首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Information on spatial and temporal patterns of genetic diversity is a prerequisite to understanding the demography of populations, and is fundamental to successful management and conservation of species. In the sea, it has been observed that oceanographic and other physical forces can constitute barriers to gene flow that may result in similar population genetic structures in different species. Such similarities among species would greatly simplify management of genetic biodiversity. Here, we tested for shared genetic patterns in a complex marine area, the Baltic Sea. We assessed spatial patterns of intraspecific genetic diversity and differentiation in seven ecologically important species of the Baltic ecosystem—Atlantic herring (Clupea harengus), northern pike (Esox lucius), European whitefish (Coregonus lavaretus), three-spined stickleback (Gasterosteus aculeatus), nine-spined stickleback (Pungitius pungitius), blue mussel (Mytilus spp.), and bladderwrack (Fucus vesiculosus). We used nuclear genetic data of putatively neutral microsatellite and SNP loci from samples collected from seven regions throughout the Baltic Sea, and reference samples from North Atlantic areas. Overall, patterns of genetic diversity and differentiation among sampling regions were unique for each species, although all six species with Atlantic samples indicated strong resistence to Atlantic-Baltic gene-flow. Major genetic barriers were not shared among species within the Baltic Sea; most species show genetic heterogeneity, but significant isolation by distance was only detected in pike and whitefish. These species-specific patterns of genetic structure preclude generalizations and emphasize the need to undertake genetic surveys for species separately, and to design management plans taking into consideration the specific structures of each species.  相似文献   

2.
Recent studies showing consequences of species’ genetic diversity on ecosystem performance raise the concern of how key ecosystem species are genetically structured. The bladder wrack Fucus vesiculosus L. is a dominant species of macroalga in the northern Atlantic, and it is particularly important as a habitat‐forming species in the Baltic Sea. We examined the genetic structure of populations of F. vesiculosus with a hierarchical approach from a within‐shore scale (10 m) to a between‐seas scale (Baltic Sea–Skagerrak, 800 km). Analysis of five microsatellite loci showed that population differentiation was generally strong (average FST = 12%), being significant at all spatial scales investigated (101, 103, 104–5, 106 m). Genetic differentiation between seas (Baltic Sea and Skagerrak) was substantial. Nevertheless, the effects of isolation by distance were stronger within seas than between seas. Notably, Baltic summer‐reproducing populations showed a strong within‐sea, between‐area (70 km) genetic structure, while Baltic autumn‐reproducing populations and Skagerrak summer‐reproducing populations revealed most genetic diversity between samples within areas (<1 km). Despite such differences in overall structure, Baltic populations of summer‐ and autumn‐reproducing morphs did not separate in a cluster analysis, indicating minor, if any, barriers to gene flow between them. Our results have important implications for management and conservation of F. vesiculosus, and we raise a number of concerns about how genetic variability should be preserved within this species.  相似文献   

3.
Detecting and estimating the degree of genetic differentiation among populations of highly mobile marine fish having pelagic larval stages is challenging because their effective population sizes can be large, and thus, little genetic drift and differentiation is expected in neutral genomic sites. However, genomic sites subject to directional selection stemming from variation in local environmental conditions can still show substantial genetic differentiation, yet these signatures can be hard to detect with low‐throughput approaches. Using a pooled RAD‐seq approach, we investigated genomewide patterns of genetic variability and differentiation within and among 20 populations of Atlantic herring in the Baltic Sea (and adjacent Atlantic sites), where previous low‐throughput studies and/or studies based on few populations have found limited evidence for genetic differentiation. Stringent quality control was applied in the filtering of 1 791 254 SNPs, resulting in a final data set of 68 182 polymorphic loci. Clear differentiation was identified between Atlantic and Baltic populations in many genomic sites, while differentiation within the Baltic Sea area was weaker and geographically less structured. However, outlier analyses – whether including all populations or only those within the Baltic Sea – uncovered hundreds of directionally selected loci in which variability was associated with either salinity, temperature or both. Hence, our results support the view that although the degree of genetic differentiation among Baltic Sea herring populations is low, there are many genomic regions showing elevated divergence, apparently as a response to temperature‐ and salinity‐related natural selection. As such, the results add to the increasing evidence of local adaptation in highly mobile marine organisms, and those in the young Baltic Sea in particular.  相似文献   

4.
Previous genetic studies using neutral markers such as allozymes, mtDNA and minisatellite loci have demonstrated varying amounts of population structure in cod Gadus morhua throughout the Atlantic. Microsatellite loci, which are potentially the most informative of presently available neutral genetic markers, have been applied extensively within western and eastern Atlantic areas but not on a range-wide basis. In the present study, six microsatellite DNA loci were used to screen cod samples from nine locations throughout the geographic range from the Scotian Shelf in the West Atlantic to the Barents and Baltic Seas in the east. Overall F ST value was 0·03 ( P = < 0·001) across all samples. Statistically significant population differences over all loci combined were evident between more geographically distant samples, using either heterogeneity tests or F ST analysis, with at least one locus showing significant differences between all samples (prior to Bonferroni correction). A significant correlation was observed between genetic and geographical distance, suggesting a higher level of historical and contemporary gene flow between adjacent populations than more distant populations. Samples from either end of the geographic range (Scotian Shelf and Baltic Sea) were particularly distinct when analysed using the STRUCTURE programme and also showed a high level of self-assignment when individuals of either the Scotian Shelf or Baltic Sea were tested against the entire data set. The present microsatellite study demonstrates a high level of geographic population structure between the western Atlantic, middle and eastern Atlantic and Baltic Sea, and thus, the findings should be useful in devising overall management and conservation strategies for the species.  相似文献   

5.
Unravelling the factors shaping the genetic structure of mobile marine species is challenging due to the high potential for gene flow. However, genetic inference can be greatly enhanced by increasing the genomic, geographical or environmental resolution of population genetic studies. Here, we investigated the population structure of turbot (Scophthalmus maximus) by screening 17 random and gene‐linked markers in 999 individuals at 290 geographical locations throughout the northeast Atlantic Ocean. A seascape genetics approach with the inclusion of high‐resolution oceanographical data was used to quantify the association of genetic variation with spatial, temporal and environmental parameters. Neutral loci identified three subgroups: an Atlantic group, a Baltic Sea group and one on the Irish Shelf. The inclusion of loci putatively under selection suggested an additional break in the North Sea, subdividing southern from northern Atlantic individuals. Environmental and spatial seascape variables correlated marginally with neutral genetic variation, but explained significant proportions (respectively, 8.7% and 10.3%) of adaptive genetic variation. Environmental variables associated with outlier allele frequencies included salinity, temperature, bottom shear stress, dissolved oxygen concentration and depth of the pycnocline. Furthermore, levels of explained adaptive genetic variation differed markedly between basins (3% vs. 12% in the North and Baltic Sea, respectively). We suggest that stable environmental selection pressure contributes to relatively strong local adaptation in the Baltic Sea. Our seascape genetic approach using a large number of sampling locations and associated oceanographical data proved useful for the identification of population units as the basis of management decisions.  相似文献   

6.
The muriqui or woolly spider monkey (Brachyteles arachnoids) is an endangered primate endemic to the Atlantic Forest of Brazil, <5% of which remains. The known muriqui population consists of <700 individuals separated into approximately 15 geographically isolated forest fragments. I present data on the distribution of genetic variation within and between two such remnant populations (FE and FBR) and summarize the implications of these results for long-range management of species genetic diversity. Eleven of 32 allozyme loci were polymorphic, representing an overall level of polymorphism of 34.4% and a mean heterozygosity per locus of 11%. Both values are among the highest reported for New World monkeys. Genetic differentiation between the two localities is highly significant (FST = 0.413, p < 0.001). Genetic distance between them is an order of magnitude greater than that between other populations of platyrrhine subspecies, but this could be an artifact of the small sample size from FBR. High levels of genetic diversity apparently characteristic of this species persist because (1) fragmentation and size reduction of muriqui populations has occurred very rapidly relative to the muriqui life span—although both polymorphism and heterozygosity were lost between generations in the largest population, the high genetic diversity present in the parent population was still in evidence; and (2) genetic diversity before population fragmentation by human activity was not distributed uniformly throughout the species' historic distribution. Thus, remnant muriqui populations are important genetic reservoirs of alleles that are unique or rare in the species gene pool as a whole. These results emphasize the need for the integration of conservation management efforts throughout the species range.  相似文献   

7.
Many benthic marine invertebrates show striking range disjunctions across broad spatial scales. Without direct evidence for endemism or introduction, these species remain cryptogenic. The common ragworm Hediste diversicolor plays a pivotal role in sedimentary littoral ecosystems of the North Atlantic as an abundant prey item and ecosystem engineer, but exhibits a restricted dispersal capacity that may limit connectivity at both evolutionary and ecological time scales. In Europe, H. diversicolor is subdivided into cryptic taxa and genetic lineages whose distributions have been modified by recent invasions. Its origin in the northwest Atlantic has not been adequately addressed. To trace the age and origin of North American ragworm populations, we analyzed mtDNA sequence data (COI) from the Gulf of Maine and Bay of Fundy (n=73 individuals) and compared our findings with published data from the northeast Atlantic. Our results together with previous data indicate that two species of the H. diversicolor complex have independently colonized the northwest Atlantic at least three different times, resulting in two distinct conspecific assemblages in the Bay of Fundy and Gulf of Maine (respectively) that are different from the species found in the Gulf of St. Lawrence. North American populations had significantly lower genetic diversity compared with populations in the northeast Atlantic, and based on patterns of shared identity, populations in the Bay of Fundy originated from the Baltic Sea and North Sea. Populations from the Gulf of Maine were phylogenetically distinct and most likely originated from unsampled European populations. Analyses of the North American populations revealed patterns of post‐colonization gene flow among populations within the Gulf of Maine and Bay of Fundy. However, we failed to detect shared haplotypes between the two regions, and this pattern of complete isolation corroborates a strong phylogeographic break observed in other species.  相似文献   

8.
Island populations are on average smaller, genetically less diverse, and at a higher risk to go extinct than mainland populations. Low genetic diversity may elevate extinction probability, but the genetic component of the risk can be affected by the mode of diversity loss, which, in turn, is connected to the demographic history of the population. Here, we examined the history of genetic erosion in three Fennoscandian ringed seal subspecies, of which one inhabits the Baltic Sea ‘mainland’ and two the ‘aquatic islands’ composed of Lake Saimaa in Finland and Lake Ladoga in Russia. Both lakes were colonized by marine seals after their formation c. 9500 years ago, but Lake Ladoga is larger and more contiguous than Lake Saimaa. All three populations suffered dramatic declines during the 20th century, but the bottleneck was particularly severe in Lake Saimaa. Data from 17 microsatellite loci and mitochondrial control‐region sequences show that Saimaa ringed seals have lost most of the genetic diversity present in their Baltic ancestors, while the Ladoga population has experienced only minor reductions. Using Approximate Bayesian computing analyses, we show that the genetic uniformity of the Saimaa subspecies derives from an extended founder event and subsequent slow erosion, rather than from the recent bottleneck. This suggests that the population has persisted for nearly 10,000 years despite having low genetic variation. The relatively high diversity of the Ladoga population appears to result from a high number of initial colonizers and a high post‐colonization population size, but possibly also by a shorter isolation period and/or occasional gene flow from the Baltic Sea.  相似文献   

9.
An electrophoretic survey of allozyme variation was conducted in four, highly polymorphic loci on nine populations of ostracod Candona neglecta Sars from three different environments: the profundal of post-glacial lakes, deep muddy bottom of the Baltic Sea and small astatic water bodies. The results suggest lack of genetic isolation between populations from lake profundal and the Baltic Sea. On the other hand a very distinct founder effect can be noted in the case of young, isolated populations from small astatic basins. It is suggested that a population inhabiting a large lake may be genetically subdivided due to differentiated eutrophication.  相似文献   

10.
The effective application of genetic information in fisheries management strategies implies political goal setting taking both conservation and fisheries management into account. The concept of sustainable use as set out by the Convention on Biological Diversity offers a valuable starting point in this respect, since the criterion for it is defined as the maintenance of genetic diversity within each species. However, strategic decisions are also needed on the practical level, where the actual genetic information can be taken into account. Genetic factors, such as glacial differentiation, the postglacial genetic structure of populations, gene flow levels and the probability of the existence of adaptive differences, have an effect on the formation of conservation and management units and on the long-term strategy for the sustainable use of aspecies. The Atlantic salmon ( Salmo salar ) in the Baltic Sea area is treated here as an example of a complicated management problem with a highly hierarchical genetic structure associated with marked loss of naturally reproductive stocks, extensive hatchery production and an effective international offshore fishery. The implications of genetic factors for the conservation and management strategy of the Baltic salmon is discussed in the light of the goals set by the Convention on Biological Diversity, the Straddling Fish Stocks and Highly Migratory Fish Stocks Agreement, the Habitats Directive of the European Union and the International Baltic Sea Fishery Commission.  相似文献   

11.
Genetic variation within populations depends on population size, spatial structuring, and environmental variation, but is also influenced by mating system. Mangroves are some of the most productive and threatened ecosystems on earth and harbor a large proportion of species with mixed-mating (self-fertilization and outcrossing). Understanding population structuring in mixed-mating species is critical for conserving and managing these complex ecosystems. Kryptolebias marmoratus is a unique mixed-mating vertebrate inhabiting mangrove swamps under highly variable tidal regimes and environmental conditions. We hypothesized that geographical isolation and ecological pressures influence outcrossing rates and genetic diversity, and ultimately determine the local population structuring of K. marmoratus. By comparing genetic variation at 32 microsatellites, diel fluctuations of environmental parameters, and parasite loads among four locations with different degrees of isolation, we found significant differences in genetic diversity and genotypic composition but little evidence of isolation by distance. Locations also differed in environmental diel fluctuation and parasite composition. Our results suggest that mating system, influenced by environmental instability and parasites, underpins local population structuring of K. marmoratus. More generally, we discuss how the conservation of selfing species inhabiting mangroves and other biodiversity hotspots may benefit from knowledge of mating strategies and population structuring at small spatial scales.  相似文献   

12.
This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F ST) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms.  相似文献   

13.
Most studies of the genetic structure of Atlantic cod have focused on small geographical scales. In the present study, the genetic structure of cod sampled on spawning grounds in the North Atlantic was examined using eight microsatellite loci and the Pan I locus. A total of 954 cod was collected from nine different regions: the Baltic Sea, the North Sea, the Celtic Sea, the Irish Sea and Icelandic waters during spring 2002 and spring 2003, from Norwegian waters and the Faroe Islands (North and West spawning grounds) in spring 2003, and from Canadian waters in 1998. Temporal stability among spawning grounds was observed in Icelandic waters and the Celtic Sea, and no significant difference was observed between the samples from the Baltic Sea and between the samples from Faroese waters. F -statistics showed significant differences between most populations and a pattern of isolation-by-distance was described with microsatellite loci. The Pan I locus revealed the presence of two genetically distinguishable basins, the North-west Atlantic composed of the Icelandic and Canadian samples and the North-east Atlantic composed of all other samples. Permutation of allele sizes at each microsatellite locus among allelic states supported a mutational component to the genetic differentiation, indicating a historical origin of the observed variation. Estimation of the time of divergence was approximately 3000 generations, which places the origin of current genetic pattern of cod in the North Atlantic in the late Weichselian (Wisconsinian period), at last glacial maximum.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 315–329.  相似文献   

14.
Microsatellites have gained wide application for elucidating population structure in nonmodel organisms. Since they are generally noncoding, neutrality is assumed but rarely tested. In Atlantic cod (Gadus morhua L.), microsatellite studies have revealed highly heterogeneous estimates of genetic differentiation among loci. In particular one locus, Gmo 132, has demonstrated elevated genetic differentiation. We investigated possible hitch-hiking selection at this and other microsatellite loci in Atlantic cod. We employed 11 loci for analysing samples from the Baltic Sea, North Sea, Barents Sea and Newfoundland covering a large part of the species' distributional range. The 'classical' Lewontin-Krakauer test for selection based on variance in estimates of F(ST) and (standardized genetic differentiation) revealed only one significant pairwise test (North Sea-Barents Sea), and the source of the elevated variance could not be ascribed exclusively to Gmo 132. In contrast, different variants of the recently developed ln Rtheta test for selective sweeps at microsatellite loci revealed a high number of significant outcomes of pair-wise tests for Gmo 132. Further, the presence of selection was indicated in at least one other locus. The results suggest that many previous estimates of genetic differentiation in cod based on microsatellites are inflated, and in some cases relationships among populations are obscured by one or more loci being the subject to hitch-hiking selection. Likewise, temporal estimates of effective population sizes in Atlantic cod may be flawed. We recommend, generally, to use a higher number of microsatellite loci to elucidate population structure in marine fishes and other nonmodel species to allow for identification of outlier loci that are subject to selection.  相似文献   

15.
Population structuring in species inhabiting marine environments such as the Northeast Atlantic Ocean (NEA) and Mediterranean Sea (MS) has usually been explained based on past and present physical barriers to gene flow and isolation by distance (IBD). Here, we examined the relative importance of these factors on population structuring of the common cuttlefish Sepia officinalis by using methods of phylogenetic inference and hypothesis testing coupled with coalescent and classical population genetic parameter estimation. Individuals from 10 Atlantic and 15 Mediterranean sites were sequenced for 659 bp of the mitochondrial COI gene (259 sequences). IBD seems to be the main factor driving present and past genetic structuring of Sepia populations across the NEA-MS, both at large and small geographical scales. Such an evolutionary process agrees well with some of the biological features characterizing this cuttlefish species (short migrations, nektobenthic habit, benthic eggs hatching directly to benthic juveniles). Despite the many barriers to migration/gene flow suggested in the NEA-MS region, genetic population fragmentation due to past isolation of water masses (Pleistocene; 0.56 million years ago) and/or present-day oceanographic currents was only detected between the Aegean-Ionian and western Mediterranean Seas. Restricted gene flow associated with the Almería-Oran hydrographic front was also suggested between southern and eastern Spanish populations. Distinct population boundaries could not be clearly determined, except for the Aegean-Ionian stock. Two Atlantic and five Mediterranean samples showed evidence of current decline in genetic diversity, which may indicate over-exploitation of Sepia in both marine regions.  相似文献   

16.
A number of evolutionary mechanisms have been suggested for generating low but significant genetic structuring among marine fish populations. We used nine microsatellite loci and recently developed methods in landscape genetics and coalescence-based estimation of historical gene flow and effective population sizes to assess temporal and spatial dynamics of the population structure in European flounder (Platichthys flesus L.). We collected 1062 flounders from 13 localities in the northeast Atlantic and Baltic Seas and found temporally stable and highly significant genetic differentiation among samples covering a large part of the species' range (global F(ST) = 0.024, P < 0.0001). In addition to historical processes, a number of contemporary acting evolutionary mechanisms were associated with genetic structuring. Physical forces, such as oceanographic and bathymetric barriers, were most likely related with the extreme isolation of the island population at the Faroe Islands. A sharp genetic break was associated with a change in life history from pelagic to benthic spawners in the Baltic Sea. Partial Mantel tests showed that geographical distance per se was not related with genetic structuring among Atlantic and western Baltic Sea samples. Alternative factors, such as dispersal potential and/or environmental gradients, could be important for generating genetic divergence in this region. The results show that the magnitude and scale of structuring generated by a specific mechanism depend critically on its interplay with other evolutionary mechanisms, highlighting the importance of investigating species with wide geographical and ecological distributions to increase our understanding of evolution in the marine environment.  相似文献   

17.
Genetic population structure of turbot (Scophthalmus maximus L.) in the Northeast Atlantic was investigated using eight highly variable microsatellite loci. In total 706 individuals from eight locations with temporal replicates were assayed, covering an area from the French Bay of Biscay to the Aaland archipelago in the Baltic Sea. In contrast to previous genetic studies of turbot, we found significant genetic differentiation among samples with a maximum pairwise FST of 0.032. Limited or no genetic differentiation was found among samples within the Atlantic/North Sea area and within the Baltic Sea, suggesting high gene flow among populations in these areas. In contrast, there was a sharp cline in genetic differentiation going from the low saline Baltic Sea to the high saline North Sea. The data were explained best by two divergent populations connected by a hybrid zone; however, a mechanical mixing model could not be ruled out. A significant part of the genetic variance could be ascribed to variation among years within locality. Nevertheless, the population structure was relatively stable over time, suggesting that the observed pattern of genetic differentiation is biologically significant. This study suggests that hybrid zones are a common phenomenon for marine fishes in the transition area between the North Sea and the Baltic Sea and highlights the importance of using interspecific comparisons for inferring population structure in high gene flow species such as most marine fishes.  相似文献   

18.
Patterns of genetic variation within a species may be used to infer past events in the evolutionary history of marine species. In the present study we aimed to compare the genetic diversity of the red gorgonian Paramuricea clavata in the Atlantic Ocean and the Mediterranean Sea. For genetic markers we used microsatellites and a mitochondrial gene fragment. Our results revealed a distinct genetic composition and diversity between the Mediterranean and the Atlantic. The Mediterranean samples had higher microsatellite heterozygosity, allelic richness and private allelic richness. The hypotheses that can explain these patterns are the isolation of Atlantic populations and/or a founder effect. Additionally, a clear difference was obtained from the mitochondrial locus, since sequences from Atlantic and Mediterranean samples diverged by 1%, which is high for soft corals.  相似文献   

19.
The introduction and spread of non-indigenous species (NIS) in marine ecosystems accelerated during the twentieth century owing to human activities, notably international shipping. Genetic analysis has proven useful in understanding the invasion history and dynamics of colonizing NIS and identifying their source population(s). Here we investigated sequence variation in the nuclear ribosomal Internal Transcribed Spacer region of the ctenophore Mnemiopsis leidyi, a species considered one of the most invasive globally. We surveyed four populations from the native distribution range along the Atlantic coasts of the United States and South America, as well as six populations in the introduced range from the Black, Azov, Caspian and Baltic seas. Allelic and nucleotide diversity of introduced populations were comparable to those of native populations from which they were likely drawn. Introduced populations typically exhibited lower genetic differentiation (F ST = ?0.014?C0.421) than native populations (F ST = 0.324?C0.688). Population genetic analyses supported the invasion of Eurasia from at least two different pathways, the first from the Gulf of Mexico (e.g., Tampa Bay) to the Black Sea and thence to the Caspian Sea, the second from the northern part of the native distribution range (e.g., Narragansett Bay) to the Baltic Sea. The relatively high genetic diversity observed in introduced populations is consistent with large inocula and/or multiple invasions, both of which are possible given ballast water transport and the extensive native distribution of the ctenophore in the Atlantic Ocean.  相似文献   

20.
Despite the deep sea being the largest habitat on Earth, there are just 77 population genetic studies of invertebrates (115 species) inhabiting non‐chemosynthetic ecosystems on the deep‐sea floor (below 200 m depth). We review and synthesize the results of these papers. Studies reveal levels of genetic diversity comparable to shallow‐water species. Generally, populations at similar depths were well connected over 100s–1,000s km, but studies that sampled across depth ranges reveal population structure at much smaller scales (100s–1,000s m) consistent with isolation by adaptation across environmental gradients, or the existence of physical barriers to connectivity with depth. Few studies were ocean‐wide (under 4%), and 48% were Atlantic‐focused. There is strong emphasis on megafauna and commercial species with research into meiofauna, “ecosystem engineers” and other ecologically important species lacking. Only nine papers account for ~50% of the planet's surface (depths below 3,500 m). Just two species were studied below 5,000 m, a quarter of Earth's seafloor. Most studies used single‐locus mitochondrial genes revealing a common pattern of non‐neutrality, consistent with demographic instability or selective sweeps; similar to deep‐sea hydrothermal vent fauna. The absence of a clear difference between vent and non‐vent could signify that demographic instability is common in the deep sea, or that selective sweeps render single‐locus mitochondrial studies demographically uninformative. The number of population genetics studies to date is miniscule in relation to the size of the deep sea. The paucity of studies constrains meta‐analyses where broad inferences about deep‐sea ecology could be made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号