. anisopliae died sooner than nymphs infected with only one of the pathogens. At the lower concentrations of pathogen tested, the effects of the two pathogens were additive. At the higher concentrations the combined effects were synergistic. In terms of locust mortality, there was no evidence of any antagonistic effects between the two pathogens. However, the production of spores by P. locustae was reduced considerably when the host insects were infected also with M. anisopliae. For example, nymphs treated initially with P. locustae and then treated 3 and 10 days later with M. anisopliae produced 3-20 times and 2.5-8 times fewer spores, respectively, than nymphs treated only with P. locustae. Hence, in areas where M. anisopliae is applied, the natural persistence of P. locustae in the local grasshopper and locust populations may be diminished.  相似文献   

8.
Proteinase 2 (Pr2) is a fungal (Metarhizium anisopliae) serine proteinase which has a tryptic specificity for basic residues and which may be involved in entomopathogenicity. Analytical and preparative isoelectric focusing methods were used to separate two trypsin components, produced during growth on cockroach cuticle, with isoelectric points of 4.4 (molecular mass, 30 kDa) and 4.9 (27 kDa). The catalytic properties of the proteases were analyzed by their kinetic constants and by a combination of two-dimensional gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis and enzyme overlay membranes. Both Pr2 isoforms preferentially cleave at the carboxyl sides of positively charged amino acids, preferring arginine; the pI 4.4 Pr2 isoform also possessed significant activity against lysine. Compared with the pathogen's subtilisin-like enzyme (Pr1), the pI 4.4 Pr2 isoform shows low activity against insoluble proteins in a host (Manduca sexta) cuticle. However, it degrades most cuticle proteins when they are solubilized, with high-molecular-weight basic proteins being preferentially hydrolyzed. Polyclonal antibodies raised against each Pr2 isoform were isotype specific. This allowed us to use ultrastructural immunocytochemistry to independently visualize each isoform during penetration of the host (M. sexta) cuticle. Both isoforms were secreted by infection structures (appressoria) on the cuticle surface and by the penetrant hyphae within the cuticle. The extracellular sheath, which is commonly observed around fungal cells, often contained Pr2 molecules. Intracellular labelling was sparse.  相似文献   

9.
Abstract The major extracellular proteases from the nematophagous fungus Verticillium chlamydosporium and the entomophagous fungus Metarhizium anisopliae , VCP1 and Pr1, respectively, are closely related both functionally and serologically. Antibodies raised against either enzyme cross-reacted with both antigens, suggesting that they have common epitopes. The VCP1 and Prl antisera labelled bovine pancreatic elastase and proteinase K, respectively. Neither antiserum reacted with commercial chymotrypsin. An antiserum to a serine protease from the closely related V. suchlasporium also cross-reacted with VCP1 and Prl. In contrast, a polyclonal antibody to an isoform of Pr1 exclusive to M. anisopliae isolate ME1 failed to recognize Prl from M. anisopliae V245 or VCP1. The N-terminal amino acid sequence of VCP1 revealed similarities with subtilisin-like enzymes from other fungi, but the closest match was with Pr1. The pure enzymes, VCP1 and Prl, failed to hydrolyse mono-aminoacyl-naphthylamide substrates but demonstrated dipeptidyl peptidase activity against Gly-Pro-βNA and Leu-Ala-βNA, respectively. These results are discussed in the context of specificity of invertebrate mycopathogens.  相似文献   

10.
11.
We investigated the prevalence of entomopathogenic fungi associated with leaf-cutting ant colonies in a small area of tropical forest in Panama. There was a high abundance of Metarhizium anisopliae var. anisopliae near the colonies. Beauveria bassiana was also detected in the soil, Aspergillus flavus in dump material, and six Camponotus atriceps ants were found infected with Cordyceps sp. Based on a partial sequence of the IGS region, almost all of the M. anisopliae var. anisopliae isolates fell within one of the three main clades of M. anisopliae var. anisopliae, but with there still being considerable diversity within this clade. The vast majority of leaf-cutting ants collected were not infected by any entomopathogenic fungi. While leaf-cutting ants at this site must, therefore, regularly come into contact with a diversity of entomopathogenic fungi, they do not appear to be normally infected by them.  相似文献   

12.
The sporulation of 22 total isolates of Metarhizium anisopliae and Beauveria bassiana was quantified on cadavers of the Formosan subterranean termite, Coptotermes formosanus. Conidial production increased significantly over 11 days post-death. Effects of isolates of M. anisopliae and B. bassiana on in vivo sporulation were significant. Although the overall effects of fungal species on in vivo sporulation were not significant, the interactions between fungal species and certain times post-death were significant, indicating different sporulation patterns between the two fungal species. B. bassiana isolates could be categorized into a group with high total sporulation (day 11) and low quick sporulation (on days 2 and 3), while M. anisopliae isolates fell into another group with high quick sporulation and low total sporulation. This could give M. anisopliae an advantage over B. bassiana in termite microbial control due to termite defensive social behaviors. Conidial production was significantly higher in vitro than in vivo. In vitro and in vivo sporulation differed by as much as 89x and 232x among the selected isolates of B. bassiana and M. anisopliae, respectively. Correlation between in vivo and in vitro conidial production was positive and significant. This may allow preliminary in vitro screening of a large number of isolates for high in vivo sporulation.  相似文献   

13.
Sporulation characteristics and virulence of Metarhizium anisopliae and Beauveria bassiana were examined in relation to laboratory transmission in Coptotermes formosanus. Fungal isolates significantly affected disease prevalence in termite populations. Sporulation of M. anisopliae played a more important role than virulence in producing epizootics within small groups of termites, but this was not the case for B. bassiana. Isolates characterized by quick sporulation (day 2 after death) did not exhibit better transmission in termites than those with high total sporulation (day 11 after death) in either fungal species. An isolate of M. anisopliae ranking highly in all three categories (virulence, quick sporulation, and total sporulation) produced better epizootics than an isolate that was inferior in all three characteristics. High temperatures (35 degrees C) significantly reduced fungal germination rates, leading to significant reduction of epizootics. M. anisopliae was better than B. bassiana in producing epizootics at 27 degrees C. Thus, fungal characteristics other than virulence should be considered for the seasonal colonization approach to termite microbial control.  相似文献   

14.
The entomopathogenic fungus Metarhizium anisopliae is being considered as a biocontrol agent against adult African malaria vectors. In addition to causing significant mortality, this pathogen is known to cause reductions in feeding and fecundity in a range of insects. In the present study we investigated whether infection with M. anisopliae affected blood feeding and fecundity of adult female malaria vectors Anopheles gambiae Giles sensu stricto. Mosquitoes were contaminated with either a low or a moderately high dose of oil-formulated conidia of M. anisopliae, and offered a single human blood meal 48, 72, or 96 h later to assess feeding propensity and individual blood meal size. In a second experiment, individual fungus-infected females were offered a blood meal every third day (to a total of 8 gonotrophic cycles), and allowed to oviposit after each cycle in order to quantify feeding propensity and fecundity. Infected females took smaller blood meals and displayed reduced feeding propensity. It was found that mosquitoes, inoculated with a moderately high dose of fungal conidia, exhibited reduced appetite related to increasing fungal growth. Of the fungus-infected females, the proportion of mosquitoes taking the second blood meal was reduced with 51%. This was further reduced to 35.3% by the 4th blood meal. During 8 feeding opportunities, the average number of blood meals taken by uninfected females was 4.39, against 3.40 (low dose), and 2.07 (high dose) blood meals for the fungus-infected females. Moreover, infected females produced fewer eggs per gonotrophic cycle and had a lower life-time fecundity. Epidemiological models show that both blood feeding and fecundity are among the most important factors affecting the likelihood of a mosquito transmitting malaria, which suggests that this fungus may have potential as biocontrol agent for vector-borne disease control.  相似文献   

15.
The aim of this work has been to evaluate in the laboratory the potential of entomopathogenic fungi against adults and larvae of Capnodis tenebrionis (L.) (Coleoptera: Buprestidae) through fiber band application and a potted plant bioassay with soil application, respectively. Our previous findings revealed that Metarhizium anisopliae EAMa 01/58-Su isolate was the most virulent against neonate larvae of the buprestid. In the present work, M. anisopliae EAMa 01/58-Su isolate has been also shown to be highly virulent against adult beetles by immersion in a conidial suspension; thus it was selected to accomplish our objectives. When adult beetles were stimulated to climb 100 x 200 mm non-woven commercial fiber bands impregnated with conidia of M. anisopliae EAMa 01/58-Su isolate, total mortality rates varied from 85.7% to 100.0%; whereas no significant correlation was detected between the time needed to cross the band (mean value 648.7+/-22.4s) and the time of death, with mean average survival time ranging between 10.3 and 16.0 days, compared to 28 days of the controls. Potted seedlings (5-6 months old) of cherry plum (Prunus myrobalana Lois.), a commonly used apricot rootstock, were used to study the efficacy of soil treatment with M. anisopliae EAMa 01/58-Su isolate against neonate C. tenebrionis larvae. The soil inoculation with M. anisopliae EAMa 01/58-Su isolate had a significant effect on the mean number of dead larvae recovered from the roots, with mean mortality ranging from 83.3% to 91.6%; whereas no significant differences were detected between the three fungal doses. In all cases, dead larvae found within roots exhibited external signs of fungal growth. Hence, it may be possible to use M. anisopliae EAMa 01/58-Su isolate in a biocontrol strategy targeting both adults and larvae of C. tenebrionis.  相似文献   

16.
Laboratory soil bioassays were performed at economic field rates for in-furrow (3.85 x 10(6)spores/g dry soil) and broadcast (3.85 x 10(5)spores/g dry soil) applications with three isolates of Metarhizium anisopliae (F52, ATCC62176, and ARSEF5520) and one isolate of Beauveria bassiana (GHA). All isolates tested were infective to second instar Delia radicum (L.). The conditionally registered M. anisopliae isolate (F52) performed best killing an average of 85 and 72% of D. radicum larvae at the high and low concentration, respectively. The mean LC50 and LC95 of F52 against second instar D. radicum was 2.7 x 10(6) and 1.8 x 10(8)spores/g dry soil, respectively. The use of F52 in an integrated management program is discussed.  相似文献   

17.
The functional role of an endosymbiotic conidial fungus (Scopulariopsis brevicaulis) prevalent within the integumental glands and hemocoel of the American dog tick (Dermacentor variabilis) was investigated to explore the nature of this tick/fungus association. D. variabilis is normally highly resistant to Metarhizium anisopliae, a widely-distributed entomopathogenic fungus, but when mature female ticks harboring S. brevicaulis were fed a solution containing a mycotoxin (Amphotericin B) to purge this mycobiont internally, the ticks inoculated with M. anisopliae displayed classic signs of pathogenicity, as evidenced by recovery of M. anisopliae from ticks by internal fungus culture, greatly accelerated net transpiration water loss rates (nearly 3x faster than ticks containing S. brevicaulis naturally) and elevation of critical equilibrium humidity (CEH) closer to saturation, implying a reduced capacity to absorb water vapor and disruption of water balance (water gain not equal water loss) that resulted in tick death. The presence of S. brevicaulis within the tick was previously puzzling: the fungus is transmitted maternally and there is no apparent harm inflicted to either generation. This study suggests that S. brevicaulis provides protection to D. variabilis ticks against M. anisopliae. Thus, the S. brevicaulis/tick association appears to be mutualistic symbiosis. Given that both organisms are of medical-veterinary importance, disruption of this symbiosis has potential for generating novel tools for disease control.  相似文献   

18.
A positive clone was selected from a library of total cell DNA of Paenibacillus lentimorbus strain Semadara that reacted with an antiserum that was raised against parasporal crystal proteins produced by this strain. The positive clone had a DNA insert containing two whole cry genes (cry43Aa1, cry43Ba1), one partial cry gene (cry43-like), and three smaller genes located upstream. Eight blocks that are conserved in the Cry proteins of Bacillus thuringiensis [Microbiol. Mol. Biol. Rev. 62 (1998) 775] were detected in their deduced amino acid sequences. The Escherichia coli transformant expressing cry43Aa1 caused inhibition of ingestion and 90% mortality in the first stadium larvae of Anomala cuprea. A low concentration of sporangia mixed with the transformant expressing cry43Aa1 easily infected the larvae of A. cuprea. The protein of approximately 150 kDa produced by the transformants expressing the cry genes reacted with antiserum specific for the parasporal crystal proteins. Southern hybridization analysis demonstrated that the cry genes were located on the chromosomal DNA of this strain, which possessed at least four cry genes.  相似文献   

19.
Abstract A Beauveria bassiana extracellular subtilisin-like serine endoprotease is a potential virulence factor by virtue of its activity against insect cuticles. A cDNA clone of the protease was isolated from mycelia of B. bassiana grown on cuticle/chitin cultures. The amino acid sequence of this gene was compared to that of Metarhizium anisopliae Pr1, the only pathogenicity determinant so far described from an entomopathogenic fungus, and proteinase K, isolated from Tritirachium album , a saprophytic fungus. The cDNA sequence revealed that B. bassiana Prl is synthesized as a large precursor ( M r 37 460) containing a signal peptide, a propeptide and the mature protein predicted to have an M r of 26 832.  相似文献   

20.
Trehalose is the main haemolymph sugar in most insects including the tobacco hornworm, Manduca sexta, and is potentially a prime target for an invading pathogenic fungus. There was considerably more trehalose-hydrolysing activity in the haemolymph of caterpillars infected with Metarhizium anisopliae than in controls. This appeared to be due primarily to additional isoforms; one of which could also hydrolyse maltose and was designated an alpha-glucosidase. A comparable isoform was identified in in vitro culture of the fungus, supporting a fungal origin for the in vivo enzyme. The in vitro fungal enzyme, alpha-glucosidase-1 (alpha-gluc-1), was purified to homogeneity and partially characterised. A study with the trehalase inhibitor trehazolin and C14 trehalose suggested that extracellular hydrolysis is important for fungal mobilisation of trehalose. Haemolymph glucose increases significantly during mycosis of tobacco hornworm larvae by M. anisopliae, consistent with the hydrolysis of trehalose by extracellular fungal enzymes. The implications for the host insect are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号