首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Defects in protein folding may lead to severe degenerative diseases characterized by the appearance of amyloid fibril deposits. Cytotoxicity in amyloidoses has been linked to poration of the cell membrane that may involve interactions with amyloid intermediates of annular shape. Although annular oligomers have been detected in many amyloidogenic systems, their universality, function and molecular mechanisms of appearance are debated.

Methodology/Principal Findings

We investigated with high-resolution in situ atomic force microscopy the assembly and disassembly of transthyretin (TTR) amyloid protofibrils formed of the native protein by pH shift. Annular oligomers were the first morphologically distinct intermediates observed in the TTR aggregation pathway. Morphological analysis suggests that they can assemble into a double-stack of octameric rings with a 16±2 nm diameter, and displaying the tendency to form linear structures. According to light scattering data coupled to AFM imaging, annular oligomers appeared to undergo a collapse type of structural transition into spheroid oligomers containing 8–16 monomers. Disassembly of TTR amyloid protofibrils also resulted in the rapid appearance of annular oligomers but with a morphology quite distinct from that observed in the assembly pathway.

Conclusions/Significance

Our observations indicate that annular oligomers are key dynamic intermediates not only in the assembly but also in the disassembly of TTR protofibrils. The balance between annular and more compact forms of aggregation could be relevant for cytotoxicity in amyloidogenic disorders.  相似文献   

2.
The deposition of transthyretin (TTR) amyloid in the PNS is a major pathological feature of familial amyloidotic polyneuropathy. The aim of the present study was to examine whether TTR could disrupt cytoplasmic Ca(2+) homeostasis and to determine the role of TTR aggregation in this process. The aggregation of amyloidogenic TTR was examined by solution turbidity, dynamic light scattering and atomic force microscopy. A nucleation-dependent polymerization process was observed in which TTR formed low molecular weight aggregates (oligomers < 100 nm in diameter) before the appearance of mature fibrils. TTR rapidly induced an increase in the concentration of intracellular Ca(2+) ([Ca(2+)](i)) when applied to SH-SY5Y human neuroblastoma cells. The greatest effect on [Ca(2+)](i) was induced by a preparation that contained the highest concentration of TTR oligomers. The TTR-induced increase in [Ca(2+)](i) was due to an influx of extracellular Ca(2+), mainly via L- and N-type voltage-gated calcium channels (VGCCs). These results suggest that increasing [Ca(2+)](i) via VGCCs may be an important early event which contributes to TTR-induced cytotoxicity, and that TTR oligomers, rather than mature fibrils, may be the major cytotoxic form of TTR.  相似文献   

3.
Glycosaminoglycans (GAGs), which are found in association with all extracellular amyloid deposits in humans, are known to accelerate the aggregation of various amyloidogenic proteins in vitro. However, the precise molecular mechanism(s) by which GAGs accelerate amyloidogenesis remains elusive. Herein, we show that sulfated GAGs, especially heparin, accelerate transthyretin (TTR) amyloidogenesis by quaternary structural conversion. The clustering of sulfate groups on heparin and its polymeric nature are essential features for accelerating TTR amyloidogenesis. Heparin does not influence TTR tetramer stability or TTR dissociation kinetics, nor does it alter the folded monomer-misfolded monomer equilibrium directly. Instead, heparin accelerates the conversion of preformed TTR oligomers into larger aggregates. The more rapid disappearance of monomeric TTR in the presence of heparin likely reflects the fact that the monomer-misfolded amyloidogenic monomer-oligomer-TTR fibril equilibria are all linked, a hypothesis that is strongly supported by the light scattering data. TTR aggregates prepared in the presence of heparin exhibit a higher resistance to trypsin and proteinase K proteolysis and a lower exposure of hydrophobic side chains comprising hydrophobic clusters, suggesting an active role for heparin in amyloidogenesis. Our data suggest that heparin accelerates TTR aggregation by a scaffold-based mechanism, in which the sulfate groups comprising GAGs interact primarily with TTR oligomers through electrostatic interactions, concentrating and orienting the oligomers, facilitating the formation of higher molecular weight aggregates. This model raises the possibility that GAGs may play a protective role in human amyloid diseases by interacting with proteotoxic oligomers and promoting their association into less toxic amyloid fibrils.  相似文献   

4.
M J Saraiva 《FEBS letters》2001,498(2-3):201-203
Over 70 transthyretin (TTR) mutations have been associated with hereditary amyloidoses, which are all autosomal dominant disorders with adult age of onset. TTR is the main constituent of amyloid that deposits preferentially in peripheral nerve giving rise to familial amyloid polyneuropathy (FAP), or in the heart leading to familial amyloid cardiomyopathy. Since the beginning of this decade the central question of these types of amyloidoses has been why TTR is an amyloidogenic protein with clinically heterogeneous pathogenic consequences. As a result of amino acid substitutions, conformational changes occur in the molecule, leading to weaker subunit interactions of the tetrameric structure as revealed by X-ray studies of some amyloidogenic mutants. Modified soluble tetramers exposing cryptic epitopes seem to circulate in FAP patients as evidenced by antibody probes recognizing specifically TTR amyloid fibrils, but what triggers dissociation into monomeric and oligomeric intermediates of amyloid fibrils is largely unknown. Avoiding tetramer dissociation and disrupting amyloid fibrils are possible avenues of therapeutic intervention based on current molecular knowledge of TTR amyloidogenesis and fibril structure.  相似文献   

5.
Yang M  Yordanov B  Levy Y  Brüschweiler R  Huo S 《Biochemistry》2006,45(39):11992-12002
Human transthyretin (TTR) is an amyloidogenic protein whose aggregation is associated with several types of amyloid diseases. The following mechanism of TTR amyloid formation has been proposed. TTR tetramer at first dissociates into native monomers, which is the rate-limiting step in fibril formation. The monomeric species then partially unfold to form amyloidogenic intermediates that subsequently undergo a downhill self-assembly process. The amyloid deposit can be facilitated by disease-associated point mutations. However, only subtle structural differences were observed between the crystal structures of the wild type and the disease-associated variants. To investigate how single-point mutations influence the effective energy landscapes of TTR monomers, molecular dynamics (MD) simulations were performed on wild-type TTR and two pathogenic variants. Principal coordinate analysis on MD-generated ensembles has revealed multiple unfolding pathways for each protein. Amyloidogenic intermediates with the dislocated C strand-loop-D strand motif were observed only on the unfolding pathways of V30M and L55P variants and not for wild-type TTR. Our study suggests that the sequence-dependent unfolding pathway plays a crucial role in the amyloidogenicity of TTR. Analyses of side chain concerted motions indicate that pathogenic mutations on "edge strands" disrupt the delicate side chain correlated motions, which in turn may alter the sequence of unfolding events.  相似文献   

6.
Numerous studies of amyloid assembly have indicated that partially folded protein species are responsible for initiating aggregation. Despite their importance, the structural and dynamic features of amyloidogenic intermediates and the molecular details of how they cause aggregation remain elusive. Here, we use ΔN6, a truncation variant of the naturally amyloidogenic protein β(2)-microglobulin (β(2)m), to determine the solution structure of a nonnative amyloidogenic intermediate at high resolution. The structure of ΔN6 reveals a major repacking of the hydrophobic core to accommodate the nonnative peptidyl-prolyl trans-isomer at Pro32. These structural changes, together with a concomitant pH-dependent enhancement in backbone dynamics on a microsecond-millisecond timescale, give rise to a rare conformer with increased amyloidogenic potential. We further reveal that catalytic amounts of ΔN6 are competent to convert nonamyloidogenic human wild-type β(2)m (Hβ(2)m) into a rare amyloidogenic conformation and provide structural evidence for the mechanism by which this conformational conversion occurs.  相似文献   

7.
Transthyretin (TTR) is a protein linked to a number of different amyloid diseases including senile systemic amyloidosis and familial amyloidotic polyneuropathy. The transient nature of oligomeric intermediates of misfolded TTR that later mature into fibrillar aggregates makes them hard to study, and methods to study these species are sparse. In this work we explore a novel pathway for generation of prefibrillar aggregates of TTR, which provides important insight into TTR misfolding. Prefibrillar amyloidogenic oligomers and protofibrils of misfolded TTR were generated in vitro through induction of the molten globule type A-state from acid unfolded TTR through the addition of NaCl. The aggregation process produced fairly monodisperse oligomers (300-500 kD) within 2 h that matured after 20 h into larger spherical clusters (30-50 nm in diameter) and protofibrils as shown by transmission electron microscopy. Further maturation of the aggregates showed shrinkage of the spheres as the fibrils grew in length, suggesting a conformational change of the spheres into more rigid structures. The structural and physicochemical characteristics of the aggregates were investigated using fluorescence, circular dichroism, chemical cross-linking, and transmission electron microscopy. The fluorescent dyes 1-anilinonaphthalene-8-sulfonate (ANS), 4-4-bis-1-phenylamino-8-naphthalene sulfonate (Bis-ANS), 4-(dicyanovinyl)-julolidine (DCVJ), and thioflavin T (ThT) were employed in both static and kinetic assays to characterize these oligomeric and protofibrillar states using both steady-state and time-resolved fluorescence techniques. DCVJ, a molecular rotor, was employed for the first time for studies of an amyloidogenic process and is shown useful for detection of the early steps of the oligomerization process. DCVJ bound to the early prefibrillar oligomers (300-500 kD) with an apparent dissociation constant of 1.6 muM, which was slightly better than for ThT (6.8 muM). Time-resolved fluorescence anisotropy decay of ANS was shown to be a useful tool for giving further structural and kinetic information of the oligomeric aggregates. ThT dramatically increases its fluorescence quantum yield when bound to amyloid fibrils; however, the mechanism behind this property is unknown. Data from this work suggest that unbound ThT is also intrinsically quenched and functions similarly to a molecular rotor, which in combination with its environmental dependence provides a blue shift to the characteristic 482 nm wavelength when bound to amyloid fibrils.  相似文献   

8.
The relationship between amino acid sequences of the β‐hairpin structures and amyloidogenic β‐arcade‐forming motifs are of special interest because, similar to amyloid fibrils, most of the β‐hairpin repeat (BHR) structures have the so‐called cross‐β arrangement. Moreover, β‐hairpin is considered as a probable intermediate structure in amyloidogenesis. In this work, a bioinformatics sequence analysis of the known BHR structures is performed in search of amylodogenic motifs able to form β‐arcade fibrils. The analysis shows that the occurrence of the predicted β‐arcade motifs in the BHR regions is very different depending on the BHR structural fold, cellular localization, and phylogeny. One of the most striking observations is the high level of sequence similarity between the BHRs of membranous porins and β‐arcade motifs. This sequence similarity provides additional evidence that the structure of the membranous porins and annular amyloid oligomers may bear a resemblance. Moreover, these results explain how some amyloidogenic sequence can fold in either the ring‐like shape oligomers or elongated amyloid fibrils. It has been also found that potentially lethal amyloidogenic β‐arcade motifs are absent in the elongated BHR structures of intracellular eukaryotic proteins. It allows to hypothesize that, in this case, the selective evolutionary pressure acts against aggregation.  相似文献   

9.
Human transthyretin (TTR) is an amyloidogenic protein. The pathway of TTR amyloid formation has been proposed based on lines of evidence: TTR tetramer first dissociates into native monomers, which is shown to be a rate-limiting step in the formation of fibrils. Subsequently, the monomeric species partially unfold to form the aggregation intermediates. Once such intermediates are formed, the following self-assembly process is a downhill polymerization. Hence, tertiary structural changes within the monomers after the dissociation are essential for the amyloid formation. These tertiary structural changes can be facilitated by partial denaturation. To probe the conformational changes under the partially denaturing conditions, five independent trajectories were collected for the wild-type (WT) and its pathogenic variants at 300 and 350 K, resulting in simulations that totaled 59 ns. Under these conditions, L55P variant is more labile than the wild-type and V30M variant. We have observed that the D strand of WT-TTR is trapped in two local minima: the native conformation and the amyloidogenic fold that resembles the surface loop of residues 54-55 of L55P variant. In the tetrameric state, the F strand is bent with large separations at the F-F' interface. This strand becomes flatter in the monomeric state, which may facilitate the formation of new F-F' interface with possible prolonged hydrogen bonds and/or shift in beta-strand register in the fibril state. During the unfolding process, the anticorrelated motion between the strands H and G as well as the strands H and A pulls the H strand out of the inner sheet plane, leading to a more twisted inner sheet. Our simulation has provided important detailed structural information about the partially unfolded state of TTR that may be related to the amyloidogenic intermediates.  相似文献   

10.
A range of disorders such as Alzheimer's disease and type II diabetes have been linked to protein misfolding and aggregation. Transthyretin is an amyloidogenic protein which is involved in familial amyloid polyneuropathy, the most common form of systemic amyloid disease. A peptide fragment of this protein, TTR105-115, has been shown to form well-defined amyloid fibrils in vitro. In this study, the stability of amyloid fibrils towards high hydrostatic pressure has been investigated by Fourier transform infrared spectroscopy. Information on the morphology of the species exposed to high hydrostatic pressure was obtained by atomic force microscopy. The species formed early in the aggregation process were found to be dissociated by relatively low hydrostatic pressure (220 MPa), whereas mature fibrils are pressure insensitive up to 1.3 GPa. The pressure stability of the mature fibrils is consistent with a fibril structure in which there is an extensive hydrogen bond network in a tightly packed environment from which water is excluded. The fact that early aggregates can be dissociated by low pressure suggests, however, that hydrophobic and electrostatic interactions are the dominant factors stabilizing the species formed in the early stages of fibril formation.  相似文献   

11.
The pathophysiological process in amyloid disorders usually involves the transformation of a functional monomeric protein via potentially toxic oligomers into amyloid fibrils. The structure and properties of the intermediary oligomers have been difficult to study due to their instability and dynamic equilibrium with smaller and larger species. In hereditary cystatin C amyloid angiopathy, a cystatin C variant is deposited in arterial walls and cause brain hemorrhage in young adults. In the present investigation, we use redox experiments of monomeric cystatin C, stabilized against domain swapping by an intramolecular disulfide bond, to generate stable oligomers (dimers, trimers, tetramers, decamers, and high molecular weight oligomers). These oligomers were characterized concerning size by gel filtration, polyacrylamide gel electrophoresis, and mass spectrometry, shape by electron and atomic force microscopy, and, function by assays of their capacity to inhibit proteases. The results showed the oligomers to be highly ordered, domain-swapped assemblies of cystatin C and that the oligomers could not build larger oligomers, or fibrils, without domain swapping. The stabilized oligomers were used to induce antibody formation in rabbits. After immunosorption, using immobilized monomeric cystatin C, and elution from columns with immobilized cystatin C oligomers, oligomer-specific antibodies were obtained. These could be used to selectively remove cystatin C dimers from biological fluids containing both dimers and monomers.  相似文献   

12.
Transthyretin (TTR) is an amyloidogenic protein whose aggregation is responsible for several familial amyloid diseases. Here, we use FTIR to describe the secondary structural changes that take place when wt TTR undergoes heat- or high-pressure-induced denaturation, as well as fibril formation. Upon thermal denaturation, TTR loses part of its intramolecular beta-sheet structure followed by an increase in nonnative, probably antiparallel beta-sheet contacts (bands at 1,616 and 1,686 cm(-1)) and in the light scattering, suggesting its aggregation. Pressure-induced denaturation studies show that even at very elevated pressures (12 kbar), TTR loses only part of its beta-sheet structure, suggesting that pressure leads to a partially unfolded species. On comparing the FTIR spectrum of the TTR amyloid fibril produced at atmospheric pressure upon acidification (pH 4.4) with the one presented by the native tetramer, we find that the content of beta-sheets does not change much upon fibrillization; however, the alignment of beta-sheets is altered, resulting in the formation of distinct beta-sheet contacts (band at 1,625 cm(-1)). The random-coil content also decreases in going from tetramers to fibrils. This means that, although part of the tertiary- and secondary-structure content of the TTR monomers has to be lost before fibril formation, as previously suggested, there must be a subsequent reorganization of part of the random-coil structure into a well-organized structure compatible with the amyloid fibril, as well as a readjustment of the alignment of the beta-sheets. Interestingly, the infrared spectrum of the protein recovered from a cycle of compression-decompression at pD 5, 37 degrees C, is quite similar to that of fibrils produced at atmospheric pressure (pH 4.4), which suggests that high hydrostatic pressure converts the tetramers of TTR into an amyloidogenic conformation.  相似文献   

13.
Cystatin C and the prion protein have been shown to form dimers via three-dimensional domain swapping, and this process has also been hypothesized to be involved in amyloidogenesis. Production of oligomers of other amyloidogenic proteins has been reported to precede fibril formation, suggesting oligomers as intermediates in fibrillogenesis. A variant of cystatin C, with a Leu68-->Gln substitution, is highly amyloidogenic, and carriers of this mutation suffer from massive cerebral amyloidosis leading to brain hemorrhage and death in early adulthood. This work describes doughnut-shaped oligomers formed by wild type and L68Q cystatin C upon incubation of the monomeric proteins. Purified oligomers of cystatin C are shown to fibrillize faster and at a lower concentration than the monomeric protein, indicating a role of the oligomers as fibril-assembly intermediates. Moreover, the present work demonstrates that three-dimensional domain swapping is involved in the formation of the oligomers, because variants of monomeric cystatin C, stabilized against three-dimensional domain swapping by engineered disulfide bonds, do not produce oligomers upon incubation under non-reducing conditions. Redox experiments using wild type and stabilized cystatin C strongly suggest that the oligomers, and thus probably the fibrils as well, are formed by propagated domain swapping rather than by assembly of domain-swapped cystatin C dimers.  相似文献   

14.
BackgroundMany polyphenols have been proposed as broad-spectrum inhibitors of amyloid formation. To investigate structure–activity relationships relevant for the interaction of flavonoids with transthyretin (TTR), the protein associated with familial amyloid polyneuropathy (FAP), we compared the effects of major tea catechins and their larger polymers theaflavins, side-by-side, on TTR amyloid formation process.MethodsInteraction of flavonoids with TTR and effect on TTR stability were assessed through binding assays and isoelectric focusing in polyacrylamide gel. TTR aggregation was studied, in vitro, by dynamic light scattering (DLS), transmission electron microscopy (TEM) and in cell culture, through cytotoxicity assays.ResultsTested flavonoids bound to TTR and stabilized the TTR tetramer, with different potencies. The flavonoids also inhibited in vitro formation of TTR small oligomeric species and in cell culture inhibited pathways involving caspase-3 activation and ER stress that are induced by TTR oligomers. In all assays performed the galloyl esters presented higher potency to inhibit aggregation than the non-gallated flavonoids tested.ConclusionsOur results highlight the presence of gallate ester moiety as key structural feature of flavonoids in chemical chaperoning of TTR aggregation. Upon binding to the native tetramer, gallated flavonoids redirect the TTR amyloidogenic pathway into unstructured nontoxic aggregation assemblies more efficiently than their non-gallated forms.General significanceOur findings suggest that galloyl moieties greatly enhance flavonoid anti-amyloid chaperone activity and this should be taken into consideration in therapeutic candidate drug discovery.  相似文献   

15.
Transthyretin (TTR) amyloid fibrils are the main component of the amyloid deposits occurring in Familial Amyloidotic Polyneuropathy patients. This is 1 of 20 human proteins leading to protein aggregation disorders such as Alzheimer's and Creutzfeldt-Jakob diseases. The structural details concerning the association of the protein molecules are essential for a better understanding of the disease and consequently the design of new strategies for diagnosis and therapeutics. Disulfide bonds are frequently considered essential for the stability of protein aggregates and since in the TTR monomers there is one cysteine residue, it is important to determine unambiguously the redox state of sulfur present in the fibrils. In this work we used x-ray spectroscopy to further characterize TTR amyloid fibrils. The sulfur K-edge absorption spectra for the wild type and some amyloidogenic TTR variants in the soluble and fibrillar forms were analyzed. Whereas in the soluble proteins the thiol group from cysteine (R-SH) and the thioether group from methionine (R-S-CH(3)) are the most abundant forms, in the TTR fibrils there is a significant oxidation of sulfur to the sulfonate form in the cysteine residue and a partial oxidation of sulfur to sulfoxide in the methionine residues. Further interpretation of the data reveals that there are no disulfide bridges in the fibrillar samples and suggest conformational changes in the TTR molecule, namely in strand A and/or in its vicinity, upon fibril formation.  相似文献   

16.
Almeida MR  Saraiva MJ 《FEBS letters》2012,586(18):2891-2896
Increasing evidence indicates that accumulation of misfolded proteins in the form of oligomers, protofibrils or amyloid fibrils, and their consequences in triggering intracellular signaling cascades with toxic consequences represent unifying events in many of slowly progressive neurodegenerative disorders. Studies with small compounds or molecules, known to recognize and disrupt amyloidogenic structures, have proven efficient in promoting clearance of protein aggregates in experimental models of systemic and localized forms of amyloidoses. Doxycycline and EGCG were efficient in removing aggregates in pre-clinical studies in a transgenic mouse model for transthyretin (TTR) systemic amyloidosis and represent an opportunity to address mechanisms and key players in deposit removal. Extracellular chaperones, such as clusterin and metalloproteinases play an important role in this process.  相似文献   

17.
Transthyretin (TTR) is one of the known human amyloidogenic proteins. Its native state is a homotetramer with each monomer having a beta-sandwich structure. Strong experimental evidence suggests that TTR dissociates into monomeric intermediates and that the monomers subsequently self-assemble to form amyloid deposits and insoluble fibrils. However, details on the early steps along the pathway of TTR amyloid formation are unclear, although various experimental approaches with resolutions at the molecular or residue level have provided some clues. It is highly likely that the stability and flexibility of monomeric TTR play crucial roles in the early steps of amyloid formation; thereby, it is essential to characterize initial conformational changes of TTR monomers. In this article we probe the possibility that the differences in the monomeric forms of wild-type (WT) TTR and its variants are responsible for differential amyloidogenesis. We begin with the simulations of WT, Val30-->Met (V30M), and Leu55-->Pro (L55P) TTR monomers. Nanosecond time scale molecular dynamics simulations at 300 K were performed using AMBER. The results indicate that the L55P-TTR monomer undergoes substantial structural changes relative to fluctuations observed in the WT and V30M TTR monomers. The observation supports earlier speculation that the L55P mutation may lead to disruption of the beta-sheet structure through the disorder of the "edge strands" that might facilitate amyloidogenesis.  相似文献   

18.
Abnormal aggregation of islet amyloid polypeptide (IAPP) into amyloid fibrils is a hallmark of type 2 diabetes. In this study, we investigated the initial oligomerization and subsequent addition of monomers to growing aggregates of human IAPP at the residue-specific level using NMR, atomic force microscopy, mass spectroscopy, and computational simulations. We found that in solution IAPPs rapidly associate into transient low-order oligomers such as dimers and trimers via interactions between histidine 18 and tyrosine 37. This initial event is proceeded by slow aggregation into higher-order spherical oligomers and elongated fibrils. In these two morphologically distinct types of aggregates IAPPs adopt structures with markedly different residual flexibility. Here we show that the anti-amyloidogenic compound resveratrol inhibits oligomerization and amyloid formation via binding to histidine 18, supporting the finding that this residue is crucial for on-pathway oligomer formation.  相似文献   

19.
Rational design of potent human transthyretin amyloid disease inhibitors   总被引:4,自引:0,他引:4  
The human amyloid disorders, familial amyloid polyneuropathy, familial amyloid cardiomyopathy and senile systemic amyloidosis, are caused by insoluble transthyretin (TTR) fibrils, which deposit in the peripheral nerves and heart tissue. Several nonsteroidal anti-inflammatory drugs and structurally similar compounds have been found to strongly inhibit the formation of TTR amyloid fibrils in vitro. These include flufenamic acid, diclofenac, flurbiprofen, and resveratrol. Crystal structures of the protein-drug complexes have been determined to allow detailed analyses of the protein-drug interactions that stabilize the native tetrameric conformation of TTR and inhibit the formation of amyloidogenic TTR. Using a structure-based drug design approach ortho-trifluormethylphenyl anthranilic acid and N-(meta-trifluoromethylphenyl) phenoxazine 4, 6-dicarboxylic acid have been discovered to be very potent and specific TTR fibril formation inhibitors. This research provides a rationale for a chemotherapeutic approach for the treatment of TTR-associated amyloid diseases.  相似文献   

20.
We showed that the genetically engineered carrier-protein albebetin and its biologically active constructs with interferon-alpha(2) octapeptide LKEKKYSP or differentiation factor hexapeptide TGENHR are inherently highly amyloidogenic at physiological pH. The kinetics of fibrillation were monitored by thioflavine-T (ThT) binding and the morphological changes by atomic force microscopy. Fibrillation proceeds via multiple pathways and includes a hierarchy of amyloid structures ranging from oligomers to protofilaments and fibrils. Comparative height and volume microscopic measurements allowed us to identify two distinct types of oligomeric intermediates: pivotal oligomers ca. 1.2 nm in height comprised of 10-12 monomers and on-pathway amyloid-competent oligomers ca. 2 nm in height constituted of 26-30 molecules. The former assemble into chains and rings with "bead-on-string morphology", in which a "bead" corresponds to an individual oligomer. Once formed, the rings and chains remain in solution simultaneously with fibrils. The latter give rise to protofilaments and fibrils, and their formation is concomitant with an increasing level of ThT binding. The amyloid nature of filamentous structures was confirmed by a pronounced ThT and Congo red binding and beta-sheet-rich far-UV circular dichroism. We suggest that transformation of the pivotal oligomers into the amyloid-prone ones is a limiting stage in amyloid assembly. Peptides, either fused to albebetin or added into solution, and an increased ionic strength promote fibrillation of albebetin (net charge of -12) by counterbalancing critical electrostatic repulsions. This finding demonstrates that the fibrillation of newly designed polypeptide-based products can produce multimeric amyloid species with a potentially "new" functionality, raising questions about their safety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号