首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
武夷山不同海拔植被土壤呼吸季节变化及对温度的敏感性   总被引:9,自引:0,他引:9  
以武夷山国家级自然保护区为实验基地,研究了4种不同海拔高度上植物群落土壤呼吸速率的季节变化及其对温度的敏感性,以及与主要环境因子的关系.结果表明:4种不同海拔植物群落的土壤呼吸速率均具有明显且一致的季节变化,其中夏季土壤呼吸速率最大,为3.10~6.57 μmol CO2·m-2·s-1,冬季最小,为0.27~1.15 μmol CO2·m-2·s-1;土壤呼吸速率与土壤温度呈显著指数相关,不同样地土壤呼吸速率与土壤含水率和凋落物输入量的关系各不相同;高海拔地区土壤呼吸的Q10值显著高于低海拔地区.在中亚热带地区,不同海拔土壤呼吸速率的季节波动主要受土壤温度的影响;在未来全球气候变暖的背景下,高海拔地区的土壤可能释放更多的CO2.  相似文献   

2.
中亚热带人工针叶林对未来气候变化的响应   总被引:5,自引:0,他引:5  
利用基于生理生态学过程的EALCO模型,探讨了千烟洲中亚热带人工针叶林生态系统对未来气候变化的响应.结果表明:CO2浓度、温度和降水的变化对该人工林生态系统碳水通量影响的程度不同,其中CO2浓度>温度>降水.CO2浓度是生态系统总光合生产力(GPP)的主要驱动因子,温度与CO2浓度均是控制生态系统呼吸的主要环境因子,温度的升高使植物地上部分呼吸明显增加,而CO2浓度升高则对土壤呼吸影响较大.温度升高使蒸散(ET)增加,而CO2浓度升高则使ET减少.在未来气候变化情景(2100年)下,该人工林生态系统的净初级生产力将增加22%,说明其仍具有较强的固碳潜力.  相似文献   

3.
百菌清对土壤氧化亚氮和二氧化碳排放的影响   总被引:1,自引:0,他引:1  
郎漫  蔡祖聪 《应用生态学报》2008,19(12):2745-2750
在25 ℃、60%WHC(最大持水量)的好氧条件下进行14 d的培养试验,研究杀菌剂百菌清在添加水平为0 mg·kg-1(CK)、5.5 mg·kg-1(田间施用量,FR)及110 mg·kg-1(20FR)和220 mg·kg-1(40FR)时对酸性、中性和碱性土壤中N2O和CO2排放的影响.结果表明:百菌清对N2O和CO2排放的影响取决于土壤类型和施用浓度.与对照相比,百菌清在20FR和40FR时显著抑制了酸性土壤N2O的产生与排放;3种施用量均显著促进了中性土壤N2O的排放,其中FR水平的促进效果最显著;高浓度(20FR和40FR)的百菌清在培养初期抑制了碱性土壤N2O的排放,而在培养后期显著促进了N2O的排放.田间用量的百菌清对土壤CO2排放量没有明显影响;高浓度(20FR和40FR)时显著促进了酸性土壤CO2的排放,显著抑制了中性和碱性土壤CO2的排放.  相似文献   

4.
供氮和增温对倍增二氧化碳浓度下荫香叶片光合作用的影响   总被引:15,自引:3,他引:12  
供给0~0.6 mg N的盆栽荫香(Cinnamomum burmannii)幼树分别生长在倍增CO 2(+CO2,731 μmol·mol-1)和正常空气CO 2浓度(CO 2,365 μmol·mol-1)的生长箱内,昼夜温度分别为25/23 ℃和32/25 ℃,自然光照下生长30 d.以生长在CO2和25/23 ℃下的植株为对照研究增温和氮对+CO2叶片光合作用的影响.结果表明,在+CO2和25/23 ℃下无氮和氮处理植株的平均光合速率(Pnsat)较+CO2和32/25 ℃下的叶片高5.1%,温度增高降低叶片Pnsat;而Pnsat随供氮而增高.在+CO2条件下,生长在32/25 ℃下的叶片Rubisco最大羧化速率(Vcmax)和最大电子传递速率(Jmax)较25/23 ℃下的低(P<0.05),温度增高降低+CO2下叶片的Vcmax和Jmax在+CO2下叶片光合呼吸速率(Rp)较低,生长温度增高提升Rp.在CO2下生长温度从25/23 ℃增至32/25 ℃,叶片的Rubisco含量(NR)和Rubisco活化中心浓度(M)降低,而供氮能增高NR和M.供氮能减缓温度增高对倍增CO2下荫香叶片光合作用的限制.  相似文献   

5.
长期施肥对水稻土土壤有机碳矿化的影响   总被引:23,自引:0,他引:23  
以湖南省3个国家级稻田肥力变化长期定位监测点的土壤为材料,通过室内分析和培养试验,研究了不同施肥处理下土壤有机碳矿化特征及土壤总有机碳、微生物量碳和水溶性有机碳对土壤有机碳矿化的影响.结果表明:3个监测点各施肥处理的土壤CO2累积排放量为448.64~1 516.77 μg·g-1,CH4累积排放量为15.60~33.34 μg·g-1,在58 d的培养期内土壤有机碳矿化量占总有机碳的3.59%~5.57%;不同处理CO2的产生速率均在前期保持较高水平,之后迅速下降,后期较慢并趋于平稳,CH4的产生速率表现为先缓慢升高后迅速降低的变化趋势;化肥配施有机肥处理显著增加了CO2和CH4的累积排放量;不同施肥处理土壤有机碳矿化量与总有机碳、微生物量碳和水溶性有机碳含量之间的相关性达到了极显著水平,而与矿化量所占土壤总有机碳的比例无明显相关关系.  相似文献   

6.
二氧化碳和臭氧浓度升高对春小麦生长及次生代谢的影响   总被引:2,自引:0,他引:2  
李果梅  史奕  陈欣 《应用生态学报》2008,19(6):1283-1288
通过开顶式气室(OTCs)研究了OTC对照(自然CO2浓度约342 μmol·mol-1,O3浓度约30 nmol·mol-1)、高浓度CO2(550 μmol·mol-1)、高浓度O3(浓度为80 nmol·mol-1)及其交互作用(CO2 550 μmol ·mol-1,O3 80 nmol·mol-1)对春小麦不同发育时期生物量、总酚量、黄酮含量及成熟期产量性状的影响.结果表明:CO2浓度增加条件下,春小麦生物量和产量性状都显著高于OTC对照(P<0.05);而O3浓度升高条件下,小麦生物量降低,株高、穗长、穗粒质量及千粒重也显著低于对照;CO2和O3交互作用下各项指标处于二者之间.说明CO2可以缓解O3对小麦的负效应,而O3对CO2的正效应具有削弱作用,但二者的作用并非简单的叠加.CO2、O3浓度增加及其交互作用显著增加了春小麦叶片中的总酚含量,其中两者交互作用的效应更大,但在小麦生长后期,总酚含量增加量比对照有所降低.在小麦生长前期,各处理总黄酮含量均低于对照;而在成熟期,各处理都显著高于对照.  相似文献   

7.
大气二氧化碳浓度变化对禾谷缢管蚜种群动态的影响   总被引:3,自引:0,他引:3  
张钧  杨惠敏等 《昆虫学报》2002,45(4):477-481
利用开顶式熏气室研究了大气CO2浓度和土壤水分对禾谷缢管蚜Rhopalosiphum padi (L.)种群动态的影响,并分析了禾谷缢管蚜密度与被处理小麦叶片化学成分的关系。结果表明:(1)禾谷缢管蚜种群密度随CO2浓度升高而持续增大并与土壤水分密切相关,各CO2浓度下均以60%田间持水量时的密度最大;(2)CO2和土壤水分对小麦叶片化学成分有明显的影响,麦叶水分、可溶性蛋白质、可溶性糖、淀粉含量随CO2浓度和土壤水分含量上升而增加,纤维素含量随CO2浓度上升而增加、随土壤水分含量上升而降低,单宁、丁布(DIMBOA)含量在CO2浓度为550 μl/L时最高,但单宁含量随土壤水分上升而增加,丁布含量在60%田间持水量时最低;(3)禾谷缢管蚜密度与叶片水分、可溶性蛋白质、可溶性糖、淀粉含量呈正相关,与丁布、单宁含量呈负相关。结论:在未来的气候条件下,随着CO2浓度升高禾谷缢管蚜种群可能会持续增长,这种增长在半干旱区更加突出。禾谷缢管蚜种群增长的原因之一是大气CO2和土壤水分条件改变了植物的化学成分构成。  相似文献   

8.
大气二氧化碳浓度变化对禾谷缢管蚜种群动态的影响   总被引:1,自引:1,他引:0  
利用开顶式熏气室研究了大气CO2浓度和土壤水分对禾谷缢管蚜Rhopalosiphum padi (L.)种群动态的影响,并分析了禾谷缢管蚜密度与被处理小麦叶片化学成分的关系。结果表明:(1)禾谷缢管蚜种群密度随CO2浓度升高而持续增大并与土壤水分密切相关,各CO2浓度下均以60%田间持水量时的密度最大;(2)CO2和土壤水分对小麦叶片化学成分有明显的影响,麦叶水分、可溶性蛋白质、可溶性糖、淀粉含量随CO2浓度和土壤水分含量上升而增加,纤维素含量随CO2浓度上升而增加、随土壤水分含量上升而降低,单宁、丁布(DIMBOA)含量在CO2浓度为550 μl/L时最高,但单宁含量随土壤水分上升而增加,丁布含量在60%田间持水量时最低;(3)禾谷缢管蚜密度与叶片水分、可溶性蛋白质、可溶性糖、淀粉含量呈正相关,与丁布、单宁含量呈负相关。结论:在未来的气候条件下,随着CO2浓度升高禾谷缢管蚜种群可能会持续增长,这种增长在半干旱区更加突出。禾谷缢管蚜种群增长的原因之一是大气CO2和土壤水分条件改变了植物的化学成分构成。  相似文献   

9.
北京市六种针叶树叶面附着颗粒物的理化特征   总被引:4,自引:0,他引:4  
对北京市6种针叶树叶面颗粒物附着密度、叶表面微形态、颗粒物矿物与元素组成的研究结果表明:同一树种叶面颗粒物附着密度随大气颗粒物浓度增加而增大;同一地点不同树种叶面颗粒物附着密度存在很大差异,圆柏、侧柏颗粒物附着密度最高,其次为雪松、白皮松,油松、云杉最低;受地面扬尘影响,低矮叶片较高处叶片颗粒物附着密度大;受降雨和新生叶片稀释影响,夏季颗粒物附着密度小于冬季.叶表面粗糙程度越大,颗粒物附着密度越高.SiO2、CaCO3、CaMg(CO3)2、NaCl、2CaSO4·H2O、CaSO4·2H2O、Fe2O3 7种主要矿物占叶面颗粒物总质量的10%~30%,其中,SiO2含量最高,其次为CaMg(CO3)2 、CaSO4·2H2O和CaCO3.此外,还含有蒙脱石、伊利石、高岭石等粘土矿物及长石.21种测定元素占叶面颗粒物总质量的16%~37%,其中Ca、Al、Fe、Mg、K、Na、S 7种元素占测定元素总质量的97%以上,其它痕量污染元素含量很少,并且受采样地点和树种影响较小.  相似文献   

10.
姚青  赵若琼  沈佐锐 《昆虫学报》2006,49(1):154-159
在20℃下,利用CO2红外分析仪采集了美洲大蠊Periplaneta americana、褐斑大蠊P.brunnea、澳洲大蠊P.australasiae和德国小蠊Blattella germanica的呼吸信号。结果表明,它们均具有典型的不连续气体交换循环(discontinuous gas exchange cycle, DGC)呼吸模式,且一个DGC可分为爆发间期和爆发期2个阶段。4种蜚蠊雄性成虫DGC的特征各异:美洲大蠊完成一个DGC周期平均约需24.55 min,明显长于褐斑大蠊(11.67 min)和澳洲大蠊(10.75 min),德国小蠊周期最短,仅为4.41 min;对于爆发间期历时在整个DGC历时所占的比例,美洲大蠊最大,平均为57%,德国小蠊次之,为48%,褐斑大蠊和澳洲大蠊比较接近,分别为37%和36%。德国小蠊单位体重的CO2平均释放速率最大,而另外3种蜚蠊的差异不明显。4种蜚蠊爆发期CO2释放体积均随DGC历时增加而增加,美洲大蠊和德国小蠊单位体重的CO2平均释放率随DGC历时增加而减少,在褐斑大蠊和澳洲大蠊中它们关系不明显。美洲大蠊、褐斑大蠊和澳洲大蠊CO2平均释放率和爆发期CO2释放体积与体重呈正相关,在德国小蠊中关系不明显;4种蜚蠊DGC各阶段历时和DGC频率与它们体重的关系均不明显。  相似文献   

11.
 根呼吸与微生物呼吸的作用底物不同,二者对高浓度CO2的响应机理及敏感程度亦不同。在大气CO2浓度升高的背景下,精确区分根呼吸与微生物呼吸是构建森林生态系统碳循环模型和预测森林生态系统碳源/汇关系所必需的。根(际)呼吸与微生物呼吸对高浓度CO2的响应呈增加、降低或无明显变化等不同趋势,根(际)呼吸变化主要与根生物量明显相关,细根的作用大于粗根;土壤微生物呼吸变化存在较大的不确定性,微生物量和微生物活性与土壤微生物呼吸相关或不相关。根系统对高浓度CO2的响应会潜在地影响微生物的代谢底物,进而影响微生物呼吸强度。凡影响土壤总呼吸的生物与非生物因子都会直接或间接地影响根呼吸与土壤微生物呼吸。  相似文献   

12.
小兴安岭4种原始红松林群落类型生长季土壤呼吸特征   总被引:4,自引:0,他引:4  
为阐明小兴安岭地带性植被原始红松林土壤呼吸各组分的碳排放速率及其对土壤水热变化的响应规律,采用挖壕法和红外气体分析法测定土壤表面CO2通量(Rs),确定4种原始红松林群落类型生长季的土壤总呼吸(Rt)中土壤微生物呼吸(Rh),根系呼吸(Rr)和凋落物呼吸(Rl)的贡献量动态变化及其影响因子。结果表明:生长季内,4种原始红松林群落类型的Rt、Rh、Rr具有明显的季节性变化,7-9月份较高,6月份和10月份较低。Rh对Rt的贡献量最高,平均在58.8%;Rr对Rt的贡献量次之,平均为26.5%;Rl对Rt的贡献量相对较小,平均为12.5%。生长季土壤呼吸速率与5cm深土壤温度相关性极显著(P0.01)。Rr和Rh的Q10值分别为2.88和2.23。表明根呼吸对土壤温度的敏感性高于微生物呼吸。生长季平均土壤呼吸速率的依次为:椴树红松林(6.38μmol·m-·2s-1)云冷杉红松林(6.32μmol·m-·2s-1)枫桦红松林(5.95μmol·m-·2s-1)蒙古栎红松林(2.86μmol·m-·2s-1)。4种原始叶红松林群落类型间的Rh和Rr也存在一定差异。  相似文献   

13.
西双版纳热带季节雨林与橡胶林土壤呼吸   总被引:32,自引:0,他引:32       下载免费PDF全文
季节雨林和橡胶(Hevea brasiliensis)林是西双版纳热带森林生态系统中原始林和大面积种植人工林的两种代表类型。热带季节雨林层次结构复杂,多样性丰富,而橡胶林结构简单,乔木层只有橡胶树1种。应用碱吸收法,研究了这两种植被类型土壤呼吸速率、地下5 cm土壤温度、气温和土壤含水率的季节变化规律,以及土壤呼吸速率与地下5 cm土壤温度、气温和土壤含水率的关系。结果表明:1)季节雨林和橡胶林土壤呼吸速率、土壤温度、气温和土壤含水率都有明显的季节变化,而且两种林型的变化趋势基本一致;2)季节雨林和橡胶林土壤呼吸速率与地下5 cm土壤温度和气温之间具有显著的指数相关关系,显著水平达1%,与地下5 cm温度的相关性(r2分别为0.87和0.82)明显高于与气温的相关性(r2分别是0.80和0.72);3)季节雨林和橡胶林土壤呼吸速率与土壤含水率具有显著的线性相关(r2分别是0.73和0.63),显著水平达1%;4)橡胶林的土壤呼吸速率明显高于季节雨林,这与两种林型的结构有关;5)季节雨林和橡胶林土壤呼吸的Q10分别为2.16和2.18,比文献报道的热带土壤的Q10(1.96)稍高。  相似文献   

14.
长白山阔叶红松林生态系统的呼吸速率   总被引:5,自引:2,他引:3  
利用Li-6400便携式CO2分析系统测定长白山原始阔叶红松林生态系统土壤呼吸、乔灌木的枝干呼吸和叶呼吸; 同步监测森林小气候气象因子;建立土壤、树干、叶与环境因子间的模型.根据阔叶红松林植被群落的特性,估算阔叶红松林生态系统不同组分呼吸速率.结果表明,阔叶红松林生态系统呼吸具有明显的成熟林特征,生态系统总呼吸量为1602.8 g C·m-2.整个生态系统年平均呼吸速率为(4.37±2.98)μmol·m-2·s-1 (24 h平均数).其中,土壤呼吸、枝干和叶呼吸分别占整个森林生态系统呼吸的63%、16%和21%.乔木、灌木和草本叶呼吸速率分别占阔叶红松林生态系统植物呼吸的89.82%、5.57%和4.61%.阔叶红松林生态系统呼吸速率与大气和土壤温度之间呈显著的指数关系.大气和土壤温度能分别反映阔叶红松林生态系统呼吸的87%和95%.  相似文献   

15.
土壤呼吸的影响因素及全球尺度下温度的影响   总被引:188,自引:19,他引:169  
刘绍辉  方精云 《生态学报》1997,17(5):469-476
土壤呼吸是指土壤释放CO2的过程,主要由土壤微生物和根系产生。作为一个复杂的生态学过程,土壤呼吸在受到植被,微生物等生物因素影响的同时,也受到了温度,湿度、pH值等环境因素的作用,并且随着人类影响的增强,人为因素的作用也越来越大。根据已有工作,讨论了影响土壤呼吸的主要影响因素及其相互关系,分析了全球范围内湿润地区森林植被的土壤呼吸与纬度的关系以及土壤呼吸与年均温的关系,得出了全球范围的Q10值为1  相似文献   

16.
长白山阔叶红松林生态系统土壤呼吸作用研究   总被引:37,自引:0,他引:37       下载免费PDF全文
用密闭静态箱式法观测了长白山阔叶红松林生态系统生长季中的土壤呼吸作用。结果表明, 长白山阔叶红松林生态系统土壤呼吸作用日动态呈单峰曲线, 在 18∶0 0左右达到最大值。土壤呼吸作用在生长季中的动态呈单峰曲线, 7月最大。 6、7、8、9各月平均土壤呼吸作用分别为 0.2 2、0.32、0.2 3和 0.13gC·m-2 ·h-1。温度升高可以提高土壤呼吸作用强度, 地下 5cm的土壤温度比气温更能准确地反映土壤呼吸作用的动态变化 ;土壤水分含量在一定范围内增加可使土壤呼吸作用强度增加, 但水分过多也会对土壤呼吸产生抑制作用而导致土壤碳排放减少。  相似文献   

17.
 土壤呼吸响应全球气候变化对全球C循环具有重要作用。应用大型开顶箱(Open-top chamber, OTC)人工控制手段, 研究了大气CO2浓度倍增、高氮沉降和高降雨处理对南亚热带人工森林生态系统土壤呼吸的影响。结果表明: 对照箱、CO2浓度倍增处理以及高氮沉降处理下土壤呼吸速率都具有明显的季节变化, 雨季(4~9月)的土壤呼吸速率显著高于旱季(10月至次年3月) (p<0.001); 但高降雨处理下无明显的季节差异(p>0.05)。CO2浓度倍增能显著提高土壤呼吸速率(p<0.05), 其他处理则变化不大。大气CO2浓度倍增、高氮沉降、高降雨处理和对照箱的土壤呼吸年通量分别为4 241.7、3 400.8、3 432.0和3 308.4 g CO2·m–2·a–1。但在不同季节, 各种处理对土壤呼吸的影响是不同的。在雨季, 大气CO2浓度倍增和高氮沉降的土壤呼吸速率显著提高(p<0.05), 其他处理无显著变化; 而在旱季, 高降雨的土壤呼吸速率显著高于对照箱(p<0.05), 氮沉降处理则抑制土壤呼吸作用(p<0.05)。各处理的土壤呼吸速率与地下5 cm土壤温度之间具有显著的指数关系(p<0.001); 当土壤湿度低于15%时, 各处理的土壤呼吸速率与地下5 cm土壤湿度具有显著的线性关系(p<0.001)。  相似文献   

18.
西双版纳山地三种土地利用方式的旱季土壤呼吸   总被引:1,自引:0,他引:1  
为了解西双版纳山地不同土地利用方式土壤呼吸旱季变化特征,本研究对古树茶园、台地茶园和次生林中土壤呼吸速率及其相关因素进行定位观测。结论如下:三种土地利用方式土壤呼吸速率日变化有显著的差异性(P<0.05);土壤呼吸速率日最高值大多出现在14∶00-16∶00;旱雨季交错期是土壤呼吸速率和土壤湿度变化最剧烈的阶段;土壤呼吸速率日均值表现为古树茶园(2.62μmol·m-2s-1)<台地茶园(2.73μmol·m-2s-1)<次生林(3.01μmol·m-2s-1);土壤湿度过高和过低都会阻碍土壤呼吸的进行;三种土地利用方式土壤呼吸速率均与土壤湿度(0~10cm)和空气日均温具有相关关系;降水会引起土壤呼吸较大的波动。  相似文献   

19.
作为ChinaFLUX的重要组成部分,从2002年年底开始利用涡度协方差技术在长白山温带混交林林冠上层和下层进行连续通量观测,这为量化林冠下层CO2通量对整个森林生态系统碳收支的贡献提供了一条有效途径.利用2003年林冠上层和林冠下层的观测数据,研究表明林冠下层夜间的CO2通量与5 cm深度的土壤温度存在明显的指数正相关关系.林冠下层的呼吸通量与箱式法观测的土壤呼吸通量之间具有很好的一致性(R2=0.77),二者在全年都与整个森林的光合产物量相耦合,且都在7~8月份达到最大值.林冠下层的呼吸量和土壤呼吸量分别为770 g Cm-2a-1和703 g Cm-2a-1,占整个森林生态系统呼吸年总量的比重高达59.88%和54.69%.林冠下层的光合作用呈双峰型季节变化,两个峰值分别出现在5月中旬和8月下旬.尽管全年林冠下层光合产物量为87 g Cm-2a-1,对整个森林光合产物量的贡献率仅为5.69%,但林冠郁闭度低的4、5月和10月份,林冠下层的光合产物贡献率也分别达到19.99%、21.06%和14.53%.林冠下层净初级生产力的季节动态受该层呼吸作用的季节变异控制,林冠下层在全年都表现为碳源,其净碳排放速率在8月份达到最大.  相似文献   

20.
林木根呼吸及测定方法进展   总被引:33,自引:1,他引:32       下载免费PDF全文
 森林土壤呼吸的近2/3是由林木根呼吸产生的,林木根呼吸对估计森林C吸存及构建森林生态系统碳动态模型有重要意义,是全球碳循环研究的一个重要组成部分。林木根呼吸包括生长呼吸和维持呼吸,不同森林生态系统林木根呼吸对土壤呼吸的贡献大多在40%~60%范围内,林木根呼吸在生长季节较高而休眠季节较低。测定林木根呼吸的主要方法有排除根法、离体根法、同位素法和原位PVC管气室法,前两者相对简单、成本低,常用于森林生态系统中;同位素法可原位测定根呼吸,对土壤干扰较小,但不易操作,且成本高。根呼吸受土壤温度、根直径大小、根组织N浓度、环境CO2浓度、土壤湿度、养分有效性等因素的影响。今后的研究应集中在以下方面:1)探讨和比较不同条件下测定根呼吸组成(生长呼吸、维持呼吸)的最合适方法;2)加大在野外条件下使用有效方法分离根呼吸和根际微生物呼吸的力度;3)对森林生态系统根呼吸动态进行长期的定位研究;4)进一步加强研究不同气候带,不同森林类型林木根呼吸,并将研究尺度从气室扩大到区域或全球水平;5)加强林木根呼吸对全球变化的响应及机制的研究;6)对林木根呼吸进行多学科合作研究将为全球C循环做出新的贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号