首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
K Ko  A R Cashmore 《The EMBO journal》1989,8(11):3187-3194
Various chimeric precursors and deletions of the 33 kd oxygen-evolving protein (OEE1) were constructed to study the mechanism by which chloroplast proteins are imported and targeted to the thylakoid lumen. The native OEE1 precursor was imported into isolated chloroplasts, processed and localized in the thylakoid lumen. Replacement of the OEE1 transit peptide with the transit peptide of the small subunit of ribulose-1,5-bisphosphate carboxylase, a stromal protein, resulted in redirection of mature OEE1 into the stromal compartment of the chloroplast. Utilizing chimeric transit peptides and block deletions we demonstrated that the 85 residue OEE1 transit peptide contains separate signal domains for importing and targeting the thylakoid lumen. The importing domain, which mediates translocation across the two membranes of the chloroplast envelope, is present in the N-terminal 58 amino acids. The thylakoid lumen targeting domain, which mediates translocation across the thylakoid membrane, is located within the C-terminal 27 residues of the OEE1 transit peptide. Chimeric precursors were constructed and used in in vitro import experiments to demonstrate that the OEE1 transit peptide is capable of importing and targeting foreign proteins to the thylakoid lumen.  相似文献   

2.
Post-translational integration of cytochrome f into thylakoid membranes was observed after import by isolated pea chloroplasts of a chimeric protein consisting of the presequence of the small subunit of ribulose 1,5-bisphosphate carboxylase fused to the cytochrome f precursor. Import of a similar chimeric protein lacking the C-terminal 33 amino acid residues resulted in a soluble cytochrome f protein in the thylakoid lumen, indicating that the C-terminal region contains a stop-transfer sequence for membrane integration. Azide inhibited the insertion of cytochrome f into the thylakoid membrane, whereas the ionophores nigericin and valinomycin had little effect on membrane insertion. The precursor of the 33 kDa protein, but not the 23 kDa protein, of the photosystem II oxygen-evolving complex inhibited the thylakoid insertion of cytochrome f , suggesting competition for a component of the transport pathway. These experiments suggest that the post-translational insertion of cytochrome f into the thylakoid membrane uses a SecA-dependent pathway.  相似文献   

3.
We have examined the transport of the precursor of the 17-kD subunit of the photosynthetic O2-evolving complex (OE17) in intact chloroplasts in the presence of inhibitors that block two protein-translocation pathways in the thylakoid membrane. This precursor uses the transmembrane pH gradient-dependent pathway into the thylakoid lumen, and its transport across the thylakoid membrane is thought to be independent of ATP and the chloroplast SecA homolog, cpSecA. We unexpectedly found that azide, widely considered to be an inhibitor of cpSecA, had a profound effect on the targeting of the photosynthetic OE17 to the thylakoid lumen. By itself, azide caused a significant fraction of mature OE17 to accumulate in the stroma of intact chloroplasts. When added in conjunction with the protonophore nigericin, azide caused the maturation of a fraction of the stromal intermediate form of OE17, and this mature protein was found only in the stroma. Our data suggest that OE17 may use the sec-dependent pathway, especially when the transmembrane pH gradient-dependent pathway is inhibited. Under certain conditions, OE17 may be inserted across the thylakoid membrane far enough to allow removal of the transit peptide, but then may slip back out of the translocation machinery into the stromal compartment.  相似文献   

4.
A chimaeric gene was constructed encoding the pre-sequence of the 33 kDa oxygen-evolving complex protein from wheat (a thylakoid lumen protein) linked to ricin A chain. The fusion protein is efficiently imported by isolated pea chloroplasts and localised partly in the stroma, with the remainder bound to the stromal surface of the thylakoids. The imported protein is fully processed by both the stromal and thylakoidal processing peptidases, indicating that partial or complete translocation across the thylakoid membrane has taken place.  相似文献   

5.
The 33-, 23-, and 16-kDa proteins of the photosynthetic oxygen-evolving complex are synthesized as precursors in the cytoplasm and transported into the thylakoid lumen of higher plant chloroplasts. In this report we have analyzed the import and maturation of these precursors, using reconstituted protein import assays and partially purified preparations of the processing peptidases involved. Precursors of the 33- and 23-kDa proteins from Spinacia and Triticum aestivum are processed by a stromal peptidase to intermediate forms; polypeptides of similar size are observed during the transport of these precursors and possibly that of the 16-kDa protein, into isolated chloroplasts. Complete maturation of the 33- and 23-kDa proteins is carried out by a thylakoidal peptidase shown previously to be involved in plastocyanin biogenesis. The data support an import mechanism involving successive cleavages by the stromal and thylakoidal processing peptidases.  相似文献   

6.
The transit peptide of the lumenal 33-kDa oxygen-evolving polypeptide (OEE1) is capable of directing the import and targeting of the foreign protein dihydrofolate reductase (DHFR) to the thylakoid lumen. The import results from the first part of this study indicate that methotrexate cannot block the import or intraorganellar targeting of OEE1-DHFR in chloroplasts in contrast to that reported for the import of cytochrome oxidase subunit IV (COXIV)-DHFR in mitochondria. These results suggest that the fusion of the OEE1 transit sequence to DHFR affected the protein's methotrexate binding properties. We further examined and compared the transport characteristics of a number of carboxyl-terminal truncated native chloroplast precursors to determine whether carboxyl domains contribute to the import and intraorganellar targeting mechanism of these proteins. The plastid precursors chosen for this study are targeted to one of the following chloroplast compartments: the stroma, the thylakoid membrane, and the lumen. In most cases, removal of carboxyl domains had a dramatic effect on one or more stages of the translocation pathway, such as import, processing, and intraorganellar targeting. The effects of carboxyl deletions varied from precursor to precursor and were dependent on the extent of the deletion. These combined results suggest that carboxyl domains in the mature part of the proteins can influence the function of the transit peptide, and as a result play an important role in determining the import and targeting competence of chloroplast precursors.  相似文献   

7.
The 33- and 23-kDa proteins of the photosynthetic oxygen-evolving complex are synthesized in the cytosol as larger precursors and transported into the thylakoid lumen via stromal intermediate forms. We have investigated the energetics of protein transport across the thylakoid membrane using import assays that utilize either intact chloroplasts or isolated thylakoids. We have found that the light-driven import of the 23-kDa protein into isolated thylakoids is almost completely inhibited by electron transport inhibitors or by the ionophore nigericin but not by valinomycin. These compounds have similar effects in chloroplast import assays: precursors of both the 33- and 23-kDa proteins are imported and processed to intermediate forms in the stroma, but transport into the thylakoid lumen is blocked when electron transport is inhibited or nigericin is present. These results indicate that the transport of these proteins across the thylakoid membrane requires a protonmotive force and that the dominant component in this respect is the proton gradient and not the electrical potential.  相似文献   

8.
Madueno F  Napier JA  Gray JC 《The Plant cell》1993,5(12):1865-1876
The precursor of the Rieske FeS protein, a thylakoid membrane protein, was imported by isolated pea chloroplasts, and the mature protein was shown to be integrated into the cytochrome bf complex of the thylakoid membranes. Insertion into the thylakoid membrane was sensitive to the ionophores nigericin and valinomycin, suggesting a requirement for a proton motive force. A considerable proportion of the imported Rieske protein was detected in the stromal fraction of the chloroplasts, and this increased when membrane insertion was blocked with ionophores. Electrophoresis of the stromal fraction under nondenaturing conditions resolved two distinct complexes containing the Rieske protein. One of these complexes was identified as an association of the Rieske protein with the chaperonin Cpn60 complex by its electrophoretic mobility, Mg-ATP-dependent dissociation, and immunoprecipitation with anti-Cpn60 antibodies. Coimmunoprecipitation of imported Rieske protein with anti-heat shock protein 70 (Hsp70) antibodies indicated that the Rieske protein was also associated, in an ATP-dissociable form, with a chloroplast Hsp70 homolog. Immunoprecipitation analysis of an import time course detected the highest amounts of the Cpn60-Rieske protein complex early in the time course, whereas highest amounts of the Hsp70-Rieske protein complex were formed much later. The disappearance of the Cpn60-Rieske protein complex correlated with increased amounts of the Rieske protein in the thylakoid fraction.  相似文献   

9.
Fractionation of proteins from the thylakoid lumen of spinach chloroplasts combined with peptidyl-prolyl cis/trans isomerase (PPIase) measurements revealed a major isomerase activity that was ascribed to a novel enzyme TLP20 (thylakoid lumen PPIase of 20 kDa). TLP20 was inhibited by cyclosporin A and mass spectrometric sequencing of tryptic peptides confirmed its classification as a cyclophilin. Genes encoding similar putative thylakoid cyclophilins with a unique insert of three amino acids NPV in their N-termini were found in chromosome 5 of both Arabidopsis and rice. TLP20 is suggested to be the major PPIase and protein folding catalyst in the thylakoid lumen of plant chloroplasts.  相似文献   

10.
Thylakoids obtained from intact spinach chloroplasts showedno superoxide dismutase (SOD) activity, but Cu,Zn- and Mn-SODactivities were detected in the presence of Triton X-100. Thylakoidmembranes and the lumen fraction were separated by centrifugationafter treatment of the thylakoids with a Yeda pressure cell.Cu,Zn-SOD was found in the lumen fraction. Mn-SOD was detectedin the thylakoid fraction only after addition of 1% Triton X-100.Antibody against spinach Cu,Zn-SOD did not interact with thelatent Cu,Zn-SOD in the thylakoids unless Triton was added.These results indicate that Cu,Zn-SOD occurs in the lumen inaddition to the stroma of spinach chloroplasts, and Mn-SOD bindsto the thylakoid membranes. (Received February 29, 1984; Accepted May 28, 1984)  相似文献   

11.
In higher plants, the chloroplastic protein plastocyanin is synthesized as a transit peptide-containing precursor by cytosolic ribosomes and posttranslationally transported to the thylakoid lumen. En route to the lumen, a plastocyanin precursor is first imported into chloroplasts and then further directed across the thylakoid membrane by a second distinct transport event. A partially processed form of plastocyanin is observed in the stroma during import experiments using intact chloroplasts and has been proposed to be the translocation substrate for the second step (Smeekens, S., Bauerle, C., Hageman, J., Keegstra, K., and Weisbeek, P. (1986) Cell 46, 365-375). To further characterize this second step, we have reconstituted thylakoid transport in a system containing in vitro-synthesized precursor proteins and isolated thylakoid membranes. This system was specific for lumenal proteins since stromal proteins lacking the appropriate targeting information did not accumulate in the thylakoid lumen. Plastocyanin precursor was taken up by isolated thylakoids, proteolytically processed to mature size, and converted to holo form. Translocation was temperature-dependent and was stimulated by millimolar levels of ATP but did not strictly require the addition of stromal factors. We have examined the substrate requirements of thylakoid translocation by testing the ability of different processed forms of plastocyanin to transport in the in vitro system. Interestingly, only the full-length plastocyanin precursor, not the partially processed intermediate form, was competent for transport in this in vitro system.  相似文献   

12.
When intact spinach chloroplasts were supplied with [32P]Pi, stromal protein phosphorylation was found to occur in the dark. On illumination the thylakoid protein kinase was activated and the amount of label found in thylakoid proteins quickly exceeded that incorporated into stromal protein, such that the latter was found to account for only 10-15% of the total radioactivity bound to chloroplast proteins after 5 min illumination. The rate of phosphorylation of stromal polypeptides was unchanged by light. After SDS/polyacrylamide-gel electrophoresis, more than 15 labelled polypeptides of stromal origin were observed. A polypeptide with an Mr of approx. 70 000 had the highest specific activity of labelling. Both the large and small subunits of the ribulose-1,5-bisphosphate carboxylase were phosphorylated. The level of phosphorylation of stromal protein was increased by CO2 fixation in intact chloroplasts. This increase was not observed in the absence of NaHCO3 or in the presence of the phosphoribulokinase inhibitor DL-glyceraldehyde. These effects appeared to be largely due to changes in the phosphorylation state of the large and small subunits of ribulose-1,5-bisphosphate carboxylase. Studies with the reconstituted chloroplast system showed that the thylakoid protein kinase(s) played no part in the phosphorylation of stromal protein. The rate and level of phosphorylation of stromal protein was unaffected by the activation state of the thylakoid protein kinase and was unchanged when thylakoids were omitted from the reaction medium. The phosphorylation of stromal proteins is therefore catalysed by a discrete soluble protein kinase.  相似文献   

13.
In order to determine if the cognate transit peptide of the light-harvesting chlorophyll a/b-binding protein (LHCP) is essential for LHCP import into the chloroplast and proper localization to the thylakoids, it was replaced with the transit peptide of the small subunit (S) of ribulose-1,5-bisphosphate carboxylase/oxygenase, a stromal protein. Wheat LHCP and S genes were fused to make a chimeric gene coding for the hybrid precursor, which was synthesized in vitro and incubated with purified pea chloroplasts. My results show that LHCP is translocated into chloroplasts by the S transit peptide. The hybrid precursor was processed; and most importantly, mature LHCP did not remain in the stroma, but was inserted into thylakoid membranes, where it normally functions. Density gradient centrifugation showed no LHCP in the envelope fraction. Hence, the transit peptide of LHCP is not required for intraorganellar routing, and LHCP itself contains an internal signal for localization to the correct membrane compartment.  相似文献   

14.
The sequences of the nuclear genes of the 33 kDa (OEE1) and the 16 kDa (OEE3) polypeptides of the oxygen evolving complex of Chlamydomonas reinhardtii have been established. Comparison between the OEE1 protein sequences of C. reinhardtii and higher plants and cyanobacteria reveals 67 and 47% homology. In contrast, C. reinhardtii and higher plants have only 28% overall homology for OEE3 which is mostly limited to the central portion of the protein. The transit peptides of the C. reinhardtii proteins consist of 52 (OEE1) and, most likely, 51 (OEE1) amino acids. They have a basic amino terminal region and, at least in the case of OEE1, a hydrophobic segment at their carboxy terminal end typical of thylakoid lumen proteins. Comparison of the genomic and cDNA clones indicates that the OEE1 and OEE3 genes contain five and four introns, respectively, some of which are located within the coding sequences of the transit peptides.  相似文献   

15.
We have studied the membrane transport of the chimeric precursor protein 16/33, which is composed of the Tat1-specific transport signal of OEC16 and the Sec passenger protein OEC33, both subunits of the oxygen-evolving system associated with photosystem II. Protein transport experiments performed with isolated pea thylakoids show that the 16/33 chimera is transported in a strictly Tat-dependent manner into the thylakoid vesicles yielding mature OEC33 (mOEC33) in two different topologies. One fraction accumulates in the thylakoid lumen and is thus resistant to externally added protease. A second fraction is arrested during transport in an N-in/C-out topology within the membrane. Chase experiments demonstrate that this membrane-arrested mOEC33 moiety does not represent a translocation intermediate but instead an alternative end product of the transport process. Transport arrest of mOEC33, which is embedded in the membrane with a mildly hydrophobic protein segment, requires more than 26 additional and predominantly hydrophilic residues C-terminal of the membrane-embedded segment. Furthermore, it is stimulated by mutations which potentially affect the conformation of mOEC33 suggesting that at least partial folding of the passenger protein is required for complete membrane translocation.  相似文献   

16.
17.
The oxygen-evolving complex (OEC) of photosystem II (PS II) consists of at least three extrinsic membrane-associated protein subunits, OE33, OE23, and OE17, with associated Mn2+, Ca2+, and Cl- ions. These subunits are bound to the lumen side of PS II core proteins embedded in the thylakoid membrane. Our experiments reveal that a significant fraction of each subunit is normally present in unassembled pools within the thylakoid lumen. This conclusion was supported by immunological detection of free subunits after freshly isolated pea thylakoids were fractionated with low levels of Triton X-100. Plastocyanin, a soluble lumen protein, was completely released from the lumen by 0.04% Triton X-100. This gentle detergent treatment also caused the release from the thylakoids of between 10 and 20%, 40 and 60%, and 15 and 50% of OE33, OE23, and OE17, respectively. Measurements of the rates of oxygen evolution from Triton-treated thylakoids, both in the presence and absence of Ca2+, and before and after incubation with hydroquinone, demonstrated that the OEC was not dissociated by the detergent treatment. Thylakoids isolated from spinach released similar amounts of extrinsic proteins after Triton treatment. These data demonstrate that physiologically active chloroplasts contain significant pools of unassembled extrinsic OEC polypeptide subunits free in the lumen of the thylakoids.  相似文献   

18.
Structural features of cytochrome f necessary for assembly into the cytochrome bf complex were examined in isolated pea chloroplasts following import of (35)S-labelled chimeric precursor proteins, consisting of the presequence of the small subunit of Rubisco fused to the turnip cytochrome f precursor. Assembly was detected by nondenaturing gel electrophoresis of dodecyl maltoside-solubilized thylakoid membranes. A cytochrome f polypeptide unable to bind haem because of mutagenesis of Cys21 and Cys24 to alanine residues was assembled into the complex and had similar stability to the wild-type polypeptide. This indicates that covalent haem binding to cytochrome f is not necessary for assembly of the protein into the cytochrome bf complex. A truncated protein lacking the C-terminal 33 amino acid residues, including the transmembrane span and the stroma-exposed region, was translocated across the thylakoid membrane, had a similar stability to wild-type cytochrome f but was not assembled into the complex. This indicates that the C-terminal region of cytochrome f is important for assembly into the complex. A mutant cytochrome f unable to bind haem and lacking the C-terminal region was also translocated across the thylakoid membrane but was extremely labile, indicating that, in the absence of the C-terminal membrane anchor, haem-less cytochrome f is recognized by a thylakoid proteolytic system.  相似文献   

19.
Roffey RA  Theg SM 《Plant physiology》1996,111(4):1329-1338
A series of deletions from the carboxyl terminus of the 23-kD subunit of the photosynthetic oxygen-evolving complex OE23 revealed that these truncations result in various degrees of inhibition of translocation across thylakoid membranes and their subsequent assembly to the oxygen-evolving complex. Import of in vitro translated precursors across the chloroplast envelopes was not inhibited by these truncations. Time-course studies of the import of truncated OE23 precursors into intact chloroplasts revealed that the stromal intermediate was subsequently translocated into the thylakoid lumen, where it was processed to a smaller size and rapidly degraded. In contrast to the full-length OE23 intermediate, the truncated intermediate forms that accumulated in the stroma as a result of de-energization of thylakoid membranes could be found associated with the membrane rather than free in the stroma. Protease digestion experiments revealed that the deletions evidently altered the folded conformation of the protein. These results suggest that the carboxyl-terminal portion of the OE23 precursor is important for the maintenance of an optimal structure for import into thylakoids, implying that the efficient translocation of OE23 requires the protein to be correctly folded. In addition, the rapid degradation of the truncated forms of the processed OE23 within the lumen indicates that a protease (or proteases) active in the lumen can recognize and remove misfolded polypeptides.  相似文献   

20.
Plastocyanin is a nuclear-encoded chloroplast thylakoid lumen protein that is synthesized in the cytoplasm with a large N-terminal extension (66 amino acids). Transport of plastocyanin involves two steps: import across the chloroplast envelope into the stroma, followed by transfer across the thylakoid membrane into the lumen. During transport the N-terminal extension is removed in two parts by two different processing proteases. In this study we examined the functions of the two cleaved parts, C1 and C2, in the transport pathway of plastocyanin. The results show that C1 mediates import into the chloroplast. C1 is sufficient to direct chloroplast import of mutant proteins that lack C2. It is also sufficient to direct import of a nonplastid protein and can be replaced functionally by the transit peptide of an imported stromal protein. C2 is a prerequisite for intraorganellar routing but is not required for chloroplast import. Deletions in C2 result in accumulation of intermediates in the stroma or on the outside of the thylakoids. The fact that C1 is functionally equivalent to a stromal-targeting transit peptide shows that plastocyanin is imported into the chloroplast by way of the same mechanism as stromal proteins, and that import into and routing inside the chloroplasts are independent processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号