首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Previous studies have shown that the -661/+44 sequence of the murine alpha B-crystallin gene contains a muscle-preferred enhancer (-426/-257) and can drive the bacterial chloramphenicol acetyltransferase (CAT) gene in the lens, skeletal muscle and heart of transgenic mice. Here we show that transgenic mice carrying a truncated -164/+44 fragment of the alpha B-crystallin gene fused to the CAT gene expressed exclusively in the lens; by contrast mice carrying a -426/+44 fragment of the alpha B gene fused to CAT expressed highly in the lens, skeletal muscle and heart, and slightly in the lung, brain, kidney, spleen and liver. DNase I protection experiments indicated that the -147/-118 sequence is protected by nuclear proteins from alpha TN4-1 lens cell line, but not by nuclear proteins from myotubes of the C2C12 cell line. Site directed mutagenesis of this sequence decreased promoter activity in transiently-transfected lens cells, consistent with this sequence being a lens-specific regulatory region (LSR). We conclude that the -426/-257 enhancer is required for expression in skeletal muscle, heart and possibly other tissues, and that the -164/+44 sequence of the alpha B-crystallin gene is sufficient for expression in the lens of transgenic mice.  相似文献   

2.
3.
Previous studies have implicated the DE-1 (-111/-106) and alpha A-CRYBP1 (-66/-57) sites for activity of the mouse alpha A-crystallin promoter in transiently transfected lens cells. Here we have used the bacterial chloramphenicol acetyltransferase (CAT) reporter gene to test the functional importance of the putative DE-1 and alpha A-CRYBP1 regulatory elements by site-specific and deletion mutagenesis in stably transformed alpha TN4-1 lens cells and in transgenic mice. FVB/N and C57BL/6 x SJL F2 hybrid transgenic mice were assayed for CAT activity in the lens, heart, lung, kidney, spleen, liver, cerebrum, and muscle. F0, F1, and F2 mice from multiple lines carrying single mutations of the DE-1 or alpha A-CRYBP1 sites showed high levels of CAT activity in the lens, but not in any of the non-lens tissues. By contrast, despite activity of the wild-type promoter, none of the mutant promoter/CAT constructs were active in the transiently transfected and stably transformed lens cells. The mice carrying transgenes with either site-specific mutations in both the DE-1 and alpha A-CRYBP1 sites or a deletion of the entire DE-1 and part of the alpha A-CRYBP1 site (-60/+46) fused to the CAT gene did not exhibit CAT activity above background in any of the tissues examined, including the lens. Our results thus indicate that the DE-1 and alpha A-CRYBP1 sites are functionally redundant in transgenic mice. Moreover, the present data coupled with previous transfection and transgenic mouse experiments suggest that this functional redundancy is confined to lens expression within the mouse and is not evident in transiently transfected and stably transformed lens cells, making the cultured lens cells sensitive indicators of functional elements of crystallin genes.  相似文献   

4.
The mouse Shsp/alphaB-crystallin and Mkbp/HspB2 genes are closely linked and divergently transcribed. In this study, we have analyzed the contribution of the intergenic enhancer to Shsp/alphaB-crystallin and Mkbp/HspB2 promoter activity using dual-reporter vectors in transient transfection and transgenic mouse experiments. Deletion of the enhancer reduced Shsp/alphaB-crystallin promoter activity by 30- and 93-fold and Mkbp/HspB2 promoter activity by 6- and 10-fold in transiently transfected mouse lens alpha-TN4 and myoblast C2C12 cells, respectively. Surprisingly, inversion of the enhancer reduced Shsp/alphaB-crystallin promoter activity by 17-fold, but did not affect Mkbp/HspB2 promoter activity in the transfected cells. In contrast, enhancer activity was orientation-independent in combination with a heterologous promoter in transfected cells. Transgenic mouse experiments established the orientation dependence and Shsp/alphaB-crystallin promoter preference of the intergenic enhancer in its native context. The orientation dependence and preferential effect of the Shsp/alphaB-crystallin enhancer on the Shsp/alphaB-crystallin promoter provide an example of adaptive changes in gene regulation accompanying the functional diversification of duplicated genes during evolution.  相似文献   

5.
The alpha B-crystallin gene is expressed at high levels in lens and at lower levels in some other tissues, notably skeletal and cardiac muscle, kidney, lung, and brain. A promoter fragment of the murine alpha B-crystallin gene extending from positions -661 to +44 and linked to the bacterial chloramphenicol acetyltransferase (CAT) gene showed preferential expression in lens and skeletal muscle in transgenic mice. Transfection experiments revealed that a region between positions -426 and -257 is absolutely required for expression in C2C12 and G8 myotubes, while sequences downstream from position -115 appear to be determinants for lens expression. In association with a heterologous promoter, a -427 to -259 fragment functions as a strong enhancer in C2C12 myotubes and less efficiently in myoblasts and lens. Gel shift and methylation interference studies demonstrated that nuclear proteins from C2C12 myoblasts and myotubes specifically bind to the enhancer.  相似文献   

6.
7.
8.
alphaB-Crystallin, a member of the small heat shock protein (sHSP) family, is expressed in various tissues including lens, heart, and skeletal muscle. Previously we identified the gene of HSPB2, another member of the sHSP family, located 1-kb upstream of the alphaB-crystallin gene in a head-to-head manner. In the present study, we found a highly conserved region of 220 bp approximately 2.4-kb upstream of the alphaB-crystallin gene and examined its role in expression of the alphaB-crystallin gene. Transgenic mice containing 3 kb of the upstream sequence of the alphaB-crystallin gene showed lacZ reporter gene expression in the lens as well as the myotome and heart on embryonic day 12.5. Deletion analysis revealed that the -2656/-2267 region including the conserved region with four putative Sox binding elements (E1-E4) exhibits lens enhancer activity toward the alphaB-crystallin promoter. Gel shift assays showed that the Sox1 and Sox2 proteins preferentially bound to E2 and E4. Moreover, disruption of E2 and E4 abolished the reporter gene expression in the lens. These results indicate that the newly identified enhancer with Sox elements activates the alphaB-crystallin promoter in the lens, although they are separated by the entire HSPB2 gene.  相似文献   

9.
10.
11.
Rodent gamma-crystallin promoters were recognized as lens-specific promoters in micro-injected Xenopus laevis tadpoles and targeted the expression of the chloramphenicol acetyl transferase (CAT) reporter gene to the tadpole lens. The onset of expression coincided with lens cell formation. The level of expression continued to increase up to 9 days of development (stage 47), stayed at that level till at least day 13 and dropped by only 57% at day 21. In contrast, the level of expression of a non-tissue-specific promoter, the SV40 early promoter, decreased rapidly in the eye during development and was only detectable up to stage 44 (day 5). The stability of the CAT activity in the lens was assessed by delivering a pulse of activity from a heat shock promoter-CAT fusion gene. The half-life of the CAT activity in the eye was the same as that in the tail. The increase in CAT activity in the lens thus depends upon continued activity of the injected gamma-crystallin promoters. Our data demonstrate that mammalian promoters can be used to target gene expression to specific tissues during Xenopus laevis development.  相似文献   

12.
13.
14.
15.
16.
To study the molecular basis of tissue-specific expression of the GLUT4/muscle-fat facilitative glucose transporter gene, we generated lines of transgenic mice carrying 2.4 kilobases of the 5'-flanking region of the human GLUT4 gene fused to a chloramphenicol acetyltransferase (CAT) reporter gene (hGLUT4[2.4]-CAT). This reporter gene construct was specifically expressed in tissues that normally express GLUT4 mRNA, which include both brown and white adipose tissues as well as cardiac, skeletal, and smooth muscle. In contrast, CAT reporter activity was not detected in brain or liver, two tissues that do not express the GLUT4 gene. In addition, the relative levels of CAT mRNA driven by the human GLUT4 promoter in various tissues of these transgenic animals mirrored those of the endogenous mouse GLUT4 mRNA. Since previous studies have observed alterations in GLUT4 mRNA levels induced by fasting and refeeding (Sivitz, W. I., DeSautel, S. L., Kayano, T., Bell, G. I., and Pessin, J. E. (1989) Nature 340, 72-74), the regulated expression the hGLUT4[2.4]-CAT transgene was also assessed in these animals. Fasting was observed to decrease CAT activity in white adipose tissue which was super-induced upon refeeding. These alterations in CAT expression occurred in parallel to the changes in endogenous mouse GLUT4 mRNA levels. Although CAT expression in skeletal muscle and brown adipose tissue was unaffected, the endogenous mouse GLUT4 mRNA was also refractory to the effects of fasting/refeeding in these tissues. These data demonstrate that 2.4 kilobases of the 5'-flanking region of the human GLUT4 gene contain all the necessary sequence elements to confer tissue-specific expression and at least some of the sequence elements controlling the hormonal/metabolic regulation of this gene.  相似文献   

17.
The murine alpha B-crystallin/small heat shock protein gene is expressed at high levels in the lens and at lower levels in the heart, skeletal muscle, and numerous other tissues. Previously we have found a skeletal-muscle-preferred enhancer at positions -427 to -259 of the alpha B-crystallin gene containing at least four cis-acting regulatory elements (alpha BE-1, alpha BE-2, alpha BE-3, and MRF, which has an E box). Here we show that in transgenic mice, the alpha B-crystallin enhancer directs the chloramphenicol acetyltransferase reporter gene driven by the alpha B-crystallin promoter specifically to myocardiocytes of the heart. The alpha B-crystallin enhancer was active in conjugation with the herpes simplex virus thymidine kinase promoter/human growth hormone reporter gene in transfected rat myocardiocytes. DNase I footprinting and site-specific mutagenesis experiments showed that alpha BE-1, alpha BE-2, alpha BE-3, MRF, and a novel, heart-specific element called alpha BE-4 are required for alpha B-crystallin enhancer activity in transfected myocardiocytes. By contrast, alpha BE-4 is not utilized for enhancer activity in transfected lens or skeletal muscle cell lines. Alpha BE-4 contains an overlapping heat shock sequence and a reverse CArG box [5'-GG(A/T)6CC-3']. Electrophoretic mobility shift assays with an antibody to serum response factor and a CArG-box-competing sequence from the c-fos promoter indicated that a cardiac-specific protein with DNA-binding and antigenic similarities to serum response factor binds to alpha BE-4 via the reverse CArG box; electrophoretic mobility shift assays and antibody experiments with anti-USF antiserum and heart nuclear extract also raised the possibility that the MRF E box utilizes USF or an antigenically related protein. We conclude that the activity of the alpha B-crystallin enhancer in the heart utilizes a reverse CArG box and an E-box-dependent pathway.  相似文献   

18.
The lens-specific reglatory element of the delta 1-crystallin enhancer lies within the core segment (Goto et al., (1990) Mol. Cell. Biol. 10, 935-964). The element was allocated within the 55 bp long HN fragment of the core. Block-wise base substitutions were introduced to the 55 bp and their effect on the enhancer activity of the multimers in lens cells was examined. By base sequence alteration of either of the contiguous blocks 5 and 6, with their original sequence of TTGCT and CACCT, respectively, enhancer activity was totally lost. A lens nuclear factor delta EF1 was found which bound specifically to the base sequences defined by the blocks. DNA binding activity very similar to delta EF1 was also found in extracts of tissues other than lens, suggesting that delta EF1 participates in lens-specific regulation through tissue-dependent modification or interaction with other factors.  相似文献   

19.
The 5' flanking regions of the six rat gamma-crystallin genes (gamma A-gamma F) are all capable of conferring lens-specific expression to the bacterial chloramphenicol acetyl transferase (CAT) reporter gene in either transdifferentiating chicken neural retina cells or mouse lens epithelial cells. Deletion mapping of the most active gamma-crystallin promoter region, the gamma D region, showed that at least three elements are required for maximal expression in mouse lens epithelial cells: element(s) located between -200 and -106, a conserved CG rich region around position -75, and a CG stretch around -15. The region between -200 and -106 was dispensable in transdifferentiating chicken neural retina cells, which instead required the region between -106 and -78. The maximal activity of the gamma E and gamma F promoters was also dependent upon the integrity of the conserved CG region located around -75. A synthetic oligonucleotide containing this sequence was capable of lens-specific enhancement of the activity of the tk promoter in transdifferentiating chicken neural retina cells but not in mouse lens epithelial cells. Our results further show that this region may contain a silencer element, active in non-lens tissues, as well.  相似文献   

20.
The anterior segment of the vertebrate eye is constructed by proper spatial development of cells derived from the surface ectoderm, which become corneal epithelium and lens, neuroectoderm (posterior iris and ciliary body) and cranial neural crest (corneal stroma, corneal endothelium and anterior iris). Although coordinated interactions between these different cell types are presumed to be essential for proper spatial positioning and differentiation, the requisite intercellular signals remain undefined. We have generated transgenic mice that express either transforming growth factor (alpha) (TGF(alpha)) or epidermal growth factor (EGF) in the ocular lens using the mouse (alpha)A-crystallin promoter. Expression of either growth factor alters the normal developmental fate of the innermost corneal mesenchymal cells so that these cells often fail to differentiate into corneal endothelial cells. Both sets of transgenic mice subsequently manifest multiple anterior segment defects, including attachment of the iris and lens to the cornea, a reduction in the thickness of the corneal epithelium, corneal opacity, and modest disorganization in the corneal stroma. Our data suggest that formation of a corneal endothelium during early ocular morphogenesis is required to prevent attachment of the lens and iris to the corneal stroma, therefore permitting the normal formation of the anterior segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号