首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Problematic fermentations are common in the wine industry. Assimilable nitrogen deficiency is the most prevalent cause of sluggish fermentations and can reduce fermentation rates significantly. A lack of nitrogen diminishes a yeast's metabolic activity, as well as the biomass yield, although it has not been clear which of these two interdependent factors is more significant in sluggish fermentations. Under winemaking conditions with different initial nitrogen concentrations, metabolic flux analysis was used to isolate the effects. We quantified yeast physiology and identified key metabolic fluxes. We also performed cell concentration experiments to establish how biomass yield affects the fermentation rate. Intracellular analysis showed that trehalose accumulation, which is highly correlated with ethanol production, could be responsible for sustaining cell viability in nitrogen-poor musts independent of the initial assimilable nitrogen content. Other than the higher initial maintenance costs in sluggish fermentations, the main difference between normal and sluggish fermentations was that the metabolic flux distributions in nitrogen-deficient cultures revealed that the specific sugar uptake rate was substantially lower. The results of cell concentration experiments, however, showed that in spite of lower sugar uptake, adding biomass from sluggish cultures not only reduced the time to finish a problematic fermentation but also was less likely to affect the quality of the resulting wine as it did not alter the chemistry of the must.  相似文献   

2.
Biomass content governs fermentation rate in nitrogen-deficient wine musts   总被引:1,自引:0,他引:1  
Problematic fermentations are common in the wine industry. Assimilable nitrogen deficiency is the most prevalent cause of sluggish fermentations and can reduce fermentation rates significantly. A lack of nitrogen diminishes a yeast's metabolic activity, as well as the biomass yield, although it has not been clear which of these two interdependent factors is more significant in sluggish fermentations. Under winemaking conditions with different initial nitrogen concentrations, metabolic flux analysis was used to isolate the effects. We quantified yeast physiology and identified key metabolic fluxes. We also performed cell concentration experiments to establish how biomass yield affects the fermentation rate. Intracellular analysis showed that trehalose accumulation, which is highly correlated with ethanol production, could be responsible for sustaining cell viability in nitrogen-poor musts independent of the initial assimilable nitrogen content. Other than the higher initial maintenance costs in sluggish fermentations, the main difference between normal and sluggish fermentations was that the metabolic flux distributions in nitrogen-deficient cultures revealed that the specific sugar uptake rate was substantially lower. The results of cell concentration experiments, however, showed that in spite of lower sugar uptake, adding biomass from sluggish cultures not only reduced the time to finish a problematic fermentation but also was less likely to affect the quality of the resulting wine as it did not alter the chemistry of the must.  相似文献   

3.
A physical and mathematical model for wine fermentation kinetics was adapted to include the influence of temperature, perhaps the most critical factor influencing fermentation kinetics. The model was based on flask-scale white wine fermentations at different temperatures (11 to 35°C) and different initial concentrations of sugar (265 to 300 g/liter) and nitrogen (70 to 350 mg N/liter). The results show that fermentation temperature and inadequate levels of nitrogen will cause stuck or sluggish fermentations. Model parameters representing cell growth rate, sugar utilization rate, and the inactivation rate of cells in the presence of ethanol are highly temperature dependent. All other variables (yield coefficient of cell mass to utilized nitrogen, yield coefficient of ethanol to utilized sugar, Monod constant for nitrogen-limited growth, and Michaelis-Menten-type constant for sugar transport) were determined to vary insignificantly with temperature. The resulting mathematical model accurately predicts the observed wine fermentation kinetics with respect to different temperatures and different initial conditions, including data from fermentations not used for model development. This is the first wine fermentation model that accurately predicts a transition from sluggish to normal to stuck fermentations as temperature increases from 11 to 35°C. Furthermore, this comprehensive model provides insight into combined effects of time, temperature, and ethanol concentration on yeast (Saccharomyces cerevisiae) activity and physiology.  相似文献   

4.
A physical and mathematical model for wine fermentation kinetics was adapted to include the influence of temperature, perhaps the most critical factor influencing fermentation kinetics. The model was based on flask-scale white wine fermentations at different temperatures (11 to 35 degrees C) and different initial concentrations of sugar (265 to 300 g/liter) and nitrogen (70 to 350 mg N/liter). The results show that fermentation temperature and inadequate levels of nitrogen will cause stuck or sluggish fermentations. Model parameters representing cell growth rate, sugar utilization rate, and the inactivation rate of cells in the presence of ethanol are highly temperature dependent. All other variables (yield coefficient of cell mass to utilized nitrogen, yield coefficient of ethanol to utilized sugar, Monod constant for nitrogen-limited growth, and Michaelis-Menten-type constant for sugar transport) were determined to vary insignificantly with temperature. The resulting mathematical model accurately predicts the observed wine fermentation kinetics with respect to different temperatures and different initial conditions, including data from fermentations not used for model development. This is the first wine fermentation model that accurately predicts a transition from sluggish to normal to stuck fermentations as temperature increases from 11 to 35 degrees C. Furthermore, this comprehensive model provides insight into combined effects of time, temperature, and ethanol concentration on yeast (Saccharomyces cerevisiae) activity and physiology.  相似文献   

5.
The effect of yeast hulls (yeast ghosts) on sluggish or stuck white wine fermentations was studied. The enhancing effect on yeast growth and fermentation rate displayed by the hulls was shown to be similar to the effect provided by lipid extract from the same hulls. Unsaturated fatty acids and sterols were incorporated into the yeast from lipid extracts during fermentation carried out under oxygen-limited conditions. Adsorption of toxic medium-chain fatty acid (decanoic acid) onto the yeast hulls took place through a dialysis membrane. However, when the hulls were placed inside a dialysis bag, the increase in yeast growth and fermentation rate seen when freely suspended hulls were used did not occur. Accordingly, the effect of yeast hulls in preventing stuck fermentations cannot be attributed only to the adsorption and consequent removal of medium-chain fatty acids from the juice.  相似文献   

6.
The competition between selected or commercial killer strains of type K2 and sensitive commercial strains of Saccharomyces cerevisiae was studied under various conditions in sterile grape juice fermentations. The focus of this study was the effect of yeast inoculation levels and the role of assimilable nitrogen nutrition on killer activity. A study of the consumption of free amino nitrogen (FAN) by pure and mixed cultures of killer and sensitive cells showed no differences between the profiles of nitrogen assimilation in all cases, and FAN was practically depleted in the first 2 days of fermentation. The effect of the addition of assimilable nitrogen and the size of inoculum was examined in mixed killer and sensitive strain competitions. Stuck and sluggish wine fermentations were observed to depend on nitrogen availability when the ratio of killer to sensitive cells was low (1:10 to 1:100). A relationship between the initial assimilable nitrogen content of must and the proportion of killer cells during fermentation was shown. An indirect relationship was found between inoculum size and the percentage of killer cells: a smaller inoculum resulted in a higher proportion of killer cells in grape juice fermentations. In all cases, wines obtained with pure-culture fermentations were preferred to mixed-culture fermentations by sensory analysis. The reasons why killer cells do not finish fermentation under competitive conditions with sensitive cells are discussed.  相似文献   

7.
The kinetics of cell growth and triterpenes production for liquid submerged fermentation of the medicinal mushroom Ganoderma lucidum were investigated. A kinetic model was developed based on the Logistic and Luedeking-Piret equations for cell growth, substrate consumption and triterpene formation. The kinetic parameters of the model were optimized by specifically designed Runge-Kutta genetic algorithms. The mathematical model simulated the experimental data well and was capable of explaining the behavior of triterpenes production. The predictions of the kinetics from this model are very good both for normal fermentation kinetics under nitrogen limitation as well as for predictions of transitions to sluggish fermentations. The resulting model is very useful for scaling up liquid submerged fermentation of the mushroom G. lucidum and its application to the industrial production of triterpene.  相似文献   

8.
Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R2 = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R2 = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems.  相似文献   

9.
Kinetic model for nitrogen-limited wine fermentations.   总被引:4,自引:0,他引:4  
A physical and mathematical model for wine fermentation kinetics has been developed to predict sugar utilization curves based on experimental data from wine fermentations with various initial nitrogen and sugar concentrations in the juice. The model is based on: (1) yeast cell growth limited by nitrogen; (2) sugar utilization rates and ethanol production rates proportional solely to the number of viable cells; and (3) a death rate for cells proportional to alcohol content. All but one parameter in the model can be estimated from existing data. However, experiments to find this final parameter, a constant describing cell death, indicate that cell death may not be the critical factor in determining fermentation kinetics as cell viability remains significant until sugar utilization has ceased. The model, nevertheless, predicts a transition from normal to sluggish to stuck fermentations as initial nitrogen levels decrease. It also predicts that fermentations with high initial Brix levels may go to completion when supplemented with nitrogen in the form of ammonia. Therefore, we hypothesize that the model is valid but that ethanol causes the yeast cells to become inactive while remaining viable. Experimental verification of the model has been performed using flask-scale experiments. The model has also been used to evaluate the possibility of using nitrogen or viable cell additions to avoid or correct problem (i.e., sluggish or stuck) fermentations.  相似文献   

10.
Recently a number of studies have focused on the factors responsible for the occurrence of stuck and sluggish fermentations. Results from these studies indicate that together with nutritional deficiencies and inhibitory substances, technological practices could lead to such situations. This review explains, from a biochemical point of view, the influence of nutritional deficiencies, inhibitory substances and technological practices on yeast cell development and physiology and the fermentation process. Received 07 February 1997/ Accepted in revised form 01 July 1997  相似文献   

11.
Killer yeasts are frequently used to combat and prevent contamination by wild-type yeasts during wine production and they can even dominate the wine fermentation. Stuck and sluggish fermentations can be caused by an unbalanced ratio of killer to sensitive yeasts in the bioreactor, and therefore it is important to determine the proportion of both populations. The aim of this study was to provide a simple tool to monitor killer yeast populations during controlled mixed microvinifications of killer and sensitive Saccharomyces cerevisiae. Samples were periodically extracted during vinification, seeded on Petri dishes and incubated at 25 and 37?°C; the latter temperature was assayed for possible inactivation of killer toxin production. Colonies developed under the described conditions were randomly transferred to killer phenotype detection medium. Significant differences in the killer/sensitive ratio were observed between both incubation temperatures in all microvinifications. These results suggest that 37?°C seems a better option to determine the biomass of sensitive yeasts, in order to avoid underestimation of sensitive cells in the presence of killer yeasts during fermentations. Incubation at a toxin-inhibiting temperature clearly showed the real ratio of killer to sensitive cells in fermentation systems.  相似文献   

12.
n-Hexadecane was added to fermentation media to increase the medium oxygen solubilities, thus enhancing oxygen transfer rates in penicillin fermentations. For shake flask fermentations, cells were found to grow faster in the flasks with n-hexadecane than those without. The addition of n-hexadecane to penicillin fermentations was shown to significantly increase cell growth and penicillin production and reduce formation of mycelial pellets. The result was attributed to the enhancement of oxygen transfer in mycelial fermentations due to the higher oxygen solubilities of fermentation media achieved by adding n-hexadecane.  相似文献   

13.
Nitrogen limitation, particularly prevailing in the case of high gravity beer brewing, results in poor yeast viability and even stuck or sluggish fermentations. Although wort contains abundant proteins and longer chain peptides, brewer's yeast does not assimilate them due to the fact that cells hardly secrete proteases during fermentation. The objective of this study was to investigate the possibility for utilizing unavailable nitrogen from two types of high gravity worts (20 °P and 24 °P) by adding three food-grade commercial proteases (Neutrase, Flavorzyme and Protamex) at the beginning of fermentations, respectively. Results showed that proteases supplementation significantly increased the FAN level and thus the amount of cell suspension in the later stages of fermentations (ca. 10 days later for 20 °P and 25 days later for 24 °P) (p < 0.05). Among the studied three proteases, we found that fermentations with Flavorzyme supplementation exhibited the best fermentation performance in terms of significantly improved wort fermentability, higher ethanol yield and flavor volatiles formation (p < 0.05). Furthermore, the foam of final beers produced by adding proteases was as stable as that of the control at each of the corresponding gravities.  相似文献   

14.
Effect of low-temperature fermentation on yeast nitrogen metabolism   总被引:1,自引:0,他引:1  
The aim of this study was to analyse the influence of low-temperature wine fermentation on nitrogen consumption and nitrogen regulation. Synthetic grape must was fermented at 25 and 13°C. Low-temperature decreased both the fermentation and the growth rates. Yeast cells growing at low-temperature consumed less nitrogen than at 25°C. Specifically, cells at 13°C consumed less ammonium and glutamine, and more tryptophan. Low-temperature seemed to relax the nitrogen catabolite repression (NCR) as deduced from the gene expression of ammonium and amino acid permeases (MEP2 and GAP1) and the uptake of some amino acids subjected to NCR (i.e. arginine and glutamine). Low-temperature influences the quantity and the quality of yeast nitrogen requirements. Nitrogen-deficient grape musts and low temperature are two of the main prevalent causes of sluggish fermentations and, therefore, the effects of both growth conditions on yeast metabolism are of considerable interest for wine making.  相似文献   

15.
The Luedeking-Piret equation was used to fit the kinetic data of pullulan fermentations from peat hydrolyzate substrate. In batch mode, the kinetic parameters m, n, alpha, and beta varied as a function of fermentation conditions: aeration rate, agitation speed, and temperature. In constant-feed fed-batch mode, the parameters Varied according to the feed rates. In peat hydrolyzate medium, the polysaccharide synthesis was strongly growth associated in batch and continuous fermentations but entirely growth associated in fedbatch fermentations. The fed-batch mode of fermentation with an appropriate feed rate is more advantageous with respect to batch and continuous fermentations. Therefore, if the fermentation is started batchwise and then followed by fed-batch mode at a constant feed rate, the overall polysaccharide productivity (g pullulan/L h) is significantly higher than those obtained with batch or continuous fermentations using the same total medium volume.  相似文献   

16.
The potential for enhancing ethanol production from cellodextrins by employing mixed-culture (Candida wickerhamii-Saccharomyces cerevisiae) fermentations was investigated. Initially, ethanol production was monitored in fermentation medium containing 50 g/L glucose plus 45 g/L cellobiose. Inoculum levels and times of inoculum addition were varied. Of the conditions tested, the most rapid rates of ethanol formation occurred in fermentations in which either C. wickerhamii and S. cerevisiae were coinoculated at a ratio of 57 : 1 cell/mL or in fermentations in which a 10-fold-greater S. cerevisiae inoculum was added to a pure culture C. wickerhamii fermentation after 1 day incubation. These conditions were used to attempt to enhance fermentations in which cellodextrins produced by trifluoroacetic acid hydrolysis of cellulose served as the sole carbon source. Cellodextrins that were not further purified after cellulose hydrolysis contained compounds that were slightly inhibitory to C. wickerhamii. In this case the mixed-culture fermentations produced 12-45% more ethanol than a pure culture C. wickerhamii fermentation. However, if the substrate was treated with Darco G-60 charcoal, the toxic materials were apparently removed and the pure culture C. wickerhamii fermentations performed as well as the mixed-culture fermentations.  相似文献   

17.
Sourdough fermentation is a cereal fermentation that is characterized by the formation of stable yeast/lactic acid bacteria (LAB) associations. It is a unique process among food fermentations in that the LAB that mostly dominate these fermentations are heterofermentative. In the present study, four wheat sourdough fermentations were carried out under different conditions of temperature and backslopping time to determine their effect on the composition of the microbiota of the final sourdoughs. A substantial effect of temperature was observed. A fermentation with 10 backsloppings (once every 24 h) at 23°C resulted in a microbiota composed of Leuconostoc citreum as the dominant species, whereas fermentations at 30 and 37°C with backslopping every 24 h resulted in ecosystems dominated by Lactobacillus fermentum. Longer backslopping times (every 48 h at 30°C) resulted in a combination of Lactobacillus fermentum and Lactobacillus plantarum. Residual maltose remained present in all fermentations, except those with longer backslopping times, and ornithine was found in almost all fermentations, indicating enhanced sourdough-typical LAB activity. The sourdough-typical species Lactobacillus sanfranciscensis was not found. Finally, a nonflour origin for this species was hypothesized.  相似文献   

18.
The diversity of yeast species and strains was monitored by physiological tests and a simplified method of karyotyping of yeast chromosomes. During the first phase of investigated alcoholic fermentations, the yeast species Metschnikowia pulcherrima and Hanseniaspora uvarum were predominant, irrespective of the origin of the grape must. At the beginning of fermentation H. uvarum was even present in the case of induced fermentations with dried yeast. Middle and end phase of the alcoholic fermentation were clearly dominated by the yeast species Saccharomyces cerevisiae . In the case of spontaneous fermentations, several different strains of S. cerevisiae were present and competed with each other, whereas in induced fermentations only the inoculated strain of S. cerevisiae was observed. A competition of strains of S. cerevisiae also occurred during the fermentation with dried yeast product consisting of two different strains. An effect of H. uvarum on taste and flavour of wines can be postulated according to the frequency of its appearance during the first phase of fermentation. With the method of rapid karyotyping and supplementary physiological tests it was possible to make reliable assertions about the yeast diversity during alcoholic fermentation.  相似文献   

19.
The early detection of problematic fermentations is one of the main problems that appear in winemaking processes, due to the significant impacts in wine quality and utility. This situation is specially important in Chile because is one of the top ten wine production countries. In last years, different methods coming from Multivariate Statistics and Computational Intelligence have been applied to solve this problem. In this work we detect normal and problematic (sluggish and stuck) wine fermentations applying the support vector machine method with three different kernels: linear, polynomial and radial basis function. For the training algorithm, we use the same database of 22 wine fermentation studied in [1, 2] that contains approximately 22,000 points, considering the main chemical variables measured in this kind of processes: total sugar, alcoholic degree and density. Our main result establishes that the SVM method with third degree polynomial and radial basis kernels predict correctly 88 and 85 % respectively. The fermentation behavior results have been obtained for a 80–20 % training/testing percentage configuration and a time cutoff of 48 h.  相似文献   

20.
The diversity and composition of yeast populations may greatly impact wine quality. This study investigated the yeast microbiota in two different types of wine fermentations: direct inoculation of a commercial starter versus pied de cuve method at an industrial scale. The pied de cuve fermentation entailed growth of the commercial inoculum used in the direct inoculation fermentation for further inoculation of additional fermentations. Yeast isolates were collected from different stages of wine fermentation and identified to the species level using Wallersterin Laboratory nutrient (WLN) agar followed by analysis of the 26S rDNA D1/D2 domain. Genetic characteristics of the Saccharomyces cerevisiae strains were assessed by a rapid PCR-based method, relying on the amplification of interdelta sequences. A total of 412 yeast colonies were obtained from all fermentations and eight different WL morphotypes were observed. Non-Saccharomyces yeast mainly appeared in the grape must and at the early stages of wine fermentation. S. cerevisiae was the dominant yeast species using both fermentation techniques. Seven distinguishing interdelta sequence patterns were found among S. cerevisiae strains, and the inoculated commercial starter, AWRI 796, dominated all stages in both direct inoculation and pied de cuve fermentations. This study revealed that S. cerevisiae was the dominant species and an inoculated starter could dominate fermentations with the pied de cuve method under controlled conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号