首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 852 毫秒
1.
2.
The lipid-phase structures of brush border membrane vesicles (BBMV) and basolateral membrane vesicles (BLMV) isolated from rabbit renal cortex were compared by steady-state and phase-modulation measurements of diphenylhexatriene (DPH) and trans- and cis-parinaric acid (tPnA and cPnA) fluorescence. A temperature-scanning system was used which gave reproducible temperature profiles of steady-state and dynamic fluorescence parameters with a resolution of 0.1 degrees C. Steady-state anisotropy of DPH showed a triphasic dependence on temperature with slope discontinuities at 22 +/- 4 and 47 +/- 3 degrees C (BBMV) and at 23 +/- 2 and 48 +/- 1 degrees C (BLMV). At all temperatures, DPH anisotropy in BBMV was greater than that in BLMV. Ground-state heterogeneity analysis of tPnA and cPnA fluorescence lifetime data demonstrated the presence of long (greater than 12 ns) and short (less than 5 ns) lifetime components, interpreted in terms of solid-phase and fluid-phase lipid domains. The fraction of solid-phase phospholipid decreased from 0.9 to 0.1 for BBMV and from 0.7 to 0.3 in BLMV with increasing temperature (10-50 degrees C). In both membranes, tryptophan-PnA fluorescence energy-transfer measurements showed that membrane proteins were surrounded by a fluidlike phospholipid phase. These results demonstrate the inadequacy of steady-state DPH anisotropy data in defining the structural characteristics of complex biological membranes. Results obtained with the phase-sensitive parinaric acid probes demonstrate major differences in the phase structure of the two opposing cell membranes in both the bulk lipid and the lipid microenvironment around membrane proteins.  相似文献   

3.
The thermotropic behavior of intact bacterial membranes and vesicles prepared from total and polar lipids isolated from Bacillus subtilis cultures grown at 37 degrees C in normal (LB) and hyperosmotic (LBN) conditions was studied using 1,6-diphenyl-1,3,5-hexatriene (DPH), 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate (TMA-DPH), and 2-diethylamino-6-lauroyl-naphthalene (Laurdan) as fluorescent probes. No phase transition of bulk lipids was observed in these preparations at the range of temperature studied. The anisotropy values (r(s)) for DPH and TMA-DPH in purified membranes showed significant differences between the LB and LBN conditions, suggesting that there was an increase in membrane packing during the adaptation to osmotic stress. Furthermore, generalized polarization (GP) parameters for Laurdan indicated small but significant changes in water relaxation at the membrane hydrophobic/hydrophilic interface. Membrane preparations showed r(s) higher values than those of lipid vesicles and a higher temperature dependence of the Laurdan GP parameter. This fact indicates that membrane proteins increase the lipid packing and keep the membrane more sensitive to temperature changes.  相似文献   

4.
P Tauc  C R Mateo    J C Brochon 《Biophysical journal》1998,74(4):1864-1870
The effects of hydrostatic pressure and temperature on the phase behavior and physical properties of the binary mixture palmitoyloleoylphosphatidylcholine/cholesterol, over the 0-40 molar % range of cholesterol compositions, were determined from the changes in the fluorescence lifetime distribution and anisotropy decay parameters of the natural lipid trans-parinaric acid (t-PnA). Pressurized samples were excited with a Ti-sapphire subpicosecond laser, and fluorescence decays were analyzed by the quantified maximum entropy method. Above the transition temperature (T(T) = -5 degrees C), at atmospheric pressure, two liquid-crystalline phases, alpha and beta, are formed in this system. At each temperature and cholesterol concentration below the transition pressure, the fluorescence lifetime distribution pattern of t-PnA was clearly modulated by the pressure changes. Pressure increased the fraction of the liquid-ordered beta-phase and its order parameter, but it decreased the amount of cholesterol in this phase. Palmitoyloleoylphosphatidylcholine/cholesterol phase diagrams were also determined as a function of temperature and hydrostatic pressure.  相似文献   

5.
Time-resolved fluorescence anisotropy (TRFA) and steady-state anisotropy measurements and fluorescence intensification microscopic observations were made on RAW264 macrophages labeled with 1,6-diphenyl-1,3,5-hexatriene (DPH) or 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH). Microscopic analysis revealed that the fluorescent probe DPH was found in association with plasma membranes and small vesicles. Macrophages treated with immune complexes could not be distinguished from untreated cells, indicating that the same membrane compartments were labeled. The probe TMA-DPH was exclusively localized to the plasma membrane. Steady-state anisotropy measurements indicated that in vitro culture conditions did not significantly affect membrane fluidity. TRFA measurements were conducted to determine the physical properties of macrophage membranes during immune recognition and endocytosis. Data were analyzed by iterative deconvolution to yield phi, the rotational correlation time, and r infinity, the limiting anisotropy. These parameters may be interpreted as the "fluidity" and order parameter of the membrane environment, respectively. Typical values for untreated macrophages were phi = 7.8 ns and r infinity = 0.12. Binding and endocytosis of immune complexes prepared in 4-fold antigen excess increase these values to phi = 22.1 ns and r infinity = 0.15. However, receptor-independent phagocytosis of latex beads decreases these values to phi = 2.2 ns and r infinity = 0.10. Addition of catalase before, but not after, immune complex incubation with cells diminishes the effect upon membrane structure, suggesting that H2O2 participates in fluidity changes. Pretreatment of macrophages with the membrane-impermeable sulfhydryl blocker p-(chloromercuri)benzenesulfonic acid also diminished these effects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We have used an extended Perrin equation which was in agreement with literature data for steady-state anisotropy (rSS) for a wide variety of artificial and isolated biological membranes labeled with various probes (Van der Meer et al. (1986) Biochim. Biophys. Acta 854, 38-44 to obtain the static component (r infinity) for the intact plasma membranes of living cells. We show that lipid structural order parameters can be obtained for DPH and TMA-DPH in the plasma membranes of intact cells. We have examined the relationship between 'fractional limiting hindered anisotropy', r infinity/r0, which is related to the lipid structural order parameter, of DPH, TMA-DPH, DPHpPC, and a series of depth-dependent probes (n-(9-anthroyloxy) fatty acids, with n = 2-16), using data from 19 cell types. There was a linear relationship between r infinity/r0 values of DPH and TMA-DPH, but the relationship between either of these probes was non-linear with respect to DPHpPC or the series of fatty acid probes. The relationship between r infinity/r0 values of DPHpPC and the series of fatty acid probes was linear, suggesting that they not only undergo similar motions in the membrane, but also experience similar types of restriction to motion, a type which is different from that experienced by DPH and TMA-DPH. We show that for the plasma membranes of living cells, 'second degree' order parameters can be estimated for DPH and TMA-DPH, and propose that the parameter r infinity/r0, or the 'fractional limiting hindered anisotropy', analogous to a 'first degree' order parameter, can be estimated for DPHpPC and the depth-dependent fatty acid probes to evaluate the density of membrane packing.  相似文献   

7.
The temperature dependence of fluorescence anisotropy, lifetime and differential tangent of 1,6-diphenyl-1,3,5-hexatriene (DPH) and its polar trimethylammonium derivative (TMA-DPH) were investigated in cytoplasmic membranes ofBacillus subtilis. The fluorescence parameters were compared in the two types of membranes prepared from bacteria cultivated at 20 and 40°C. Steady-state anisotropy measurements showed that within a broad range of temperatures, membranes cultivated at 20°C exhibit significantly lower values than those prepared from cells cultivated at 40°C. The temperature dependence of lifetime and differential tangent measurements (differential polarized phase fluorimetry) were fully consistent with steady-state anisotropy data of both DPH and TMA-DPH. The low anisotropy values in the case of TMA-DPH could be explained by a shorter lifetime and higher temperature-induced decrease as compared with DPH. Surprisingly, the temperature dependence of rotational rateR calculated according to the model of hindered rotations (Lakowicz 1983) gave misleading results. When increasing the temperature from 5 to 25°C, a marked drop of rotational relaxation rate was observed. The minimumR values were measured between 25 and 30°C and further increase of temperature (up to 60°C) was reflected as increase of theR values. Therefore, a new model of “heterogeneous rotations” was developed. This model assumes that even at low temperatures (approaching 0°C) where the differential tangent reaches zero, a fraction of fast rotating molecules exists. The ratio between fast and slowly rotating molecules may be expressed by this model, the newly calculated rotational rates are fully consistent with anisotropy, lifetime and differential tangent measurements and represent the monotonically increasing function of temperature.  相似文献   

8.
M Straume  B J Litman 《Biochemistry》1987,26(16):5113-5120
Equilibrium and dynamic structural properties of minimally to highly unsaturated acyl chain, large, unilamellar phosphatidylcholine (PC) vesicles have been characterized by the dynamic fluorescence properties of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH). Fluorescence lifetimes and equilibrium and dynamic rotational properties of these probes were analyzed by limited-frequency phase-modulation fluorometry in egg PC, palmitoyloleoyl-PC (POPC), dioleoyl-PC (DOPC), palmitoylarachidonoyl-PC (PAPC), and palmitoyldocosahexaenoyl-PC (P-22:6-PC) vesicles over a temperature range from 5 to 37 degrees C. DPH equilibrium orientational distributions were derived according to a model permitting bimodal orientational distributions in which the parallel probability maximum was aligned parallel to the bilayer normal and the orthogonal probability maximum was oriented parallel to the plane of the bilayer. TMA-DPH orientational distributions were derived according to the same model except that all probability was constrained to the parallel orientation. TMA-DPH fluorescence lifetimes were much more sensitive than those of DPH to variations in acyl chain composition and temperature although the same qualitative behavior was generally observed with both probes. Greater acyl chain unsaturation and higher sample temperatures each gave rise to shorter lifetimes consistent with increased water penetrability into the bilayers. Equilibrium order of the hydrocarbon core (as probed by DPH) and of the interfacial and head group regions of the bilayers (as probed by TMA-DPH) was reduced by increasing levels of unsaturation and by higher sample temperatures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
This study investigates the dynamic behavior of 1,6-diphenyl-1,3,5-hexatriene (DPH) in C(18):C(10)phosphatidylcholine [C(18):C(10)PC] bilayers. C(18):C(10)PC is an asymmetric mixed-chain phosphatidylcholine known to form mixed-interdigitated structures below the transition temperature and form partially interdigitated bilayers above the transition temperature. The rotation of DPH in C(18):C(10)PC has been described in terms of the thermal coefficient of rotation using the modified Y-plot method which takes into account the limiting anisotropy value. During the phase transition of C(18):C(10)PC, DPH exhibits a thermal coefficient b2M = 0.41 - 0.51 degrees C-1 which is similar to the b2M values obtained with noninterdigitated phosphatidylcholine bilayers. Differential polarized phase-modulation fluorometry has also been employed to study the dynamic behavior of DPH in C(18):C(10)PC in real time. The data show that DPH contains considerable motion in the highly ordered mixed interdigitated bilayers. The DPH motion steadily increases with an increase in temperature as shown by the rotational correlation time, and the wobbling diffusion constant. However, the limiting anisotropy, the order parameter, and the width of the lifetime distribution undergo an abrupt decrease, and a corresponding abrupt increase in the cone angle, at approximately 16 degrees C. This temperature range is near the onset temperature of the phase transition as determined by differential scanning calorimetry. The rotational parameters show strong hysteresis on heating and cooling. All the rotational parameters derived from DPH fluorescence in mixed interdigitated C(18):C(10)PC exhibit magnitudes similar to those obtained from noninterdigitated gel phases of symmetric diacylphosphatidylcholines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A fluorescent sterol probe study of human serum low-density lipoproteins   总被引:1,自引:0,他引:1  
The fluorescent sterol probe, ergosta-5,7,9,(11),22-tetraen-3 beta-ol (dehydroergosterol), was utilized as a cholesterol analog to label human serum low-density lipoproteins (LDL). Quenching of dehydroergosterol fluorescence by KI indicated that most of the fluorophore was either buried within the outer phospholipid monolayer of LDL or within the neutral lipid core of LDL. The steady-state anisotropy of dehydroergosterol in LDL detected the cholesteric core phase transition near 30 degrees C. Fluorescence lifetime decays for dehydroergosterol contained two components, both below and above the cholesteric phase transition, with the major lifetime component near 1 ns. Neither lifetime component underwent a detectable change in duration at the core phase transition temperature. Time-correlated fluorescence anisotropy decays of dehydroergosterol indicated a single rotational correlation time near 1.7 ns, which was unaffected by the core phase transition. Time-correlated anisotropy decays also suggested hindered rotation of dehydroergosterol in LDL. These results indicate that unesterified cholesterol is primarily located in the outer phospholipid monolayer of LDL, with the majority of cholesterol not in direct contact with the aqueous phase.  相似文献   

11.
R A Parente  B R Lentz 《Biochemistry》1985,24(22):6178-6185
We have investigated the behavior of 1-palmitoyl-2-[[2-[4- (6-phenyl-trans-1,3,5-hexatrienyl)phenyl]ethyl]carbonyl]-3-sn -phosphatidylcholine (DPHpPC) in synthetic, multilamellar phosphatidylcholine vesicles. This fluorescent phospholipid has photophysical properties similar to its parent fluorophore, diphenylhexatriene (DPH). DPHpPC preferentially partitioned into fluid phase lipid (Kf/s = 3.3) and reported a lower phase transition temperature as detected by fluorescence anisotropy than that observed by differential scanning calorimetry. Calorimetric measurements of the bilayer phase transition in samples having different phospholipid to probe ratios demonstrated very slight changes in membrane phase transition temperature (0.1-0.2 degree C) and showed no measurable change in transition width. Nonetheless, measurements of probe fluorescence properties suggested that DPHpPC disrupts its local environment in the membrane and may even induce perturbed probe-rich local domains below the phospholipid phase transition. Temperature profiles of steady-state fluorescence anisotropy, limiting anisotropy, differential tangent, and rotational rate were similar to those of DPH below the main lipid phase transition but indicated more restricted rotational motion above the lipid phase transition temperature. As for DPH, the fluorescence decay of DPHpPC could be described by either a single or double exponential both above and below the DPPC phase transition. The choice seemed dependent on the treatment of the sample. The intensity-weighted average lifetime of DPHpPC was roughly 1.5 ns shorter than that of DPH. In summary, the measured properties of DPHpPC and its lipid-like structure make it a powerful probe of membrane structure and dynamics.  相似文献   

12.
Membrane fluidity of erythrocytes obtained from 15 children with trisomy 21 and 20 healthy controls were studied by measuring steady-state fluorescence anisotropy and fluorescence lifetime of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) incorporated in hemoglobin-free erythrocyte membranes. Our results demonstrate a significant decrease in DPH fluorescence anisotropy and a significant increase in TMA-DPH fluorescence anistropy in erythrocytes from subjects with trisomy 21. No significant differences between the two groups were observed in the fluorescence lifetime of DPH and TMA-DPH. These data suggest an increase in membrane fluidity in the interior part of the membrane and a decrease in fluidity at the lipid-water interface region. This could be in part attributed to an increased oxidative damage in trisomy 21.  相似文献   

13.
Membrane fluidity was measured in the isolated perfused proximal tubule from rabbit kidney. The apical and basolateral plasma membranes of tubule cells were stained separately with the fluidity-sensitive fluorophore trimethylammonium-diphenyl-hexatriene (TMA-DPH) by luminal or bath perfusion. Fluorescence anisotropy (r) of TMA-DPH was mapped with spatial resolution using an epifluorescence microscope (excitation 380 nm, emission greater than 410 nm) equipped with rotatable polarizers and a quantitative imaging system. To measure r without the confounding effects of fluorophore orientation, images were recorded with emission polarizer parallel and perpendicular to a continuum of orientations of the excitation polarizer. The theoretical basis of this approach was developed and its limitations were evaluated by mathematical modeling. The tubule inner surface (brush border) was brightly stained when the lumen was perfused with 1 microM TMA-DPH for 5 min; apical membrane r was 0.281 +/- 0.006 (23 degrees C). Staining of the tubule basolateral membrane by addition of TMA-DPH to the bath gave a significantly lower r of 0.242 +/- 0.010 (P less than 0.005); there was no staining of the brush border membrane. To interpret anisotropy images quantitatively, effects of tubule geometry, TMA-DPH lifetime, fluorescence anisotropy decay, and objective-depolarization were evaluated. Steady-state and time-resolved r and lifetimes in the intact tubule, measured by a nanosecond pulsed microscopy method, were compared with results in isolated apical and basolateral membrane vesicles from rabbit proximal tubule measured by cuvette fluorometry; r was 0.281 (apical membrane) and 0.276 (basolateral membrane) (23 degrees C). These results establish a methodology to quantitate membrane fluidity in the intact proximal tubule, and demonstrate a significantly higher fluidity in the basolateral membrane than in the apical membrane.  相似文献   

14.
The negatively charged fluorophore 3-[p-(6-phenyl)-1,3,5-hexatrienyl]phenylpropionic acid (PA-DPH) was characterized by comparison with its parent compound DPH, and with cationic trimethylammonium-DPH (TMA-DPH). The molar absorption coefficient of PA-DPH (60,000 cm-1.mol-1) as well as its quantum yield (0.7) and fluorescence lifetime (5 ns) in fluid phase membranes are intermediate between DPH and TMA-DPH. Steady-state fluorescence polarization studies show that PA-DPH detects the phase transition of both neutral and anionic bilayers. In fluid phase membranes the absolute values of PA-DPH polarization are considerably higher than DPH and somewhat lower than TMA-DPH. The results suggest that like TMA-DPH, PA-DPH is anchored to the surface of the membrane by its charge, but that it is probing a region somewhat deeper along the bilayer normal. PA-DPH binds to rat hepatic fatty acid binding protein (hFABP) and bovine serum albumin at PA-DPH/protein molar ratios of 1.5:1 and at least 6:1, respectively. Native oleic acid competes with PA-DPH for binding to both proteins, suggesting that the two ligands compete for similar binding sites. The affinity of PA-DPH for hFABP is similar to that of oleic acid. Thus, PA-DPH should be useful both as an anionic fluorescent membrane probe and a long-chain free fatty acid analogue.  相似文献   

15.
The effects of 13 non-electrolytes with moderate anesthetic potency on the order of DMPC liposomes were examined. Changes in order were monitored by steady-state fluorescence polarization techniques using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPG). At 30 degrees C, all of the compounds tested decreased the DPH steady-state anisotropy (rs), with potencies highly correlated to their oil/water partition coefficients. However, only the most hydrophobic anesthetics decreased TMA-DPH RS. Some of the most hydrophilic compounds, including ethanol and urethane, actually increased TMA-DPH rs, suggestive of an increase in membrane order. The concept of selectivity was borrowed from partitioning theory and used to explain some effects on anesthetic potency of decreasing temperature to 18 degrees C. In the gel as opposed to the liquid crystalline phase, selectivity for decreasing membrane order (as monitored by DPH) markedly increased, suggesting that anesthetic partitioning and/or the site of anesthetic action was occurring in a more hydrophobic domain. The solute-independent difference (or capacity) between two membranes for perturbation was defined as membrane sensitivity. Sensitivity appeared to also decrease with decreasing temperature, despite the decrease in membrane partitioning. This effect is thought to result from the selective delivery of the anesthetic solute to the membrane interior and away from more hydrophilic domains where anesthetics may order membrane structure.  相似文献   

16.
The chemical composition and the physical properties of lipoproteins (VLDL, LDL and HDL) were studied in two groups of patients: 14 healthy normolipidemic subjects and 15 type IIa familial hypercholesterolemic patients. The steady-state fluorescence anisotropy rs was estimated in lipoproteins by the fluorescence depolarization of two fluorescent probes: the DPH (1,6-diphenyl-1,3,5-hexatriene) and the TMA-DPH (1,4-trimethylammonium phenyl-6-1,3,5-hexatriene). A structured order parameter S was calculated from the DPH fluorescence anisotropy. The flow activation energies were calculated for LDL and HDL from both groups from the Arrhenius plots (log r DPH versus 1/T). By using TNBS (trinitrobenzene sulfonic acid) as a distance control quencher, the two probes were located in the outer shell of LDL. In HDL, TMA-DPH remained at the surface of the particles, while DPH was more deeply embedded in the lipid core. There was no difference in the physico-chemical properties of VLDL between the two groups studied. DPH fluorescence anisotropies were significantly increased in LDL and HDL from the hypercholesterolemic group compared to the control particles (P less than 0.05 and P less than 0.01, respectively). In LDL this modification of the fluorescence anisotropy can be related to a change in the lipid composition of particles. LDL from hypercholesterolemic patients contained significantly less triacylglycerol (P less than 0.01) and more cholesteryl ester (N.S.). Their cholesteryl ester to triacylglycerol ratio was significantly higher. In HDL, there was no difference in chemical composition between the two groups. The increase in DPH fluorescence anisotropy can be related to the presence of smaller particles in HDL from HC group. No difference was noted in the TMA-DPH fluorescence anisotropy at 37 degrees C in the LDL from the two groups. In contrast, TMA-DPH fluorescence anisotropy in HDL from hypercholesterolemic group was significantly higher than in control HDL. The flow activation energy of DPH was also significantly higher in both LDL and HDL from the hypercholesterolemic group than in control group particles. In both LDL and HDL from the control group, DPH fluorescence anisotropy was negatively correlated with TG/protein and TG/PL ratios and positively correlated with the CE/TG ratio. No correlation was observed between lipid composition and DPH fluorescence anisotropy values in hypercholesterolemic particles. The modification in fluidity parameters, especially the increase in the flow activation energies in LDL and HDL from hypercholesterolemic patients, could lead to a restriction of cholesterol movements in these particles. From a physiological point of view, this could represent a loss of functional capacity.  相似文献   

17.
Membrane and protein properties of freeze-dried mouse platelets   总被引:5,自引:0,他引:5  
Membrane properties and the overall protein secondary structure of freeze-dried trehalose-loaded mouse platelets were studied using steady state fluorescence anisotropy and Fourier transform infrared spectroscopy (FTIR). FTIR results showed that fresh control mouse platelets have a main phase transition at approximately 14 degrees C, whereas, freeze-dried platelets exhibited a main phase transition approximately 12 degrees C. However, the cooperativity of the transition of the rehydrated platelets was greatly enhanced compared to that of control platelets. Anisotropy experiments performed with 1,6 diphenyl-1,3,5 hexatriene (DPH) complemented FTIR results and showed that the lipid order in the core of the membrane was affected by freeze-drying procedures. Similar experiments with trimethyl ammonium 1,6 diphenyl-1,3,5 hexatriene (TMA-DPH), a membrane surface probe, indicated that membrane properties at the membrane/water interface were less affected by freeze-drying procedures than the core of the membrane. Lyophilization did not result in massive protein denaturation, but the overall protein secondary structure was altered, based on in situ assessment of the amide-I and amide-II band profiles. Lyophilization-induced changes to endogenous platelet proteins were further investigated by studying the protein's heat stability. In fresh control platelets, proteins denatured at 42 degrees C, whereas proteins in the rehydrated platelets denatured at 48 degrees C.  相似文献   

18.
Adenylate cyclase activation by corticotropin (ACTH), fluoride and forskolin was studied as a function of membrane structure in plasma membranes from bovine adrenal cortex. The composition of these membranes was characterized by a very low cholesterol and sphingomyelin content and a high protein content. The fluorescent probes 1,6-diphenylhexa-1,3,5-triene (DPH) and a cationic analogue 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) were, respectively, used to probe the hydrophobic and polar head regions of the bilayer. When both probes were embedded either in the plasma membranes or in liposomes obtained from their lipid extracts, they exhibited lifetime heterogeneity, and in terms of the order parameter S, hindered motion. Under all the experimental conditions tested, S was higher for TMA-DPH than for DPH but both S values decreased linearly with temperature within the range of 10 to 40 degrees C, in the plasma membranes and the liposomes. This indicated the absence of lipid phase transition and phase separation. Addition to the membranes of up to 100 mM benzyl alcohol at 20 degrees C also resulted in a linear decrease in S values. Membrane perturbations by temperature changes or benzyl alcohol treatment made it possible to distinguish between the characteristics of adenylate cyclase activation with each of the three effectors used. Linear Arrhenius plots showed that when adenylate cyclase activity was stimulated by forskolin or NaF, the activation energy was similar (70 kJ.mol-1). Fluidification of the membrane with benzyl alcohol concentrations of up to 100 mM at 12 or 24 degrees C produced a linear decrease in the forskolin-stimulated activity, that led to its inhibition by 50%. By contrast, NaF stabilized adenylate cyclase activity against the perturbations induced by benzyl alcohol at both temperatures. In the presence of ACTH, biphasic Arrhenius plots were characterized by a well-defined break at 18 degrees C, which shifted at 12.5 degrees C in the presence of 40 mM benzyl alcohol. These plots suggested that ACTH-sensitive adenylate cyclase exists in two different states. This hypothesis was supported by the striking difference in the effects of benzyl alcohol perturbation when experiments were performed below and above the break temperature. The present results are consistent with the possibility that clusters of ACTH receptors form in the membrane as a function of temperature and/or lipid phase fluidity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Mammalian cell metabolism is responding to changes in temperature. Body temperature is regulated around 37 degrees C, but temperatures of exposed skin areas may vary between 20 degrees C and 40 degrees C for extended periods of time without apparent disturbance of adequate cellular functions. Cellular membrane functions are depending from temperatures but also from their lipid environment, which is a major component of membrane fluidity. Temperature-induced changes of membrane fluidity may be counterbalanced by adaptive modification of membrane lipids. Temperature-dependent changes of whole cell- and of purified membrane lipids and possible homeoviscous adaptation of membrane fluidity have been studied in human skin fibroblasts cultured at 30 degrees C, 37 degrees C, and 40 degrees C for ten days. Membrane anisotropy was measured by polarized fluorescence spectroscopy using TMA-DPH for superficial and DPH for deeper membrane layers. Human fibroblasts were able to adapt themselves to hypothermic temperatures (30 degrees C) by modifying the fluidity of the deeper apolar regions of the plasma membranes as reported by changes of fluorescence anisotropy due to appropriate changes of their plasma membrane lipid composition. This could not be shown for the whole cells. At 40 degrees C growth temperature, adaptive changes of the membrane lipid composition, except for some changes in fatty acid compositions, were not seen. Independent from the changes of the membrane lipid composition, the fluorescence anisotropy of the more superficial membrane layers (TMA-DPH) increased in cells growing at 30 degrees C and decreased in cells growing at 40 degrees C.  相似文献   

20.
An experimental approach has been developed to study human erythrocyte vesiculation, using the fluorescent probes diphenylhexatriene (DPH), trimethylamino-diphenylhexatriene (TMA-DPH) and heptadecyl-hydroxycoumarin (C17-HC). Acetylcholinesterase (AChE) enzyme activity measurements confirmed the presence of exovesicles released from erythrocyte membranes labeled with DPH, TMA-DPH or C17-HC. The fluorescence intensity and anisotropy values obtained showed that the amphiphilic probes TMA-DPH and C17-HC are preferentially incorporated in the exovesicles (when compared with DPH). There is a significant decrease of the cholesterol content of the exovesicle suspensions with time, independently of the fluorescence probe used, reaching undetectable cholesterol levels for the samples incubated for 48 hr. The ratios between the concentration of cholesterol released in the exovesicles after 1 hr incubation with DPH, TMA-DPH or C17-HC and the probe concentration used in the incubation were 84.7, 3.82 and 0.074, respectively. The size of the released vesicles was evaluated by dynamic light scattering spectroscopy. Some hypotheses are proposed that could explain the resemblance and differences between the results obtained for erythrocytes labeled with each probe, considering the present knowledge of membrane vesiculation mechanisms, lipid microdomains (rafts), erythrocyte membrane phospholipid asymmetry and AChE inhibition by TMA-DPH and C17-HC. This work demonstrates that the fluorescent probes DPH, TMA-DPH and C17-HC induce rapid erythrocyte exovesiculation; their use can lead to new methodologies for the study of this still poorly understood mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号