首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
A new amidohydrolase deacetylating several N-acetyl-1-phenylethylamine derivatives (R)-specifically was found in Arthrobacter aurescens AcR5b. The strain was isolated from a wet haystack by enrichment culture with (R)-N-acetyl-1-phenylethylamine as the sole carbon source. (R) and (S )-N-acetyl-1-phenylethylamine do not serve as inducers for acylase formation. By improving the growth conditions the enzyme production was increased 47-fold. The amidohydrolase was purified to homogeneity leading to a 5.2-fold increase of the specific activity with a recovery of 67%. A molecular mass of 220 kDa was estimated by gel filtration. Sodium dodecyl sulfate/polyacrylamide gel electrophorosis shows two subunits with molecular masses of 16 kDa and 89 kDa. The optimum pH and temperature were pH 8 and 50 °C, respectively. The enzyme was stable in the range of pH 7–9 and at temperatures up to 30 °C. The enzyme activity was inhibited by Cu2+, Co2+, Ni2+, and Zn2+, and this inhibition was reversed by EDTA.M Received: 20 September 1996 / Received version: 23 December 1996 / Accepted: 30 December 1996  相似文献   

2.
Li X  Yu HY 《Folia microbiologica》2012,57(5):447-453
A halophilic isolate Thalassobacillus sp. LY18 producing extracellular amylase was isolated from the saline soil of Yuncheng Salt Lake, China. Production of the enzyme was synchronized with bacterial growth and reached a maximum level during the early stationary phase. The amylase was purified to homogeneity with a molecular mass of 31 kDa. Major products of soluble starch hydrolysis were maltose and maltotriose, indicating an α-amylase activity. Optimal enzyme activity was found to be at 70°C, pH 9.0, and 10 % NaCl. The α-amylase was highly stable over broad temperature (30–90°C), pH (6.0–12.0), and NaCl concentration (0–20 %) ranges, showing excellent thermostable, alkalistable, and halotolerant nature. The enzyme was stimulated by Ca2+, but greatly inhibited by EDTA, indicating it was a metalloenzyme. Complete inhibition by diethyl pyrocarbonate and β-mercaptoethanol revealed that histidine residue and disulfide bond were essential for enzyme catalysis. The surfactants tested had no significant effects on the amylase activity. Furthermore, it showed high activity and stability in the presence of water-insoluble organic solvents with log P ow ≥ 2.13.  相似文献   

3.
A putative N-acyl-d-glucosamine 2-epimerase from Caldicellulosiruptor saccharolyticus was cloned and expressed in Escherichia coli. The recombinant enzyme was identified as a cellobiose 2-epimerase by the analysis of the activity for substrates, acid-hydrolyzed products, and amino acid sequence. The cellobiose 2-epimerase was purified with a specific activity of 35 nmol min–1 mg–1 for d-glucose with a 47-kDa monomer. The epimerization activity for d-glucose was maximal at pH 7.5 and 75°C. The half-lives of the enzyme at 60°C, 65°C, 70°C, 75°C, and 80°C were 142, 71, 35, 18, and 4.6 h, respectively. The enzyme catalyzed the epimerization reactions of the aldoses harboring hydroxyl groups oriented in the right-hand configuration at the C2 position and the left-hand configuration at the C3 position, such as d-glucose, d-xylose, l-altrose, l-idose, and l-arabinose, to their C2 epimers, such as d-mannose, d-lyxose, l-allose, l-gulose, and l-ribose, respectively. The enzyme catalyzed also the isomerization reactions. The enzyme exhibited the highest activity for mannose among monosaccharides. Thus, mannose at 75 g l–1 and fructose at 47.5 g l–1 were produced from 500 g l–1 glucose at pH 7.5 and 75°C over 3 h by the enzyme.  相似文献   

4.
An alkaline protease produced by Pseudomonas aeruginosa MN1, isolated from an alkaline tannery waste water, was purified and characterized. The enzyme was purified 25-fold by gel filtration and ion exchange chromatography to a specific activity of 82350 U mg−1. The molecular weight of the enzyme was estimated to be 32000 daltons. The optimum pH and temperature for the proteolytic activity were pH 8.00 and 60°C, respectively. Enzyme activity was inhibited by EDTA suggesting that the preparation contains a metalloprotease. Enzyme activity was strongly inhibited by Zn2+, Cu2+ and Hg2+(5 mM), while Ca2+ and Mn2+ resulted in partial inhibition. The enzyme is different from other Pseudomonas aeruginosa alkaline proteases in its stability at high temperature; it retained more than 90% and 66% of the initial activity after 15 and 120 min incubation at 60°C. Journal of Industrial Microbiology & Biotechnology (2000) 24, 291–295. Received 09 June 1999/ Accepted in revised form 24 January 2000  相似文献   

5.
The gene encoding homodimeric β-galactosidase (lacA) from Bacillus licheniformis DSM 13 was cloned and overexpressed in Escherichia coli, and the resulting recombinant enzyme was characterized in detail. The optimum temperature and pH of the enzyme, for both o-nitrophenyl-β-d-galactoside (oNPG) and lactose hydrolysis, were 50°C and 6.5, respectively. The recombinant enzyme is stable in the range of pH 5 to 9 at 37°C and over a wide range of temperatures (4–42°C) at pH 6.5 for up to 1 month. The K m values of LacA for lactose and oNPG are 169 and 13.7 mM, respectively, and it is strongly inhibited by the hydrolysis products, i.e., glucose and galactose. The monovalent ions Na+ and K+ in the concentration range of 1–100 mM as well as the divalent metal cations Mg2+, Mn2+, and Ca2+ at a concentration of 1 mM slightly activate enzyme activity. This enzyme can be beneficial for application in lactose hydrolysis especially at elevated temperatures due to its pronounced temperature stability; however, the transgalactosylation potential of this enzyme for the production of galacto-oligosaccharides (GOS) from lactose was low, with only 12% GOS (w/w) of total sugars obtained when the initial lactose concentration was 200 g/L.  相似文献   

6.
Thermomonospora curvata produced a thermostable β-xylosidase during growth on birch xylan. The enzyme, extracted by sonication of early stationary phase mycelia, was purified by isoelectric focusing and size exclusion HPLC. The isoelectric point was pH 4.8. The molecular weight was estimated to be 102 000 by size exclusion HPLC and 112 000 by SDS-PAGE. Maximal activity occurred at pH 6–7 and 60–68°C. K m values for xylobiose and p-nitrophenyl-β -D-xylopyranoside were 4.0 M and 0.6 M respectively. The enzyme was sensitive to low levels of Hg2+ (50% inhibition at 0.2 μM), but was stimulated by Co2+ and Pb2+. Addition of the xylosidase to a xylanase reaction mixture increased the liberation of xylose equivalents from xylan and decreased the proportion of xylobiose in the hydrolysate. Received 14 April 1997/ Accepted in revised form 21 October 1997  相似文献   

7.
The discovery of stable and active polyphosphate glucokinase (PPGK, EC 2.7.1.63) would be vital to cascade enzyme biocatalysis that does not require a costly ATP input. An open reading frame Tfu_1811 from Thermobifida fusca YX encoding a putative PPGK was cloned and the recombinant protein fused with a family 3 cellulose-binding module (CBM-PPGK) was overexpressed in Escherichia coli. Mg2+ was an indispensible activator. This enzyme exhibited the highest activity in the presence of 4 mM Mg2+ at 55°C and pH 9.0. Under its suboptimal conditions (pH 7.5), the k cat and K m values of CBM-PPGK on glucose were 96.9 and 39.7 s−1 as well as 0.77 and 0.45 mM at 37°C and 50°C respectively. The thermoinactivation of CBM-PPGK was independent of its mass concentration. Through one-step enzyme purification and immobilization on a high-capacity regenerated amorphous cellulose, immobilized CBM-PPGK had an approximately eightfold half lifetime enhancement (i.e., t 1/2 = 120 min) as compared to free enzyme at 50°C. To our limited knowledge, this enzyme was the first thermostable PPGK reported. Free PPGK and immobilized CBM-PPGK had total turnover number values of 126,000 and 961,000 mol product per mol enzyme, respectively, suggesting their great potential in glucose-6-phosphate generation based on low-cost polyphosphate.  相似文献   

8.
This study reports on the optimization of protoplast yield from two important tropical agarophytes Gracilaria dura and Gracilaria verrucosa using different cell-wall-degrading enzymes obtained from commercial sources. The conditions for achieving the highest protoplast yield was investigated by optimizing key parameters such as enzyme combinations and their concentrations, duration of enzyme treatment, enzyme pH, mannitol concentration, and temperature. The significance of each key parameter was also further validated using the statistical central composite design. The enzyme composition with 4% cellulase Onozuka R-10, 2% macerozyme R-10, 0.5% pectolyase, and 100 U agarase, 0.4 M mannitol in seawater (30‰) adjusted to pH 7.5 produced the highest protoplast yields of 3.7 ± 0.7 × 106 cells g−1 fresh wt for G. dura and 1.2 ± 0.78 × 106 cells g−1 fresh wt for G. verrucosa when incubated at 25°C for 4–6 h duration. The young growing tips maximally released the protoplasts having a size of 7–15 μm in G. dura and 15–25 μm in G. verrucosa, mostly from epidermal and upper cortical regions. A few large-size protoplasts of 25–35 μm, presumably from cortical region, were also observed in G. verrucosa.  相似文献   

9.
A number of nutritional factors influencing growth and glucose oxidase (EC 1.1.3.4) production by a newly isolated strain of Penicillium pinophilum were investigated. The most important factors for glucose oxidase production were the use of sucrose as the carbon source, and growth of the fungus at non-optimal pH 6.5. The enzyme was purified to apparent homogeneity with a yield of 74%, including an efficient extraction step of the mycelium mass at pH 3.0, cation-exchange chromatography and gel filtration. The relative molecular mass (M r) of native glucose oxidase was determined to be 154 700 ± 4970, and 77 700 for the denatured subunit. Electron-microscopic examinations revealed a sandwich-shaped dimeric molecule with subunit dimensions of 5.0 × 8.0 nm. Glucose oxidase is a glycoprotein that contains tightly bound FAD with an estimated stoichiometry of 1.76 mol/mol enzyme. The enzyme is specific for d-glucose, for which a K m value of 6.2 mM was determined. The pH optimum was determined in the range pH 4.0–6.0. Glucose oxidase showed high stability on storage in sodium citrate (pH 5.0) and in potassium phosphate (pH 6.0), each 100 mM. The half-life of the activity was considerably more than 305 days at 4 °C and 30 °C, and 213 days at 40 °C. The enzyme was unstable at temperatures above 40 °C in the range pH 2.0–4.0 and at a pH above 7.0. Received: 18 November 1996 / Received revision: 3 March 1997 / Accepted: 7 March 1997  相似文献   

10.
Trehalose synthase (TSII) from Corynebacterium nitrilophilus NRC was successively purified by ammonium sulphate precipitation, ion exchange chromatography on DEAE-cellulose and gel filtration chromatography on Sephadex G-100 columns. The specific activity of the trehalose synthase was increased ~200-fold, from 0.14 U mg−1 protein to 28.3 U mg−1 protein. TSII was found to be a monomeric protein with a molecular weight of 67–69 kDa. Characterization of the enzyme exhibited optimum pH and temperature were 7.5 and 35°C, respectively. The purified enzyme was stable from pH 6.6 to 7.8 and able to prolong its thermal stability up to 35°C. The enzyme activity was inhibited strongly by Zn2+, Hg2+ and Cu2+ and moderately by Ba2+, Fe2+, Pb2+ and Ni2+. Other metal ions Ca2+, Mg2+, Co2+, Mn2+ and EDTA had almost no effect.  相似文献   

11.
An extracellular β-galactosidase which catalyzed the production of galacto-oligosaccharide from lactose was harvested from the late stationary-phase of Bacillus sp MTCC 3088. The enzyme was purified 36.2-fold by ZnCl2 precipitation, ion exchange, hydrophobic interaction and gel filtration chromatography with an overall recovery of 12.7%. The molecular mass of the purified enzyme was estimated to be about 484 kDa by gel filtration on a Sephadex G-200 packed column and the molecular masses of the subunits were estimated to be 115, 86.5, 72.5, 45.7 and 41.2 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point of the native enzyme, determined by polyacrylamide gel electrofocusing, was 6.2. The optimum pH and temperature were 8 and 60°C, respectively. The Michaelis–Menten constants determined with respect to o-NO2-phenyl-β-D-galactopyranoside and lactose were 6.34 and 6.18 mM, respectively. The enzyme activity was strongly inhibited (68%) by galactose, the end product of lactose hydrolysis reaction. The β-galactosidase was specific for β-D anomeric linkages. Enzyme activity was significantly inhibited by metal ions (Hg2+, Cu2+ and Ag+) in the 1–2.5 mM range. Mg2+ was a good activator. Catalytic activity was not affected by the chelating agent EDTA. Journal of Industrial Microbiology & Biotechnology (2000) 24, 58–63. Received 09 February 1999/ Accepted in revised form 24 September 1999  相似文献   

12.
A thermostable β-galactosidase was produced extracellularly by a thermophilic Rhizomucor sp, with maximum enzyme activity (0.21 U mg−1) after 4 days under submerged fermentation condition (SmF). Solid state fermentation (SSF) resulted in a nine-fold increase in enzyme activity (2.04 U mg−1). The temperature range for production of the enzyme was 38–55°C with maximum activity at 45°C. The optimum pH and temperature for the partially purified enzyme was 4.5 and 60°C, respectively. The enzyme retained its original activity on incubation at 60°C up to 1 h. Divalent cations like Co2+, Mn2+, Fe2+ and Zn2+ had strong inhibitory effects on the enzyme activity. The K m and V max for p-nitrophenyl-β- D-galactopyranoside and o-nitrophenyl-β - D-galactopyranoside were 0.39 mM, 0.785 mM and 232.1 mmol min−1 mg−1 respectively. The K m and V max for the natural substrate lactose were 66.66 μM and 0.20 μ mol min−1 mg−1. Received 10 March 1997/ Accepted in revised form 17 July 1997  相似文献   

13.
In our previous studies, the yeast Endomyces fibuliger LU677 was found to degrade amygdalin in bitter apricot seeds. The present investigation shows that E. fibuliger LU677 produces extracellular β-glycosidase activity when grown in malt extract broth (MEB). Growth was very good at 25 °C and 30 °C and slightly less at 35 °C. When grown in MEB of pH 5 and pH 6 with addition of 0, 10 or 100 ppm amygdalin, E. fibuliger produced only slightly more biomass at pH 5, and was only slightly inhibited in the presence of amygdalin. Approximately, 60% of the added amygdalin was degraded (fastest at 35 °C) during an incubation period of 5 days. Supernatants of cultures grown at 25 °C and pH 6 for 5 days were tested for the effects of pH and temperature on activity (using amygdalin, linamarin and prunasin as substrates). Prunase activity had two pH optima (pH 4 and pH 6), amygdalase and linamarase only one each at pH 6 and pH 4–5 respectively. The linamarase activity evolved earlier than amygdalase (2 days and 4 days respectively). The data thus indicate the presence of at least two different glycosidases having different pH optima and kinetics of excretion. In the presence of amygdalin, lower glycosidase activities were generally produced. However, the amygdalin was degraded from the start of the growth, strongly indicating an uptake of amygdalin by the cells. The temperature optimum for all activities was at 40 °C. Activities of amygdalase (assayed at pH 4) and linamarase (at pH 6) evolving during the growth of E. fibuliger were generally higher in cultures grown at 25 °C and 30 °C. TLC analysis of amygdalin degradation products show a two-stage sequential mechanism as follows: (1) amygdalin to prunasin and (2) prunasin to cyanohydrin. Received: 16 September 1997 / Received revision: 6 October 1997 / Accepted: 14 October 1997  相似文献   

14.
The cellulolytic myxobacterium Sorangium cellulosum is able to efficiently degrade many kinds of polysaccharides, but none of the enzymes involved have been characterized. In this paper, a xylanase gene (xynA) was cloned from S. cellulosum So9733-1 using thermal asymmetric interlaced PCR. The gene is composed of 1,209 bp and has only 52.27% G + C content, which is much lower than that of most myxobacterial DNA reported (67–72%). Gene xynA encodes a 402 amino acid protein that contains a single catalytic domain belonging to the glycoside hydrolase family 10. The novel xylanase gene, xynA, was expressed in Escherichia coli BL21 (DE3) and the recombinant protein (r-XynA) was purified by Ni-affinity chromatography. The r-XynA had the optimum temperature of 30–35°C and exhibited 33.3% activity at 5°C and 13.7% activity at 0°C. Approximately 80% activity was lost after 20-min pre-incubation at 50°C. These results indicate that r-XynA is a cold-active xylanase with low thermostability. At 30°C, the K m values of r-XynA on beechwood xylan, birchwood xylan, and oat spelt xylan were 25.77 ± 4.16, 26.52 ± 4.78, and 38.13 ± 5.35 mg/mL, respectively. The purified r-XynA displayed optimum activity at pH 7.0. The activity of r-XynA was enhanced by the presence of Ca2+. The r-XynA hydrolyzed beechwood xylan, birchwood xylan, and xylooligosaccharides (xylotriose, xylotetraose, and xylopentose) to produce primarily xylose and xylobiose. To our knowledge, this is the first report on the characterization of a xylanase from S. cellulosum.  相似文献   

15.
Acinetobacter sp. XMZ-26 (ACCC 05422) was isolated from soil samples obtained from glaciers in Xinjiang Province, China. The partial nucleotide sequence of a lipase gene was obtained by touchdown PCR using degenerate primers designed based on the conserved domains of cold-adapted lipases. Subsequently, a complete gene sequence encoding a 317 amino acid polypeptide was identified. Our novel lipase gene, lipA, was overexpressed in Escherichia coli. The recombinant protein (LipA) was purified by Ni-affinity chromatography, and then deeply characterised. The LipA resulted to hydrolyse pNP esters of fatty acids with acyl chain length from C2 to C16, and the preferred substrate was pNP octanoate showing a k cat = 560.52 ± 28.32 s−1, K m = 0.075 ± 0.008 mM, and a k cat/K m = 7,377.29 ± 118.88 s−1 mM−1. Maximal LipA activity was observed at a temperature of 15°C and pH 10.0 using pNP decanoate as substrate. That LipA peaked at such a low temperature and remained most activity between 5°C and 35°C indicated that it was a cold-adapted enzyme. Remarkably, this lipase retained much of its activity in the presence of commercial detergents and organic solvents, including Ninol, Triton X-100, methanol, PEG-600, and DMSO. This cold-adapted lipase may find applications in the detergent industry and organic synthesis.  相似文献   

16.
Dextransucrase was produced from a Leuconostoc mesenteroides isolated from pulque, a traditional Aztec alcoholic beverage produced from agave juice containing sucrose as the main carbon source. Almost all the dextransucrase activity (87%) was associated with the cells, and was unusually high (1.04 U mg−1 of cells). The culture medium composition was optimized through a Box-Behnken method resulting in a process yielding 2.2 U ml−1 of insoluble glucosyltransferase activity. The enzyme had a molecular weight of 166 kDa. Optimal temperature was 35°C with a half-life of 137 min at the same temperature. As with dextransucrase from the industrial strain L. mesenteroides NRRL B-512F, the enzyme showed Michaelis–Menten kinetic behavior with excess substrate inhibition (K m and K i values of 0.026 M and 1.23 M respectively); produced soluble linear dextran with glucose molecules linked mainly in α(1–6) with branching in α(1–3) in a proportion of 4:1 as shown by NMR studies; and produced a high yield of isomalto-oligosaccharides in the presence of maltose. Received 4 February 1998/ Accepted in revised form 25 July 1998  相似文献   

17.
Rhodococcus equi Ac6 was found to express an inducible (S )-specific N-acetyl-1-phenylethylamine amidohydrolase. Optimal bacterial growth and amidohydrolase expression were both observed around pH 6.5. Purification of the enzyme to a single band in a Coomassie-blue-stained sodium dodecyl sulfate/polyacrylamide gel (SDS-PAGE) was achieved by ammonium sulfate precipitation of R. equi Ac6 crude extract and column chromatographies on Fractogel TSK Butyl-650(S) and Superose 12HR. At pH 7.0 and 30 °C the amidohydrolase had a half-life of around 350 days; at 44 °C it was only 10 min. Except for Ni2+ and, to some extent, Zn2+ and Co2+, the enzyme was neither strongly influenced by metal cations nor by chelating agents, but was inhibited by 95% at 0.1 mM phenylmethylsulfonyl fluoride. The molecular mass of the native enzyme was estimated to be 94 kDa by gel filtration and 50 kDa by SDS-PAGE, suggesting a dimeric structure. Specificity experiments revealed a spectrum of related N-acetylated compounds being hydrolyzed with variable enantiomeric selectivities. Received: 20 September 1996 / Received revision: 23 December 1996 / Accepted: 30 December 1996  相似文献   

18.
Cell calcium is accumulated in intracellular stores by sarco-endoplasmic reticulum Ca2+ ATPases functionally interacting with the membrane lipid environment. Cold adaptations of membrane lipids in Antarctic Sea organisms suggest possible adaptive effects also on sarco-endoplasmic reticulum Ca2+ ATPases. We investigated the SR Ca2+ ATPase of an Antarctic scallop, Adamussium colbecki, by characterising the enzyme activity and studying temperature effects. Ca2+ ATPase, assayed by following ATP hydrolysis, was thapsigargin- and vanadate-sensitive, showed maximum activity under 2 μM Ca2+, 200 mM KCl and pH 7.2, and had a K M for ATP of 22 ± 7 μM. Temperature effects showed an Arrhenius inversion between −1.8 and 0°C, indicating cold adaptation, an Arrhenius break at 10°C, and a collapse above 20°C. A. colbecki accumulates high amounts of cadmium in the digestive gland; heavy metal effects on sarco-endoplasmic reticulum Ca2+ ATPases were therefore tested, finding an IC50 = 0.9 μM for Hg2+ and 3 μM for Cd2+. Finally, SDS-PAGE analysis showed a main band at about 100 kDa, which was identified as sarco-endoplasmic reticulum Ca2+ ATPase after trypsin digestion, and accounted for 60% total protein. Accepted: 10 December 1998  相似文献   

19.
The lipA gene, a structural gene encoding for protein of molecular mass 48 kDa, and lipB gene, encoding for a lipase-specific chaperone with molecular mass of 35 kDa, of Pseudomonas aeruginosa B2264 were co-expressed in heterologous host Escherichia coli BL21 (DE3) to obtain in vivo expression of functional lipase. The recombinant lipase was expressed with histidine tag at its N terminus and was purified to homogeneity using nickel affinity chromatography. The amino acid sequence of LipA and LipB of P. aeruginosa B2264 was 99–100% identical with the corresponding sequence of LipA and LipB of P. aeruginosa LST-03 and P. aeruginosa PA01, but it has less identity with Pseudomonas cepacia (Burkholderia cepacia) as it showed only 37.6% and 23.3% identity with the B. cepacia LipA and LipB sequence, respectively. The molecular mass of the recombinant lipase was found to be 48 kDa. The recombinant lipase exhibited optimal activity at pH 8.0 and 37°C, though it was active between pH 5.0 and pH 9.0 and up to 45°C. K m and V max values for recombinant P. aeruginosa lipase were found to be 151.5 ± 29 μM and 217 ± 22.5 μmol min−1 mg−1 protein, respectively.  相似文献   

20.
Staphylococcus xylosus MAK2, Gram-positive coccus, a nonpathogenic member of the coagulase-negative Staphylococcus family was isolated from soil and used to produce naringinase in a stirred tank reactor. An initial medium at pH 5.5 and a cultivation temperature of 30°C was found to be optimal for enzyme production. The addition of Ca+2 caused stimulation of enzyme activity. The effect of various physico-chemical parameters, such as pH, temperature, agitation, and inducer concentration was studied. The enzyme production was enhanced by the addition of citrus peel powder (CPP) in the optimized medium. A twofold increase in naringinase production was achieved using different technological combinations. The process optimization using technological combinations allowed rapid optimization of large number of variables, which significantly improved enzyme production in a 5-l reactor in 34 h. An increase in sugar concentration (15 g l−1) in the fermentation medium further increased naringinase production (8.9 IU ml−1) in the bioreactor. Thus, availability of naringinase renders it attractive for potential biotechnological applications in citrus processing industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号