首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We previously reported that 2.1 kilobase pairs of the 5'-flanking sequence are sufficient for tissue-specific and hormonal/metabolic regulation of the fatty-acid synthase (FAS) gene in transgenic mice. We also demonstrated that the -65 E-box is required for insulin regulation of the FAS promoter using 3T3-L1 adipocytes in culture. To further define sequences required for FAS gene expression, we generated transgenic mice carrying from -644, -444, -278, and -131 to +67 base pairs of the rat FAS 5'-flanking sequence fused to the chloramphenicol acetyltransferase (CAT) reporter gene. Similar to the expression observed with -2100-FAS-CAT transgenic mice, transgenic mice harboring -644-FAS-CAT and -444-FAS-CAT expressed high levels of CAT mRNA only in lipogenic tissues (liver and adipose tissue) in a manner identical to the endogenous FAS mRNA. In contrast, -278-FAS-CAT and -131-FAS-CAT transgenic mice did not show appreciable CAT expression in any of the tissues examined. When previously fasted mice were refed a high carbohydrate, fat-free diet, CAT mRNA expression in transgenic mice harboring -644-FAS-CAT and -444-FAS-CAT was induced dramatically in liver and adipose tissue. The induction was virtually identical to that observed in -2100-FAS-CAT transgenic mice and to the endogenous FAS mRNA. In contrast, -278-FAS-CAT transgenic mice showed induction by feeding, but at a much lower magnitude in both liver and adipose tissue. The -131-FAS-CAT transgenic mice did not show any CAT expression either when fasted or refed a high carbohydrate diet. To study further the effect of insulin, we made these transgenic mice insulin-deficient by streptozotocin treatment. Insulin administration to the streptozotocin-diabetic mice increased CAT mRNA levels driven by the -644 FAS and -444 FAS promoters in liver and adipose tissue, paralleling the endogenous FAS mRNA levels. In the case of -278-FAS-CAT, the induction observed was at a much lower magnitude, and deletion to -131 base pairs did not show any increase in CAT expression by insulin. This study demonstrates that the sequence requirement for FAS gene regulation employing an in vitro culture system does not reflect the in vivo situation and that two 5'-flanking regions are required for proper nutritional and insulin regulation of the FAS gene. Cotransfection of the upstream stimulatory factor and various FAS promoter-luciferase constructs as well as in vitro binding studies suggest a function for the upstream stimulatory factor at both the -65 and -332 E-box sequences.  相似文献   

2.
3.
4.
5.
6.
7.
Transferrin (TF) is a plasma protein that transports and is regulated by iron. The aim of this study was to characterize human TF gene sequences that respond in vivo to cellular signals affecting expression in various tissues and to iron administration. Chimeric genes were constructed containing 152, 622, and 1152 base pairs (bp) of the human TF5'-flanking region with the coding region of a reporter gene, CAT (chloramphenicol acetyltransferase), and introduced into the germ line of mice. Transgenes containing TF 5'-flanking sequences to -152 bp were expressed poorly in all tissues examined. In contrast, transgenes containing TF sequences to -622 or -1152 bp were expressed at high levels in brain and liver, greater than or equal to 1000-fold higher than tissues such as heart and testes. Liver and brain are major sites of endogenous TF mRNA synthesis, but liver mRNA levels are 10-fold higher than brain. A significant diminution of CAT enzymatic activity in liver accompanied iron administration in both TF(0.67) and TF(1.2)CAT transgenic mice, mimicking the decrease of transferrin in humans following iron overload. Levels of endogenous plasma transferrin also decreased in iron-treated transgenic mice. Transgenic mouse lines carrying human TF chimeric genes will be useful models for analyzing the regulation of human transferrin by iron and for determining the molecular basis of transferrin regulation throughout mammalian development into the aging process.  相似文献   

8.
9.
10.
In mammals, the pituitary POU homeodomain protein, Pit-1, binds to proximal and distal 5'-flanking sequences of the PRL gene that dictate tissue-specific expression. These DNA sequences are highly conserved among mammals but are dramatically different from PRL 5' sequences in the teleost species, Oncorhynchus tschawytscha (chinook salmon). To analyze the molecular basis for pituitary-specific gene expression in a distantly related vertebrate, we transfected CAT reporter gene constructs containing 2.4 kilobases (kb) 5'-flanking sequence from the salmon PRL (sPRL) gene into various cell types. Expression of the sPRL gene was restricted to pituitary cells, but in rat pituitary GH4 cells levels of expression were at least 90-fold lower than those obtained with a -3 kb rat PRL (rPRL) construct. Conversely, in primary teleost pituitary cells, -2.4 kb sPRL/CAT was expressed at levels about 10-fold higher than -3 kb rPRL/CAT. To determine whether species-specific transactivation by Pit-1 was sufficient to explain these species differences in PRL gene expression, we isolated a cDNA clone encoding the salmon Pit-1 POU domain and constructed a rat Pit-1 expression vector that contained salmon Pit-1 POU domain sequences substituted in frame. The chimeric Pit-1 encoded 14 amino acids unique to salmon. Coexpression of rat Pit-1 with salmon or rat PRL/CAT in transfected HeLa cells resulted in specific and strikingly comparable levels of promoter activation. Moreover, the specificity and efficacy of the chimeric salmon/rat Pit-1 was similar to wild type rat Pit-1 in activating salmon and rat PRL/CAT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
13.
The regulatory properties of mouse pancreatic amylase genes include exclusive expression in the acinar cells of the pancreas and dependence on insulin and glucocorticoids for maximal expression. We have characterized a murine pancreatic amylase gene, Amy-2.2y, whose promoter sequence is 30% divergent from those of previously sequenced amylase genes. To localize sequences required for tissue-specific and hormone-dependent activation, we established two lines of transgenic mice. The first line contained a single copy of the complete Amy-2.2y gene as well as 9 kilobases of 5'-flanking sequence and 5 kilobases of 3'-flanking sequence. The second line carried a minigene which included 208 base pairs of 5'-flanking sequence and 300 base pairs of 3'-flanking sequence. In both lines the transgene was expressed at high levels exclusively in the pancreas. Both constructs were dependent on insulin and induced by dexamethasone. Thus, the transferred genes contained the sequences required for tissue-specific and hormonally regulated expression.  相似文献   

14.
15.
16.
To obtain an insight into the influence of aging on leptin gene expression, the responses of leptin mRNA in retroperitoneal and epididymal adipose tissues and plasma leptin concentrations to 24-h food deprivation and refeeding were examined in 2-, 10- and 24-month-old normal rats. The basal level of leptin gene expression in retroperitoneal adipose tissue was significantly higher in 10- and 24-month-old rats than that in 2-month-old rats, while the level in epididymal adipose tissue was highest in 10-month-old rats for all three age groups. The basal concentrations of plasma leptin was significantly higher in 10- and 24-month-old rats than those in 2-month-old rats. The 24-h food deprivation was followed by a significant reduction in leptin mRNA expression in both retorperitoneal and epididymal adipose tissues for all three age groups. The leptin gene expression was restored to control levels 24 h following refeeding in the 2- and 10-month-old rats, but failed to be restored in the 24-month-old rats. In addition, the time course of recovery for leptin mRNA expression by refeeding to the control levels differed between the retroperitoneal and the epididymal adipose tissue in 2- and 10-month-old rats. The concentrations of plasma leptin 24 h following refeeding were compatible with the leptin mRNA levels in adipose tissues in three age groups. These results suggest that the expression of the leptin gene in response to food-deprivation and refeeding is influenced by an animal's age and that this expression is different for different regions of white adipose tissue.  相似文献   

17.
Mitochondrial uncoupling protein 3 (UCP3) is expressed in skeletal muscles. We have hypothesized that increased glucose flux in skeletal muscles may lead to increased UCP3 expression. Male transgenic mice harboring insulin-responsive glucose transporter (GLUT4) minigenes with differing lengths of 5'-flanking sequence (-3237, -2000, -1000 and -442 bp) express different levels of GLUT4 protein in various skeletal muscles. Expression of the GLUT4 transgenes caused an increase in UCP3 mRNA that paralleled the increase of GLUT4 protein in gastrocnemius muscle. The effects of increased intracellular GLUT4 level on the expression of UCP1, UCP2 and UCP3 were compared in several tissues of male 4 month-old mice harboring the -1000 GLUT4 minigene transgene. In the -1000 GLUT4 transgenic mice, expression of GLUT4 mRNA and protein in skeletal muscles, brown adipose tissue (BAT), and white adipose tissue (WAT) was increased by 1.4 to 4.0-fold. Compared with non-transgenic littermates, the -1000 GLUT4 mice exhibited about 4- and 1.8-fold increases of UCP3 mRNA in skeletal muscle and WAT, respectively, and a 38% decrease of UCP1 mRNA in BAT. The transgenic mice had a 16% increase in oxygen consumption and a 14% decrease in blood glucose and a 68% increase in blood lactate, but no change in FFA or beta-OHB levels. T3 and leptin concentrations were decreased in transgenic mice. Expression of UCP1 in BAT of the -442 GLUT4 mice, which did not overexpress GLUT4 in this tissue, was not altered. These findings indicate that overexpression of GLUT4 up-regulates UCP3 expression in skeletal muscle and down-regulates UCP1 expression in BAT, possibly by increasing the rate of glucose uptake into these tissues.  相似文献   

18.
19.
Glucose transporters: structure, function, and regulation   总被引:2,自引:0,他引:2  
Glucose is transported into the cell by facilitated diffusion via a family of structurally related proteins, whose expression is tissue-specific. One of these transporters, GLUT4, is expressed specifically in insulin-sensitive tissues. A possible change in the synthesis and/or in the amount of GLUT4 has therefore been studied in situations associated with an increase or a decrease in the effect of insulin on glucose transport. Chronic hyperinsulinemia in rats produces a hyper-response of white adipose tissue to insulin and resistance in skeletal muscle. The hyper-response of white adipose tissue is associated with an increase in GLUT4 mRNA and protein. In contrast, in skeletal muscle, a decrease in GLUT4 mRNA and a decrease (tibialis) or no change (diaphragm) in GLUT4 protein are measured, suggesting a divergent regulation by insulin of glucose transport and transporters in the 2 tissues. In rodents, brown adipose tissue is very sensitive to insulin. The response of this tissue to insulin is decreased in obese insulin-resistant fa/fa rats. Treatment with a beta-adrenergic agonist increases insulin-stimulated glucose transport, GLUT4 protein and mRNA. The data suggest that transporter synthesis can be modulated in vivo by insulin (muscle, white adipose tissue) or by catecholamines (brown adipose tissue).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号