首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
The late summer mass occurrences of cyanobacteria in the Baltic Sea are among the largest in the world. These blooms are rarely monotypic and are often composed of a diverse assemblage of cyanobacteria. The toxicity of the blooms is attributed to Nodularia spumigena through the production of the hepatotoxic nodularin. However, the microcystin hepatotoxins have also been reported from the Baltic Sea on a number of occasions. Recent evidence links microcystin production in the Gulf of Finland directly to the genus Anabaena . Here we developed a denaturing gradient gel electrophoresis (DGGE) method based on the mcyE microcystin synthetase gene and ndaF nodularin synthetase gene that allows the culture-independent discrimination of microcystin- and nodularin-producing cyanobacteria directly from environmental samples. We PCR-amplified microcystin and nodularin synthetase genes from environmental samples taken from the Gulf of Finland and separated them on a denaturing gradient gel using optimized conditions. Sequence analyses demonstrate that uncultured microcystin-producing Anabaena strains are genetically more diverse than previously demonstrated from cultured strains. Furthermore, our data show that microcystin-producing Anabaena are widespread in the open Gulf of Finland. Non-parametric statistical analysis suggested that salinity plays an important role in defining the distribution of microcystin-producing Anabaena . Our results indicate that microcystin-producing blooms are a persistent phenomenon in the Gulf of Finland.  相似文献   

2.
Anabaena is a filamentous, N(2)-fixing, and morphologically diverse genus of cyanobacteria found in freshwater and brackish water environments worldwide. It contributes to the formation of toxic blooms in freshwater bodies through the production of a range of hepatotoxins or neurotoxins. In the Baltic Sea, Anabaena spp. form late summer blooms, together with Nodularia spumigena and Aphanizomenon flos-aquae. It has been long suspected that Baltic Sea Anabaena may produce microcystins. The presence of microcystins has been reported for the coastal regions of the Baltic proper, and a recent report also indicated the presence of the toxin in the open Gulf of Finland. However, at present there is no direct evidence linking Baltic Sea Anabaena spp. to microcystin production. Here we report on the isolation of microcystin-producing strains of the genus Anabaena in the open Gulf of Finland. The dominant microcystin variants produced by these strains included the highly toxic MCYST-LR as well as [d-Asp(3)]MCYST-LR, [d-Asp(3)]MCYST-HtyR, MCYST-HtyR, [d-Asp(3),Dha(7)]MCYST-HtyR, and [Dha(7)]MCYST-HtyR variants. Toxic strains were isolated from the coastal Gulf of Finland as well as from the easternmost open-sea sampling station, where there were lower salinities than at other stations. This result suggests that lower salinity may favor microcystin-producing Anabaena strains. Furthermore, we sequenced 16S rRNA genes and found evidence for pronounced genetic heterogeneity of the microcystin-producing Anabaena strains. Future studies should take into account the potential presence of microcystin-producing Anabaena sp. in the Gulf of Finland.  相似文献   

3.
This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F ST) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms.  相似文献   

4.
Population genetic structure of sedentary marine species is expected to be shaped mainly by the dispersal ability of their larvae. Long-lived planktonic larvae can connect populations through migration and gene flow, whereas species with nondispersive benthic or direct-developing larvae are expected to have genetically differentiated populations. Poecilogonous species producing different larval types are ideal when studying the effect of developmental mode on population genetic structure and connectivity. In the spionid polychaete Pygospio elegans, different larval types have been observed between, and sometimes also within, populations. We used microsatellite markers to study population structure of European P. elegans from the Baltic Sea (BS) and North Sea (NS). We found that populations with planktonic larvae had higher genetic diversity than did populations with benthic larvae. However, this pattern may not be related to developmental mode, since in P. elegans, developmental mode may be associated with geography. Benthic larvae were more commonly seen in the brackish BS and planktonic larvae were predominant in the NS, although both larval types also are found from both areas. Significant isolation-by-distance (IBD) was found overall and within regions. Most of the pair-wise F(ST) comparisons among populations were significant, although some geographically close populations with planktonic larvae were found to be genetically similar. However, these results, together with the pattern of IBD, autocorrelation within populations, as well as high estimated local recruitment, suggest that dispersal is limited in populations with planktonic larvae as well as in those with benthic larvae. The decrease in salinity between the NS and BS causes a barrier to gene flow in many marine species. In P. elegans, low, but significant, differentiation was detected between the NS and BS (3.34% in AMOVA), but no clear transition zone was observed, indicating that larvae are not hampered by the change in salinity.  相似文献   

5.
Marginal populations are often isolated and under extreme selection pressures resulting in anomalous genetics. Consequently, ecosystems that are geographically and ecologically marginal might have a large share of genetically atypical populations, in need of particular concern in management of these ecosystems. To test this prediction, we analysed genetic data from 29 species inhabiting the low saline Baltic Sea, a geographically and ecologically marginal ecosystem. On average Baltic populations had lost genetic diversity compared to Atlantic populations: a pattern unrelated to dispersal capacity, generation time of species and taxonomic group of organism, but strongly related to type of genetic marker (mitochondrial DNA loci had lost c. 50% diversity, and nuclear loci 10%). Analyses of genetic isolation by geographic distance revealed clinal patterns of differentiation between Baltic and Atlantic regions. For a majority of species, clines were sigmoid with a sharp slope around the Baltic Sea entrance, indicating impeded gene flows between Baltic and Atlantic populations. Some species showed signs of allele frequencies being perturbed at the edge of their distribution inside the Baltic Sea. Despite the short geological history of the Baltic Sea (8000 years), populations inhabiting the Baltic have evolved substantially different from Atlantic populations, probably as a consequence of isolation and bottlenecks, as well as selection on adaptive traits. In addition, the Baltic Sea also acts a refuge for unique evolutionary lineages. This marginal ecosystem is thus vulnerable but also exceedingly valuable, housing unique genes, genotypes and populations that constitute an important genetic resource for management and conservation.  相似文献   

6.
7.
Water blooms formed by potentially toxic species of cyanobacteria are a common phenomenon in the Baltic Sea in late summer. Twenty-five cyanobacterial bloom samples were collected from open and coastal waters of the Baltic Sea during 1985 to 1987, and their toxicity was determined by mouse bioassay. All of 5 bloom samples from the southern Baltic Sea, 6 of 6 from the open northern Baltic Sea (Gulf of Finland), and 7 of 14 Finnish coastal samples were found to contain hepatotoxic cyanobacteria. Nodularia spumigena and Aphanizomenon flos-aquae occurred together in high amounts in blooms from the open-sea areas. In addition, coastal samples contained the species Anabaena lemmermannii, Microcystis aeruginosa, and Oscillatoria agardhii. Eighteen hepatotoxic N. spumigena cultures were isolated from water bloom and open-sea water samples. High-pressure liquid chromatographic analysis of both hepatotoxic bloom samples and Nodularia strains showed a single toxic fraction. The toxin concentrations of the blooms were less than or equal to 2.4 mg/g of freeze-dried material, and those of laboratory-grown cultures were 2.5 to 8.0 mg/g of freeze-dried cells. A single toxin was isolated from three N. spumigena-containing bloom samples and three N. spumigena laboratory isolates. Amino acid analysis and low- and high-resolution fast-atom bombardment mass spectroscopy indicated that the toxin from all of the sources was a cyclic pentapeptide (molecular weight, 824) containing glutamic acid, beta-methylaspartic acid, arginine, N-methyldehydrobutyrine, and 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4,6-decadienoic acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Water blooms formed by potentially toxic species of cyanobacteria are a common phenomenon in the Baltic Sea in late summer. Twenty-five cyanobacterial bloom samples were collected from open and coastal waters of the Baltic Sea during 1985 to 1987, and their toxicity was determined by mouse bioassay. All of 5 bloom samples from the southern Baltic Sea, 6 of 6 from the open northern Baltic Sea (Gulf of Finland), and 7 of 14 Finnish coastal samples were found to contain hepatotoxic cyanobacteria. Nodularia spumigena and Aphanizomenon flos-aquae occurred together in high amounts in blooms from the open-sea areas. In addition, coastal samples contained the species Anabaena lemmermannii, Microcystis aeruginosa, and Oscillatoria agardhii. Eighteen hepatotoxic N. spumigena cultures were isolated from water bloom and open-sea water samples. High-pressure liquid chromatographic analysis of both hepatotoxic bloom samples and Nodularia strains showed a single toxic fraction. The toxin concentrations of the blooms were less than or equal to 2.4 mg/g of freeze-dried material, and those of laboratory-grown cultures were 2.5 to 8.0 mg/g of freeze-dried cells. A single toxin was isolated from three N. spumigena-containing bloom samples and three N. spumigena laboratory isolates. Amino acid analysis and low- and high-resolution fast-atom bombardment mass spectroscopy indicated that the toxin from all of the sources was a cyclic pentapeptide (molecular weight, 824) containing glutamic acid, beta-methylaspartic acid, arginine, N-methyldehydrobutyrine, and 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4,6-decadienoic acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Island populations are on average smaller, genetically less diverse, and at a higher risk to go extinct than mainland populations. Low genetic diversity may elevate extinction probability, but the genetic component of the risk can be affected by the mode of diversity loss, which, in turn, is connected to the demographic history of the population. Here, we examined the history of genetic erosion in three Fennoscandian ringed seal subspecies, of which one inhabits the Baltic Sea ‘mainland’ and two the ‘aquatic islands’ composed of Lake Saimaa in Finland and Lake Ladoga in Russia. Both lakes were colonized by marine seals after their formation c. 9500 years ago, but Lake Ladoga is larger and more contiguous than Lake Saimaa. All three populations suffered dramatic declines during the 20th century, but the bottleneck was particularly severe in Lake Saimaa. Data from 17 microsatellite loci and mitochondrial control‐region sequences show that Saimaa ringed seals have lost most of the genetic diversity present in their Baltic ancestors, while the Ladoga population has experienced only minor reductions. Using Approximate Bayesian computing analyses, we show that the genetic uniformity of the Saimaa subspecies derives from an extended founder event and subsequent slow erosion, rather than from the recent bottleneck. This suggests that the population has persisted for nearly 10,000 years despite having low genetic variation. The relatively high diversity of the Ladoga population appears to result from a high number of initial colonizers and a high post‐colonization population size, but possibly also by a shorter isolation period and/or occasional gene flow from the Baltic Sea.  相似文献   

10.
The Baltic Sea, formed after the latest glaciation, is an enclosed, low-saline, non-tidal ecosystem and has steep latitudinal and vertical gradients from sub-arctic conditions in the north to temperate in the south. The sea has undergone rapid changes since the glaciation, and the “ecological age” of the present ecosystem is only about 8000 years. Primary successional processes are still ongoing, and numerous ecological niches (e.g. large-bodied sediment bioturbators) remain available for immigration. The system is species-poor and vulnerable to the threat of exotic invasive species, and to date about 50 zoobenthic species have established populations in the Baltic Sea. The present biota is a mixture of species of different ecological and zoogeographical origin (marine to limnic; northern Arctic marine and limnic, to North Sea and Atlantic marine). The current distribution patterns of zoobenthos are illustrated, using marine, limnic and non-indigenous examples of structure and ecosystem functions. The species richness decreases from over 1600 marine benthic species in the open Skagerrak to about 500 in the western parts of the Baltic Sea, approximately 80 in the southern regions, to less than 20 in the northern regions. On the other hand, limnic species increase diversity in the inner reaches of the Gulf of Finland and the Gulf of Bothnia. Polychaetes, molluscs and echinoderms are dramatically reduced in numbers from the south to the north.  相似文献   

11.
The dinoflagellate family Symbiodiniaceae comprises numerous divergent genera containing species whose ecologies range from endosymbiotic to free-living. While many associate with invertebrates including corals, sea anemones, jellyfish, giant clams, and flatworms, others occur within the cytoplasm of large protists, most notably benthic foraminifera in the sub-family Soritinae. Recent systematic revisions to the Symbiodiniaceae left out formal naming of some divergent lineages because each lacked a representative type species to erect new genus names. Here we provide genetic, morphological and ecological evidence to describe a new genus and species. Miliolidium n. gen. is closely related to the genus Durusdinium and contains several genetically divergent ecologically distinct lineages found in distant geographic locations indicating an Indo-Pacific wide distribution. One of these, Miliolidium leei n. sp., is represented by an isolate cultured from Amphisorus sp. originally collected in the Gulf of Eilat, northern Red Sea. Its peripheral chloroplast extensions are uniquely petal- or lobe-shaped, and cells possess a pyrenoid with three stalks connecting to chloroplasts, and without thylakoid intrusions. It is related to an isolate cultured from an azooxanthellate sponge from Palau and another that is commonly harbored by the soritid Marginopora vertebralis in shallow reef habitats from Guam. Research on Symbiodiniaceae diversity including free-living species in benthic habitats and those mutualistic with soritid foraminifera remains extremely limited as does our knowledge of their diversity, physiology, biogeography, and ecology.  相似文献   

12.
Eutrophication of the Baltic Sea has become a serious concern in recent decades. To provide a potential means for quality assessments of coastal waters in this area, we collected a data set of 49 embayments in the Gulf of Finland, and explored the relationship between surface sediment diatom assemblages and 15 environmental variables, with special emphasis on nutrients. Total dissolved nitrogen, total phosphorus, depth, and salinity all accounted for significant and independent fractions of variation in the diatom data and explained 34% of the total variation. There were clear changes in diatom assemblage structures along the nutrient gradients. Although these changes were gradual, we could identify a number of taxa that were more abundant in a particular nutrient environment. These taxa could be used as potential indicators of the quality of coastal waters in the Baltic Sea. Diatom assemblages that were least affected by nutrient enrichment included a variety of benthic species and a relatively high species richness. Small planktonic taxa such as Cyclotella atomus Hustedt, Cyclotella meneghiniana Kützing and Thalassiosira pseudonana Hasle and Heimdal were good indicators of highly elevated nutrient concentrations (>600 lg·L?1 total dissolved nitrogen and 60 lg·L?1 total phosphorus) together with low species richness. The first appearance of these small planktonic taxa in regular monitoring could be used as an early warning sign for deteriorating water quality. Diatoms could be applied to water quality classification and monitoring purposes in the coastal waters of the Baltic Sea area using techniques such as weighted‐averaging regression and calibration.  相似文献   

13.
The algal spring bloom in the Baltic Sea represents an anomaly from the winter-spring bloom patterns worldwide in terms of frequent and recurring dominance of dinoflagellates over diatoms. Analysis of approximately 3500 spring bloom samples from the Baltic Sea monitoring programs revealed (i) that within the major basins the proportion of dinoflagellates varied from 0.1 (Kattegat) to >0.8 (central Baltic Proper), and (ii) substantial shifts (e.g. from 0.2 to 0.6 in the Gulf of Finland) in the dinoflagellate proportion over four decades. During a recent decade (1995-2004) the proportion of dinoflagellates increased relative to diatoms mostly in the northernmost basins (Gulf of Bothnia, from 0.1 to 0.4) and in the Gulf of Finland, (0.4 to 0.6) which are typically ice-covered areas. We hypothesize that in coastal areas a specific sequence of seasonal events, involving wintertime mixing and resuspension of benthic cysts, followed by proliferation in stratified thin layers under melting ice, favors successful seeding and accumulation of dense dinoflagellate populations over diatoms. This head-start of dinoflagellates by the onset of the spring bloom is decisive for successful competition with the faster growing diatoms. Massive cyst formation and spreading of cyst beds fuel the expanding and ever larger dinoflagellate blooms in the relatively shallow coastal waters. Shifts in the dominant spring bloom algal groups can have significant effects on major elemental fluxes and functioning of the Baltic Sea ecosystem, but also in the vast shelves and estuaries at high latitudes, where ice-associated cold-water dinoflagellates successfully compete with diatoms.  相似文献   

14.
A coupled hydrodynamic-biogeochemical model was implemented in order to estimate the effects of Major Baltic Inflows on the near-bottom hydrophysical and biogeochemical conditions in the northern Baltic Proper and the western Gulf of Finland during the period 1991–2009. We compared results of a realistic reference run to the results of an experimental run where Major Baltic Inflows were suppressed. Further to the expected overall decrease in bottom salinity, this modelling experiment confirms that in the absence of strong saltwater inflows the deep areas of the Baltic Proper would become more anoxic, while in the shallower areas (western Gulf of Finland) near-bottom average conditions improve. Our experiment revealed that typical estuarine circulation results in the sporadic emergence of short-lasting events of near-bottom anoxia in the western Gulf of Finland due to transport of water masses from the Baltic Proper. Extrapolating our results beyond the modelled period, we speculate that the further deepening of the halocline in the Baltic Proper is likely to prevent inflows of anoxic water to the Gulf of Finland and in the longer term would lead to improvement in near-bottom conditions in the Baltic Proper. Our results reaffirm the importance of accurate representation of salinity dynamics in coupled Baltic Sea models serving as a basis for credible hindcast and future projection simulations of biogeochemical conditions.  相似文献   

15.
Drivers of population genetic structure are still poorly understood in marine micro‐organisms. We exploited the North Sea–Baltic Sea transition for investigating the seascape genetics of a marine diatom, Skeletonema marinoi. Eight polymorphic microsatellite loci were analysed in 354 individuals from ten locations to analyse population structure of the species along a 1500‐km‐long salinity gradient ranging from 3 to 30 psu. To test for salinity adaptation, salinity reaction norms were determined for sets of strains originating from three different salinity regimes of the gradient. Modelled oceanographic connectivity was compared to directional relative migration by correlation analyses to examine oceanographic drivers. Population genetic analyses showed distinct genetic divergence of a low‐salinity Baltic Sea population and a high‐salinity North Sea population, coinciding with the most evident physical dispersal barrier in the area, the Danish Straits. Baltic Sea populations displayed reduced genetic diversity compared to North Sea populations. Growth optima of low salinity isolates were significantly lower than those of strains from higher native salinities, indicating local salinity adaptation. Although the North Sea–Baltic Sea transition was identified as a barrier to gene flow, migration between Baltic Sea and North Sea populations occurred. However, the presence of differentiated neutral markers on each side of the transition zone suggests that migrants are maladapted. It is concluded that local salinity adaptation, supported by oceanographic connectivity patterns creating an asymmetric migration pattern between the Baltic Sea and the North Sea, determines genetic differentiation patterns in the transition zone.  相似文献   

16.
Picocyanobacteria of the genus Synechococcus span a range of different colours, from red strains rich in phycoerythrin (PE) to green strains rich in phycocyanin (PC). Here, we show that coexistence of red and green picocyanobacteria in the Baltic Sea is widespread. The diversity and phylogeny of red and green picocyanobacteria was analysed using three different genes: 16S rRNA-ITS, the cpeBA operon of the red PE pigment and the cpcBA operon of the green PC pigment. Sequencing of 209 clones showed that Baltic Sea picocyanobacteria exhibit high levels of microdiversity. The partial nucleotide sequences of the cpcBA and cpeBA operons from the clone libraries of the Baltic Sea revealed two distinct phylogenetic clades: one clade containing mainly sequences from cultured PC-rich picocyanobacteria, while the other contains only sequences from cultivated PE-rich strains. A third clade of phycourobilin (PUB) containing strains of PE-rich Synechococcus spp. did not contain sequences from the Baltic Sea clone libraries. These findings differ from previously published phylogenies based on 16S rRNA gene analysis. Our data suggest that, in terms of their pigmentation, Synechococcus spp. represent three different lineages occupying different ecological niches in the underwater light spectrum. Strains from different lineages can coexist in light environments that overlap with their light absorption spectra.  相似文献   

17.
This study examined the diversity of Bacteria, Archaea and in particular aerobic methanotrophs associated with a shallow (84 m) methane seep in the tropical Timor Sea, Australia. Seepage of thermogenic methane was associated with a large carbonate hardground covered in coarse carbonate-rich sediments and various benthic organisms such as solitary corals. The diversity of Bacteria and Archaea was studied by analysis of cloned 16S rRNA genes, while aerobic methanotrophic bacteria were quantified using real-time PCR targeting the α-subunit of particulate methane monooxygenase ( pmoA ) genes and diversity was studied by analysis of cloned pmoA genes. Phylogenetic analysis of bacterial and archaeal 16S rRNA genes revealed diverse and mostly novel phylotypes related to sequences previously recovered from marine sediments. A small number of bacterial 16S rRNA gene sequences were related to aerobic methanotrophs distantly related to the genera Methylococcus and Methylocaldum . Real-time PCR targeting pmoA genes showed that the highest numbers of methanotrophs were present in surface sediments associated with the seep area. Phylogenetic analysis of pmoA sequences revealed that all phylotypes were novel and fell into two large clusters comprised of only marine sequences distantly related to the genera Methylococcus and Methylocaldum that were clearly divergent from terrestrial phylotypes. This study provides evidence for the existence of a novel microbial diversity and diverse aerobic methanotrophs that appear to constitute marine specialized lineages.  相似文献   

18.
Genetic diversity in marine microbial eukaryotic populations (protists) drives their ecological success by enabling diverse phenotypes to respond rapidly to changing environmental conditions. Despite enormous population sizes and lack of barriers to gene flow, genetic differentiation that is associated with geographic distance, currents, and environmental gradients has been reported from planktonic protists. However, for benthic protists, which have reduced dispersal opportunities, phylogeography and its phenotypic significance are little known. In recent years, the East Australian Current (EAC) has intensified its southward flow, associated with the tropicalization of temperate waters. Benthic harmful algal species have been increasingly found in south‐eastern Australia. Yet little is known about the potential of these species to adapt or extend their range in relation to changing conditions. Here, we examine genetic diversity and functional niche divergence in a toxic benthic dinoflagellate, Ostreopsis cf. siamensis, along a 1,500 km north–south gradient in southeastern Australia. Sixty‐eight strains were established from eight sampling sites. The study revealed long‐standing genetic diversity among strains established from the northern‐most sites, along with large phenotypic variation in observed physiological traits such as growth rates, cell volume, production of palytoxin‐like compounds, and photophysiological parameters. Strains from the southern populations were more uniform in both genetic and functional traits, and have possibly colonized their habitats more recently. Our study reports significant genetic and functional trait variability in a benthic harmful algal species, indicative of high adaptability, and a possible climate‐driven range extension. The observed high trait variation may facilitate development of harmful algal blooms under dynamic coastal environmental conditions.  相似文献   

19.
Dormant life stages are important strategies for many aquatic organisms. The formation of resting stages will provide a refuge from unfavourable conditions in the water column, and their successive accumulation in the benthos will constitute a genetic reservoir for future planktonic populations. We have determined the genetic structure of a common bloom‐forming diatom, Skeletonema marinoi, in the sediment and the plankton during spring, summer and autumn two subsequent years (2007–2009) in Gullmar Fjord on the Swedish west coast. Eight polymorphic microsatellite loci were used to assess the level of genetic differentiation and the respective gene diversity of the two different habitats. We also determined the degree of genetic differentiation between the seed banks inside the fjord and the open sea. The results indicate that Gullmar Fjord has one dominant endogenous population of S. marinoi, which is genetically differentiated from the open sea population. The fjord population is encountered in the plankton and in the sediment. Shifts from the dominant population can happen, and in our study, two genetically differentiated plankton populations, displaying reduced genetic diversity, occurred in September 2007 and 2008. Based on our results, we suggest that sill fjords maintain local long‐lived and well‐adapted protist populations, which continuously shift between the planktonic and benthic habitats. Intermittently, short‐lived and mainly asexually reproducing populations can replace the dominant population in the water column, without influencing the genetic structure of the benthic seed bank.  相似文献   

20.
Three major phylogeographic lineages of the cottid fish Cottus gobio (bullhead) were identified in northern Europe from mitochondrial DNA sequences and allozyme data. The largely separate freshwater distributions of the lineages demonstrate distinct postglacial colonization histories. West of the Baltic Sea, Swedish lakes were invaded from the southwest (Germany). Another, eastern lineage has colonized the inland waters northeast and east of the Baltic, from refugia in northwest Russia; this lineage comprises a distinct subgroup found only from Estonia. The third lineage, found south and southeast of the Baltic, probably descended from rivers draining to the Black Sea from the north (e.g. Dnepr). In coastal waters of the Baltic Sea, and in near-coast inland waters, the lineages are now found intermixed in various combinations. The alternating fresh- and saltwater phases of the Baltic basin have variously enabled and disabled the use of coastal waters as colonization routes. Hypotheses on the chronology of dispersal and lineage mixing can be based on the distribution of the marker genes and the paleohydrographical record. The diversity of the Fennoscandian bullhead thus comprises anciently diverged (probably mid-Pleistocene) refugial lineages that in their freshwater range constitute distinct evolutionarily significant units. The thorough mixing of the various genomic origins in and around the Baltic, however, refutes the controversial view of distinct species status for the western and eastern ('Cottus koshewnikowi') bullheads. The postglacial contact of the lineages has created new diversity that cannot be interpreted in a conventional hierarchical framework of taxonomic or conservation units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号