首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Cystatin C and the prion protein have been shown to form dimers via three-dimensional domain swapping, and this process has also been hypothesized to be involved in amyloidogenesis. Production of oligomers of other amyloidogenic proteins has been reported to precede fibril formation, suggesting oligomers as intermediates in fibrillogenesis. A variant of cystatin C, with a Leu68-->Gln substitution, is highly amyloidogenic, and carriers of this mutation suffer from massive cerebral amyloidosis leading to brain hemorrhage and death in early adulthood. This work describes doughnut-shaped oligomers formed by wild type and L68Q cystatin C upon incubation of the monomeric proteins. Purified oligomers of cystatin C are shown to fibrillize faster and at a lower concentration than the monomeric protein, indicating a role of the oligomers as fibril-assembly intermediates. Moreover, the present work demonstrates that three-dimensional domain swapping is involved in the formation of the oligomers, because variants of monomeric cystatin C, stabilized against three-dimensional domain swapping by engineered disulfide bonds, do not produce oligomers upon incubation under non-reducing conditions. Redox experiments using wild type and stabilized cystatin C strongly suggest that the oligomers, and thus probably the fibrils as well, are formed by propagated domain swapping rather than by assembly of domain-swapped cystatin C dimers.  相似文献   

2.
Amyloidogenic proteins like cystatin C and prion proteins have been shown to form dimers by exchange of subdomains of the monomeric proteins. This process, called "three-dimensional domain swapping," has also been suggested to play a part in the generation of amyloid fibrils. One variant of cystatin C, L68Q cystatin C, is highly amyloidogenic, and persons carrying the corresponding gene suffer from massive cerebral amyloidosis leading to brain hemorrhage and death in early adult life. The present work describes the production of two variants of wild type and L68Q cystatin C with disulfide bridges at positions selected to inhibit domain swapping without affecting the biological function of the four cystatin C variants as cysteine protease inhibitors. The capacity of the four variant proteins to form dimers was tested and compared with that of wild type and L68Q cystatin C. In contrast to the latter two proteins, all four protein variants stabilized by disulfide bridges were resistant toward the formation of dimers. The capacity of the two stabilized variants of wild type cystatin C to form amyloid fibrils was investigated and found to be reduced by 80% compared with that of wild type cystatin C. In an effort to investigate whether exogenous agents could also suppress the formation of dimers of wild type and L68Q cystatin C, a monoclonal antibody or carboxymethylpapain, an inactivated form of a cysteine protease, was added to systems inducing dimerization of wild type and L68Q cystatin C. It was observed that catalytic amounts of both the monoclonal antibody and carboxymethylpapain could suppress dimerization.  相似文献   

3.
In 3D domain swapping, first described by Eisenberg, a structural element of a monomeric protein is replaced by the same element from another subunit. This process requires partial unfolding of the closed monomers that is then followed by adhesion and reconstruction of the original fold but from elements contributed by different subunits. If the interactions are reciprocal, a closed-ended dimer will be formed, but the same phenomenon has been suggested as a mechanism for the formation of open-ended polymers as well, such as those believed to exist in amyloid fibrils. There has been a rapid progress in the study of 3D domain swapping. Oligomers higher than dimers have been found, the monomer-dimer equilibrium could be controlled by mutations in the hinge element of the chain, a single protein has been shown to form more than one domain-swapped structure, and recently, the possibility of simultaneous exchange of two structural domains by a single molecule has been demonstrated. This last discovery has an important bearing on the possibility that 3D domain swapping might be indeed an amyloidogenic mechanism. Along the same lines is the discovery that a protein of proven amyloidogenic properties, human cystatin C, is capable of 3D domain swapping that leads to oligomerization. The structure of domain-swapped human cystatin C dimers explains why a naturally occurring mutant of this protein has a much higher propensity for aggregation, and also suggests how this same mechanism of 3D domain swapping could lead to an open-ended polymer that would be consistent with the cross-beta structure, which is believed to be at the heart of the molecular architecture of amyloid fibrils.  相似文献   

4.
Cystatins, an amyloid-forming structural superfamily, form highly stable, domain-swapped dimers at physiological protein concentrations. In chicken cystatin, the active monomer is a kinetic trap en route to dimerization, and any changes in solution conditions or mutations that destabilize the folded state shorten the lifetime of the monomeric form. In such circumstances, amyloidogenesis will start from conditions where a domain-swapped dimer is the most prevalent species. Domain swapping occurs by a rearrangement of loop I, generating the new intermonomer interface between strands 2 and 3. The transition state for dimerization has a high level of hydrophobic group exposure, indicating that gross conformational perturbation is required for domain swapping to occur. Dimerization also occurs when chicken cystatin is in its reduced, molten-globule state, implying that the organization of secondary structure in this state mirrors that in the folded state and that domain swapping is not limited to the folded states of proteins. Although the interface between cystatin-fold units is poorly defined for cystatin A, the dimers are the appropriate size to account for the electron-dense regions in amyloid protofilaments.  相似文献   

5.
The crystal structure of human cystatin C, a protein with amyloidogenic properties and a potent inhibitor of cysteine proteases, reveals how the protein refolds to produce very tight two-fold symmetric dimers while retaining the secondary structure of the monomeric form. The dimerization occurs through three-dimensional domain swapping, a mechanism for forming oligomeric proteins. The reconstituted monomer-like domains are similar to chicken cystatin except for one inhibitory loop that unfolds to form the 'open interface' of the dimer. The structure explains the tendency of human cystatin C to dimerize and suggests a mechanism for its aggregation in the brain arteries of elderly people with amyloid angiopathy. A more severe 'conformational disease' is associated with the L68Q mutant of human cystatin C, which causes massive amyloidosis, cerebral hemorrhage and death in young adults. The structure of the three-dimensional domain-swapped dimers shows how the L68Q mutation destabilizes the monomers and makes the partially unfolded intermediate less unstable. Higher aggregates may arise through the three-dimensional domain-swapping mechanism occurring in an open-ended fashion in which partially unfolded molecules are linked into infinite chains.  相似文献   

6.
Cystatins are natural inhibitors of cysteine proteases, enzymes that are widely distributed in animals, plants, and microorganisms. Human cystatin C (hCC) has been also recognized as an aggregating protein directly involved in the formation of pathological amyloid fibrils, and these amyloidogenic properties greatly increase in a naturally occurring L68Q hCC variant. For a long time only dimeric structure of wild-type hCC has been known. The dimer is created through 3D domain swapping process, in which two parts of the cystatin structure become separated from each other and next exchanged between two molecules. Important role in the domain swapping plays the L1 loop, which connects the exchanging segments and, upon dimerization, transforms from a β-turn into a part of a long β-strand. In the very recently published first monomeric structure of human cystatin C (hCC-stab1), dimerization was abrogated due to clasping of the β-strands from the swapping domains by an engineered disulfide bridge. We have designed and constructed another mutated cystatin C with the smallest possible structural intervention, that is a single-point mutation replacing hydrophobic V57 from the L1 loop by polar asparagine, known as a stabilizer of a β-turn motif. V57N hCC mutant occurred to be stable in its monomeric form and crystallized as a monomer, revealing typical cystatin fold with a five-stranded antiparallel β-sheet wrapped around an α-helix. Here we report a 2.04 Å resolution crystal structure of V57N hCC and discuss the architecture of the protein in comparison to chicken cystatin, hCC-stab1 and dimeric hCC.  相似文献   

7.
The cysteine protease inhibitor cystatin C is thought to be secreted by most cells and eliminated in the kidneys, so its concentration in plasma is diagnostic of kidney function. Low extracellular cystatin C is linked to pathologic protease activity in cancer, arthritis, atherosclerosis, aortic aneurism, and emphysema. Cystatin C forms non-inhibitory dimers and aggregates by a mechanism known as domain swapping, a property that reportedly protects against Alzheimer disease but can also cause amyloid angiopathy. Despite these clinical associations, little is known about the regulation of cystatin C production, dimerization, and secretion. We show that hematopoietic cells are major contributors to extracellular cystatin C levels in healthy mice. Among these cells, macrophages and dendritic cells (DC) are the predominant producers of cystatin C. Both cell types synthesize monomeric and dimeric cystatin C in vivo, but only secrete monomer. Dimerization occurs co-translationally in the endoplasmic reticulum and is regulated by the levels of reactive oxygen species (ROS) derived from mitochondria. Drugs or stimuli that reduce the intracellular concentration of ROS inhibit cystatin C dimerization. The extracellular concentration of inhibitory cystatin C is thus partly dependent on the abundance of macrophages and DC, and the ROS levels. These results have implications for the diagnostic use of serum cystatin C as a marker of kidney function during inflammatory processes that induce changes in DC or macrophage abundance. They also suggest an important role for macrophages, DC, and ROS in diseases associated with the protease inhibitory activity or amyloidogenic properties of cystatin C.  相似文献   

8.
Identification of the epitope for anti-cystatin C antibody   总被引:1,自引:0,他引:1  
Human cystatin C (hCC), like many other amyloidogenic proteins, has been shown to form dimers by exchange of subdomains of the monomeric protein. Considering the model of hCC fibrillogenesis by propagated domain swapping, it seems possible that inhibition of this process should also suppress the entire process of dimerization and fibrillogenesis which leads to specific amyloidosis (hereditary cystatin C amyloid angiopathy (HCCAA)). It was reported that exogenous agents like monoclonal antibody against cystatin C are able to suppress formation of cystatin C dimers. In the effort to find a way of controlling the cystatin fibrillization process, the interactions between monoclonal antibody Cyst-13 and cystatin C were studied in detail. The present work describes the determination of the epitope of hCC to a monoclonal antibody raised against cystatin C, Cyst-13, by MALDI mass spectrometry, using proteolytic excision of the immune complex. The shortest epitope sequence was determined as hCC(107-114). Affinity studies of synthetic peptides revealed that the octapeptide with epitope sequence does not have binding ability to Cyst-13, whereas its longer counterpart, hCC(105-114), binds the studied antibody. The secondary structure of the peptides with epitope sequence was studied using circular dichroism and NMR spectroscopy.  相似文献   

9.
Ample evidence suggests that almost all polypeptides can either adopt a native structure (folded or intrinsically disordered) or form misfolded amyloid fibrils. Soluble protein oligomers exist as an intermediate between these two states, and their cytotoxicity has been implicated in the pathology of multiple human diseases. However, the mechanism by which soluble protein oligomers develop into insoluble amyloid fibrils is not clear, and investigation of this important issue is hindered by the unavailability of stable protein oligomers. Here, we have obtained stabilized protein oligomers generated from common native proteins. These oligomers exert strong cytotoxicity and display a common conformational structure shared with known protein oligomers. They are soluble and remain stable in solution. Intriguingly, the stabilized protein oligomers interact preferentially with both nucleic acids and glycosaminoglycans (GAG), which facilitates their rapid conversion into insoluble amyloid. Concomitantly, binding with nucleic acids or GAG strongly diminished the cytotoxicity of the protein oligomers. EGCG, a small molecule that was previously shown to directly bind to protein oligomers, effectively inhibits the conversion to amyloid. These results indicate that stabilized oligomers of common proteins display characteristics similar to those of disease-associated protein oligomers and represent immediate precursors of less toxic amyloid fibrils. Amyloid conversion is potently expedited by certain physiological factors, such as nucleic acids and GAGs. These findings concur with reports of cofactor involvement with disease-associated amyloid and shed light on potential means to interfere with the pathogenic properties of misfolded proteins.  相似文献   

10.
Human cystatin C (HCC) inhibits papain-like cysteine proteases by a binding epitope composed of two beta-hairpin loops and the N-terminal segment. HCC is found in all body fluids and is present at a particularly high level in the cerebrospinal fluid. Oligomerization of HCC leads to amyloid deposits in brain arteries at advanced age but this pathological process is greatly accelerated with a naturally occurring Leu68Gln variant, resulting in fatal amyloidosis in early adult life. When proteins are extracted from human cystatin C amyloid deposits, an N-terminally truncated cystatin C (THCC) is found, lacking the first ten amino acid residues of the native sequence. It has been shown that the cerebrospinal fluid may cause this N-terminal truncation, possibly because of disintegration of the leucocytes normally present in this fluid, and the release of leucocyte proteolytic enzymes. HCC is the first disease-causing amyloidogenic protein for which oligomerization via 3D domain swapping has been observed. The aggregates arise in the crystallization buffer and have the form of 2-fold symmetric dimers in which a long alpha-helix of one molecule, flanked by two adjacent beta-strands, has replaced an identical domain of the other molecule, and vice versa. Consistent with a conformational change at one of the beta-hairpin loops of the binding epitope, the dimers (and also any other oligomers, including amyloid aggregates) are inactive as papain inhibitors. Here, we report the structure of N-truncated HCC, the dominant form of cystatin C in amyloid deposits. Although the protein crystallized under conditions that are drastically different from those for the full-length protein, the structure reveals dimerization by the same act of domain swapping. However, the new crystal structure is composed of four independent HCC dimers, none of which has the exact 2-fold symmetry of the full-length dimer. While the four dimers have the same overall topology, the exact relation between the individual domains shows a variability that reflects the flexibility at the dimer-specific open interface, which in the case of 3D domain-swapped HCC consists of beta-interactions between the open hinge loops and results in an unusually long intermolecular beta-sheet. The dimers are engaged in further quaternary interactions resulting in spherical, closed octameric assemblies that are identical to that present in the crystal of the full-length protein. The octamers interact via hydrophobic patches formed on the surface of the domain-swapped dimers as well as by extending the dimer beta-sheet through intermolecular contacts.  相似文献   

11.
It has been hypothesized that prior to protein domain swapping, unfolding occurs in regions important for the stability of the native monomeric structure, which probably increases the possibility of intermolecular interaction. In order to explore the detailed information of the important unfolding regions in cystatin prior to domain swapping, 20?ns molecular dynamic simulations were performed at atomic level with typical amyloidogenic chicken cystatin (cC) mutant I66Q monomer under conditions that enable forming amyloid fibrils in biological experiments. Our results showed that I66Q mutant exhibited relatively large secondary structure changes and obvious expanding tendency of hydrophobic core compared to wild-type cC. More importantly, the appendant structure (AS) showed a large displacement and distortion towards the hydrophobic core in amyloidogenic cystatin. The structural analysis on cystatin monomer suggested that structural changes of the AS might make the hydrophobic core expand more easily. In addition, analysis on docking dimer has shown that the distorted AS was favor to intermolecular interactions between two cystatin monomers. Data from an independent theoretical derived algorithm as well as biological experiments also support this hypothesis.  相似文献   

12.
Human cystatin C variant (L68Q), one of the amyloidgenic proteins, has been shown to form dimeric structure spontaneously via domain swapping and easily cause amyloid deposits in the brains of patients suffering from Alzheimer's disease or hereditary cystatin C amyloid angiopathy. The monomeric L68Q and wild-type (wt) HCCs share similar structural feature consisting of a core with a five-stranded anti-parallel beta-sheet (beta-region) wrapped around a central helix. In this study, various molecular dynamics simulations were conducted to investigate the conformational fluctuations of the monomeric L68Q and wt HCCs at various combinations of temperature (300 and 500K) and pH (2 and 7) to gain insights into the domain swapping mechanism. The results show that elevated temperature accelerates the disruption of the hydrophobic core and acidic condition promotes the destruction of three salt bridges between beta2 and beta3 in both HCCs. The results also indicate that the interior hydrophobic core of the L68Q variant is relatively unstable, leading to domain swapping more readily comparing to wt HCC under conditions favoring this process. However, these two monomeric HCCs adopt the same mechanism of domain swapping as follows: (i) first, the interior hydrophobic core is disrupted; (ii) subsequently, the central helix departs from the beta-region; (iii) then, the beta2-L1-beta3 hairpin structure unfolds following the so-called "zip-up" mechanism; and (iv) finally, the open form HCC is generated.  相似文献   

13.
It has been hypothesized that prior to protein domain swapping, unfolding occurs in regions important for the stability of the native monomeric structure, which probably increases the possibility of intermolecular interaction. In order to explore the detailed information of the important unfolding regions in cystatin prior to domain swapping, 20?ns molecular dynamic simulations were performed at atomic level with typical amyloidogenic chicken cystatin (cC) mutant I66Q monomer under conditions that enable forming amyloid fibrils in biological experiments. Our results showed that I66Q mutant exhibited relatively large secondary structure changes and obvious expanding tendency of hydrophobic core compared to wild-type cC. More importantly, the appendant structure (AS) showed a large displacement and distortion towards the hydrophobic core in amyloidogenic cystatin. The structural analysis on cystatin monomer suggested that structural changes of the AS might make the hydrophobic core expand more easily. In addition, analysis on docking dimer has shown that the distorted AS was favor to intermolecular interactions between two cystatin monomers. Data from an independent theoretical derived algorithm as well as biological experiments also support this hypothesis.  相似文献   

14.
The formation of amyloid-like fibrils is characteristic of various diseases, but the underlying mechanism and the factors that determine whether, when, and how proteins form amyloid, remain uncertain. Certain mechanisms have been proposed based on the three-dimensional or runaway domain swapping, inspired by the fact that some proteins show an apparent correlation between the ability to form domain-swapped dimers and a tendency to form fibrillar aggregates. Intramolecular β-sheet contacts present in the monomeric state could constitute intermolecular β-sheets in the dimeric and fibrillar states. One example is an amyloid-forming mutant of the immunoglobulin binding domain B1 of streptococcal protein G, which in its native conformation consists of a four-stranded β-sheet and one α-helix. Under native conditions this mutant adopts a domain-swapped dimer, and it also forms amyloid-like fibrils, seemingly in correlation to its domain-swapping ability. We employ magic angle spinning solid-state NMR and other methods to examine key structural features of these fibrils. Our results reveal a highly rigid fibril structure that lacks mobile domains and indicate a parallel in-register β-sheet structure and a general loss of native conformation within the mature fibrils. This observation contrasts with predictions that native structure, and in particular intermolecular β-strand interactions seen in the dimeric state, may be preserved in "domain-swapping" fibrils. We discuss these observations in light of recent work on related amyloid-forming proteins that have been argued to follow similar mechanisms and how this may have implications for the role of domain-swapping propensities for amyloid formation.  相似文献   

15.
Human L68Q cystatin C is one of the known human amyloidogenic proteins. In its native state it is a monomer with alpha/beta structure. Experimental evidence suggests that L68Q variant associates into dimeric intermediates and that the dimers subsequently self-assemble to form amyloid deposits and insoluble fibrils. Details of the pathway of L68Q mutant amyloid formation are unclear; however, different experimental approaches with resolutions at molecular level have provided some clues. Probably, the stability and flexibility of monomeric L68Q variant play essential roles in the early steps of amyloid formation; thus, it is necessary to characterize early conformational changes of L68Q cystatin C monomers. In this paper, we demonstrate the possibility that the differences between the monomeric forms of wild-type (wt) cystatin C and its L68Q variant are responsible for higher tendency of the L68Q cystatin C amyloidogenesis. We started our studies with the simulations of wt and L68Q cystatin C monomers. Nanosecond time scale molecular dynamics simulations at 308K were performed using AMBER7.0 program. The results show that the structure of the L68Q monomer was changed, relative to the wt cystatin C structure. The results support earlier speculation that the L68Q point mutation would easily lead to dimer formation.  相似文献   

16.
Oligomerization of human cystatin C (HCC) leads to amyloid deposits in brain arteries, and this process is greatly accelerated with a naturally occurring L68Q variant. The crystal structures of N-truncated and full-length HCC (cubic form) showed dimer formation via three-dimensional (3D) domain swapping, and this observation has led to the suggestion that an analogous domain-swapping mechanism, but propagated in an open-ended fashion, could be the basis of HCC fibril formation. Here we report that full-length HCC, when crystallized in a new, tetragonal form, dimerizes by swapping the same secondary structure elements but with a very different overall structure generated by the flexibility of the hinge linking the moveable elements. The beta-strands of the beta-cores of the two folding units of the present dimer are roughly parallel, while they formed an angle of about 100 degrees in the previous two structures. The dimers pack around a crystallographic dyad by extending their molecular beta-sheets in an intermolecular context. At the other edge of the molecular beta-sheet, side-chain-side-chain hydrogen bonds propagate the beta-structure in the same direction. In consequence, a supramolecular crystal structure is generated, with all the beta-strands of the domain-swapped dimers being perpendicular to one crystallographic direction. This observation is relevant to amyloid aggregation of HCC, as X-ray diffraction studies of amyloid fibrils show them to have ordered, repeating structure, consistent with the so-called cross-beta structure, in which extended polypeptide chains are perpendicular to the fiber axis and form infinite beta-sheets that are parallel to this axis.  相似文献   

17.
Members of the cystatin superfamily are involved in an inherited form of cerebral amyloid angiopathy and readily form amyloid fibrils in vitro. We have determined the structured core of human stefin B (cystatin B) amyloid fibrils using quenched hydrogen exchange and NMR. The core contains residues from four of the five strands of the native β-sheet, delimited by unprotected loop regions analogous to those of the native monomeric structure. However, non-native features are also apparent, the most striking of which is the exclusion of the native α-helix. Before forming amyloid in vitro, cystatins dimerise via 3D domain swapping, and assemble into tetramers with trans to cis isomerism of a conserved proline. In the fibril, the hinge loop that forms an extended β-structure in the dimer remains protected, consistent with the domain-swapping interface being maintained. However, the fibril data are not compatible with a simple 3D domain-swapping model for amyloid formation, and the displacement of the helix points to alternative packing arrangements of native-like β-structure, in which proline isomerism is important in preventing steric clashing.  相似文献   

18.
Stomatin, prohibitin, flotillin, and HflK/C (SPFH) domain proteins are membrane proteins that are widely conserved from bacteria to mammals. The molecular functions of these proteins have not been established. In mammals, the domain is often found in raft-associated proteins such as flotillin and podocin. We determined the structure of the SPFH domain of PH0470 derived from Pyrococcus horikoshii using NMR. The structure closely resembles that of the SPFH domain of the paralog PH1511, except for two C-terminal helices. The results show that the SPFH domain forms stable dimers, trimers, tetramers, and multimers, although it lacks the coiled-coil region for oligomerization, which is a highly conserved region in this protein family. The oligomers exhibited unusual thermodynamic behavior, as determined by circular dichroism, NMR, gel filtration, chemical cross-linking, and analytical ultracentrifugation. The oligomers were converted into monomers when they were heated once and then cooled. This transition was one-way and irreversible. We propose a mechanism of domain swapping for forming dimers as well as successive oligomers. The results of this study provide what to our knowledge are new insights into the common molecular function of the SPFH domain, which may act as a membrane skeleton through oligomerization by domain swapping.  相似文献   

19.
Merlino A  Picone D  Ercole C  Balsamo A  Sica F 《Biochimie》2012,94(5):1108-1118
3D domain swapping is the process by which two or more protein molecules exchange part of their structure to form intertwined dimers or higher oligomers. Bovine pancreatic ribonuclease (RNase A) is able to swap the N-terminal α-helix (residues 1-13) and/or the C-terminal β-strand (residues 116-124), thus forming a variety of oligomers, including two different dimers. Cis-trans isomerization of the Asn113-Pro114 peptide group was observed when the protein formed the C-terminal swapped dimer. To study the effect of the substitution of Pro114 on the swapping process of RNase A, we have prepared and characterized the P114A monomeric and dimeric variants of the enzyme. In contrast with previous reports, the crystal structure and NMR data on the monomer reveals a mixed cis-trans conformation for the Asn113-Ala114 peptide group, whereas the X-ray structure of the C-terminal swapped dimer of the variant is very close to that of the corresponding dimer of RNase A. The mutation at the C-terminus affects the capability of the N-terminal α-helix to swap and the stability of both dimeric forms. The present results underscore the importance of the hydration shell in determining the cross-talk between the chain termini in the swapping process of RNase A.  相似文献   

20.
Prion diseases are fatal neurodegenerative disorders associated with conformational conversion of the cellular prion protein, PrP(C), into a misfolded, protease-resistant form, PrP(Sc). Here we show, for the first time, the oligomerization and fibrillization of the C-terminal domain of murine PrP, mPrP-(121-231), which lacks the entire unstructured N-terminal domain of the protein. In particular, the construct we used lacks amino acid residues 106-120 from the so-called amyloidogenic core of PrP (residues 106-126). Amyloid formation was accompanied by acquisition of resistance to proteinase K digestion. Aggregation of mPrP-(121-231) was investigated using a combination of biophysical and biochemical techniques at pH 4.0, 5.5, and 7.0 and at 37 and 65 degrees C. Under partially denaturing conditions (65 degrees C), aggregates of different morphologies ranging from soluble oligomers to mature amyloid fibrils of mPrP-(121-231) were formed. Transmission electron microscopy analysis showed that roughly spherical aggregates were readily formed when the protein was incubated at pH 5.5 and 65 degrees C for 1 h, whereas prolonged incubation led to the formation of mature amyloid fibrils. Samples incubated at 65 degrees C at pH 4.0 or 7.0 presented an initial mixture of oligomers and protofibrils or fibrils. Electrophoretic analysis of samples incubated at 65 degrees C revealed formation of sodium dodecyl sulfate-resistant oligomers (dimers, trimers, and tetramers) and higher molecular weight aggregates of mPrP-(121-231). These results demonstrate that formation of an amyloid form with physical properties of PrP(Sc) can be achieved in the absence of the flexible N-terminal domain and, in particular, of residues 106-120 of PrP and does not require other cellular factors or a PrP(Sc) template.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号