首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supplementary host specificity tests were conducted with the defoliating sawfly Heteroperreyia hubrichi (Hymenoptera: Pergidae), a candidate for classical biological control of Brazilian peppertree, Schinus terebinthifolius (Sapindales: Anacardiaceae), in the United States. These tests were conducted as part of the environmental assessment required by the National Environmental Policy Act (NEPA). The suitability of the federally listed endangered native plant Rhus michauxii (Anacardiaceae) and the economically important Litchi chinensis (Sapindaceae) as potential host plants for H. hubrichi was evaluated in a series of no-choice larval development tests conducted in a Florida quarantine laboratory. Neonate larvae transferred to individual test plants failed to develop to the pupal stage on R. michauxii or L. sinensis, whereas Brazilian peppertree supported development of the sawfly to pupation. The results of the additional host specificity tests indicated these critical non-target plants are not at risk from attack by H. hubrichi if it were released in Florida, USA.  相似文献   

2.
The host range of Eucosmophora schinusivora Davis and Wheeler (Lepidoptera: Gracillariidae) was studied to assess its suitability as a biological control agent of Schinus terebinthifolius Raddi (Anacardiaceae), a serious environmental and agricultural weed in the USA and elsewhere in the world. The life history of this insect species and its host range were determined in the laboratory with adult no-choice oviposition and larval development tests. This species has five instars, the first three are sap-feeding miners and the last two are tissue feeding. Total development time was 31.7 days. To examine specificity of this species, 10 plant species in Anacardiaceae were selected based on taxonomic relatedness to S. terebinthifolius, economic importance, and availability. In the laboratory, except for Anacardium occidentale and Cotinus obovatus, all of the tested species were accepted for oviposition with a marked preference for the weed S. terebinthifolius, Schinus molle, Rhus copallinum, Rhus sandwicensis and Pistacia chinensis. Complete development, from egg to adult, was achieved only on S. terebinthifolius, S. molle, R. copallinum, P. chinensis and Metopium toxiferum. In conclusion, E. schinusivora will not be considered for the biological control of S. terebinthifolius in the continental USA. However, the utilisation of this species in other infested areas such as Hawai'i and Australia should be considered.  相似文献   

3.
Brazilian peppertree, Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae), is a highly successful invasive species in the continental United States, Hawaiian archipelago, several Caribbean Islands, Australia, Bermuda, and a number of other countries worldwide. It also is one of only a few invasive intraspecific hybrids that has been well characterized genetically. The natural enemy complex of Brazilian peppertree includes two thrips and two psyllids that appear to be highly adapted to specific haplotypes or their hybrids. Successful biological control of Brazilian peppertree will require careful matching of the appropriate natural enemies with their host plant genotypes. The Brazilian peppertree model reviewed here could provide a useful framework for studying biological control agents on other invasive weed species that have exhibited intraspecific hybridization.  相似文献   

4.
The host range of Leurocephala schinusae Davis & Mc Kay (Lepidoptera: Gracillariidae) was studied to assess its suitability as a biological control agent of Schinus terebinthifolius Raddi (Anacardiaceae), a serious environmental weed in the USA and elsewhere in the world. The host range was determined in the laboratory with adult no-choice oviposition (Argentina and USA) and larval development tests (USA). Seventeen plant species in ten genera were selected based on taxonomic relatedness to S. terebinthifolius, economic importance, and availability. Additional information was obtained by sampling foliage of S. terebinthifolius and six other South American native Anacardiaceae species in north-eastern Argentina. In the laboratory, except for Lithrea molleoides and Spondias mombin, all of the tested species were accepted for oviposition with a marked preference for Rhus aromatica. Incipient mines successfully developed into complete mines, pupae and adults on R. aromatica, Rhus copallinum, Schinus molle, Schinus lentiscifolius and S. terebinthifolius. In the field, although L. schinusae showed a clear preference for S. terebinthifolius, the host range, as determined by samples of host use in the native range, included three other Schinus species (S. lentiscifolius, Schinus longifolius, Schinus weinmannifolius) and one Astronium species (Astronium balansae). In conclusion, L. schinusae will not be considered for the biological control of S. terebinthifolius in continental US. However, the utilisation of this species in other infested areas such as Hawaii and Australia should be further discussed.  相似文献   

5.
Surveys for biological control agents of the invasive weed Schinus terebinthifolius (Anacardiaceae) discovered two Omolabus weevils (Coleoptera: Attelabidae) feeding on the plant in its native range. Molecular and morphological analysis indicated that one of these species consistently fed on the target weed and the other species fed more broadly. Aspects of the biology and host range of the more specific species, Omolabus piceus (Germar) were examined to determine its suitability as a biological control agent of S. terebinthifolius in the USA. Adults feed on newly formed leaves, and eggs, larvae and pupae develop in curled fragments of leaves, called nidi. Larvae consumed an average of 11.3 (±0.4) mg throughout their development which required 15.1 (±0.2) days. An average of 31.6 (±2.7) eggs were laid per female during their 23.8 (±2.2) day lifetime, after a 3.4 (±1.0) day preoviposition period. In no-choice tests, O. piceus adults fed and oviposited on all tested native North American, Caribbean and agricultural Anacardiaceae species except for M. indica. The field host-range of O. piceus, as determined by samples of host use in the native range, included three Schinus, two Lithrea and one Anacardium species. Therefore, we do not recommend O. piceus for biological control of S. terebinthifolius in the USA. However, the utilization of this species in other infested areas such as Hawaií and Australia should be considered.  相似文献   

6.
The potential of the leaf beetle Charidotis auroguttata as a biocontrol agent for cat’s claw creeper Macfadyena unguis-cati (Bignoniaceae), an environmental weed in Australia, and risk to non-target plants was evaluated under quarantine conditions. In no-choice tests, C. auroguttata adults and larvae fed on many plant species across different families, but egg to adult development occurred only on the target weed. However, when neonate larvae from the target weed were transferred onto Myoporum boninense australe (Myoporaceae), a non-target native plant, 11.7% completed development, as compared to 95% of larvae that completed development on the target weed. Larval development on this non-target species also took twice as long as on the target weed. No larvae completed development on other test plants. In choice tests, leaf area consumption by adults and larvae was significantly more on the target weed than on other plants, and oviposition occurred only on the target weed. In the no-choice demography trials, adults laid eggs from the second week after emergence on the target weed, with an average of 0.286 eggs/female/day, resulting in an 18-fold increase in the adult population over 16 weeks. On My. boninense australe adult survival remained high, but oviposition commenced only from the 10th week after emergence with an average of 0.023 eggs/female/day, and none of the eggs developed into adults. In the choice demography trials, oviposition on the target weed was evident from the fourth week onwards, while on the non-target plant oviposition commenced only from the 14th week. Only 10% of total adults and 11.3% of total eggs were found on the non-target plant, and none of these eggs developed into adults. Although the biocontrol agent can ‘spill-over’ from the target weed to the non-target native plant and cause adult feeding damage, the non-target plant could not sustain a viable insect population on its own. This agent was not approved for field release in Australia due to perceived risk to non-target species.  相似文献   

7.
The rust fungusGymnoconia nitensinfects blackberry (Rubus argutus) systemically in regions of the continental United States, producing bright yellow–orange masses of spores on newly developing floricanes during springtime. In tests to determine the suitability of this rust as a biological control agent forR. penetransin Hawaii, a species now thought to be conspecific withR. argutus,rooted cuttings of the Hawaiian plants were grown at North Carolina State University, inoculated, and observed. Other introduced weedyRubusspp. in Hawaii, includingR. ellipticus, R. rosifolius,andR. glaucus,as well as the two endemic speciesR. hawaiensisandR. macraei,also were inoculated. No species ofRubusare of commercial importance in Hawaii, but the protection of the native species, of whichR. macraeiis rare, was of utmost concern. The native Hawaiian species did not survive well in North Carolina in this study, however. Later availability of a plant pathogen containment laboratory in Hawaii enabled similar tests to be conducted at that facility. In addition to the above species,R. spectabilis(salmonberry), a species native to the Pacific Northwest with which the HawaiianRubusspp. are thought to share a common ancestor, was inoculated in Hawaii. Infection withG. nitensunder natural field conditions becomes apparent only when sporulation occurs on floricanes the second year following infection. However, experimental inoculation led to early responses of chlorotic leaf flecking and puckering, leaf and stem contortion, and stem gall formation, indicating the sensitivity ofR. penetrans(=R. argutus),R. hawaiensis,andR. macraeito this rust. Apparent systemic infection also resulted in sporulation on one plant ofR. macraei.Ability to attack the endemic species suggests thatG. nitenswould not be suitable for release in Hawaii as a biological control agent, at least on the islands with populations of the native species.  相似文献   

8.
The most critical step during a weed biological control program is determination of a candidate agent’s host range. Despite rigorous protocols and extensive testing, there are still concerns over potential non-target effects following field releases. With the objective to improve risk assessment in biological control, no-choice and choice testing followed by a multiple generation study were conducted on the leaf-defoliator, Paectes longiformis Pogue (Lepidoptera: Euteliidae). This moth is being investigated as a biological control agent of Schinus terebinthifolia Raddi (Sapindales: Anacardiaceae), which is one of the worst invasive plant species in Florida, USA. Results from no-choice testing showed higher larval survival on S. terebinthifolia (48 %) and its close relative Schinus molle L. (47 %), whereas lower survival was obtained on six non-target species (<25 %). When given a choice, P. longiformis females preferred to lay eggs on the target weed, but oviposition also occurred on four non-target species. An improved performance on the native Rhus aromatica Aiton was found when insects were reared exclusively on this non-target species for one or two generations. Results from host range testing suggest that this moth is oligophagous, but has a preference for the target weed. Non-target effects found during multiple generation studies indicate that P. longiformis should not be considered as a biological control agent of S. terebinthifolia.  相似文献   

9.
Ceutorhynchus assimilis has been selected as a potential biological control agent of Lepidium draba, which is a Eurasian invasive weed in North America. Preliminary studies indicated specificity of this weevil collected in southern France on L. draba. This result was in discord with the pest status of C. assimilis found in the literature. Host-specificity tests based both on field and laboratory experiments showed heterogeneity in the host spectrum of the weevils reared from different host-plants as determined by larval development. However, no distinguishable morphological differences could be visually detected between the populations feeding on different host-plants. All sampled populations of weevils were polyphagous as adults. Weevils reared from L. draba were specific to this plant for their complete larval development. Conversely, populations living on other wild and cultivated Brassicaceae species were not able to use L. draba as a host plant. Such differentiation is further highlighted by other biological aspects such as plant infestation rates, sex-ratio, duration of larval development, and differences in the timing of their life cycles. These results demonstrate that C. assimilis, an insect species formerly considered as a pest of Brassicaceae, is characterized by its host-range variability, with one population being potentially useful in the biological control of L. draba. Moreover, this example points to the need to test multiple populations of biological control agents in assessing risk.  相似文献   

10.
The soft scale,Steatococcus new species, occurs onCryptostegia grandiflora R. Br. in Madagascar. Studies on its biology and host plant range showed colonies could survive for up to 6 months on some genera in theApocynaceae and indefinitely on many genera in the familyAsclepiadaceae. The species was therefore rejected as a biological control agent forC. grandiflora, a serious weed in northern Queensland, Australia.   相似文献   

11.
Aconophora compressa Walker (Hemiptera: Membracidae) was released in 1995 against the weed lantana in Australia, and is now found on multiple host plant species. The intensity and regularity at which A. compressa uses different host species was quantified in its introduced Australian range and also its native Mexican range. In Australia, host plants fell into three statistically defined categories, as indicated by the relative rates and intensities at which they were used in the field. Fiddlewood (Citharexylum spinosum L.: Verbenaceae) was used much more regularly and at higher densities than any other host sampled, and alone made up the first group. The second group, lantana (Lantana camara L.: Verbenaceae; pink variety) and geisha girl (Duranta erecta L.: Verbenaceae), were used less regularly and at much lower densities than fiddlewood. The third group, Sheena’s gold (another variety of D. erecta), jacaranda (Jacaranda mimosifolia D. Don: Bignoniaceae) and myoporum (Myoporum acuminatum R. Br.: Myoporaceae), were used infrequently and at even lower densities. In Mexico, the insect was found at relatively low densities on all hosts relative to those in Australia. Densities were highest on L. urticifolia, D. erecta and Tecoma stans (L.) Juss. ex Kunth (Bignoniaceae), which were used at similar rates to one another. It was found also on a few other verbenaceous and non-verbenaceous host species but at even lower densities. The relative rate at which Citharexylum spp. and L. urticifolia were used could not be assessed in Mexico because A. compressa was found on only one plant of each species in areas where these host species co-occurred. The low rate at which A. compressa occurred on fiddlewood in Mexico is likely to be an artefact of the short-term nature of the surveys or differences in the suites of Citharexylum and Lantana species available there. These results provide further incentive to insist on structured and quantified surveys of non-target host use in the native range of potential biological control agents prior to host testing studies in quarantine.  相似文献   

12.
Plants are known to produce a plethora of secondary metabolites which are recognized as a useful source of new drugs or drug leads. Extracts and fractions of Schinus terebinthifolius Raddi (Anacardiaceae), Piper regnellii C.D.C. (Piperaceae), Rumex acetosa L. (Polygonaceae), and Punica granatum L. (Punicaceae) were assessed for their antifungal activity against eight clinical isolates of C. albicans. They were also evaluated for their effect on the adhesion of these C. albicans isolates to buccal epithelial cells (BECs). The ethyl acetate fraction from the leaves of S. terebinthifolius showed promising activity, inhibiting the growth of three C. albicans isolates at 7.8 μg ml−1 and significantly inhibiting their adhesion to BEC at 15 μg ml−1 . In addition, this fraction did not show cytotoxic activity against murine macrophages. The results show the potential of the plant extracts studied as a source of new antifungal compounds. Further studies are necessary for isolation and characterization of the active compounds of these plants.  相似文献   

13.
[目的] 紫茎泽兰是我国危害严重的恶性入侵杂草。比较专一性天敌泽兰实蝇对该杂草入侵前后植株的适应性,是揭示外来植物入侵后适应性机制的重要科学问题之一。[方法] 比较泽兰实蝇对原产地和入侵地紫茎泽兰植株的寄主选择性,并测定寄生于2类植株的上泽兰实蝇卵巢蛋白质含量及乙酰胆碱酯酶、羧酸酯酶、谷胱甘肽S-转移酶活性。[结果] 泽兰实蝇对原产地和入侵地紫茎泽兰的选择无显著性差异;寄生在紫茎泽兰入侵地植株上的卵巢蛋白质含量较原产地植株上更高。解毒酶活力比较表明,入侵地紫茎泽兰上泽兰实蝇的羧酸酯酶活性低于原产地上的,但谷胱甘肽S-转移酶(雌虫)活性比较则相反,乙酰胆碱酯酶活性比较均无显著性差异。[结论] 紫茎泽兰入侵后,专一性天敌泽兰实蝇的适应性有所下降,丰富了外来植物入侵机制中天敌逃逸假说的内涵。  相似文献   

14.
Solidago altissima L. was introduced into Europe as an ornamental plant from North America more than 100 years ago and the phytophagous insect fauna of it was recently examined in Switzerland where it has become an important weed in disturbed habitats. Rhizomes and aerial parts were examined and all insects collected in summer were tested in a no-choice feeding test. 18 out of 55 phytophagous insects were found feeding on S. altissima in Switzerland and for the remaining 37 the relation with the plant was not determined. The insects that have expanded their host range to feed on S. altissima since its introduction to Switzerland are almost solely opportunistic, unspecialized ectophages not closely attuned to the growth cycle of S. altissima. Only 4% of the insects were specialists and 9% endophagous. In contrast in North America S. altissima supports 25% specialists and 17% endophages. The native Solidago virgaurea L. in Switzerland supports many more specialists (28%) and endophages (23%) than S. altissima here. Possible reasons why almost none of these have switched to S. altissima are discussed. A comparison is made between the number of insects recruited by S. altissima in Switzerland with the number recruited by the exotic plants Heracleum mantegazzianum Som. & Lev. (Apiaceae) in Switzerland and Xanthium occidentale Bertol. (Asteraceae) in Australia. Reasons for different levels of insect recruitment are discussed. The high number of phytophagous insect species found on S. altissima in North America shows that there should be no shortage of possible control agents and any insects imported into Switzerland for the biological control of S. altissima would find largely unexploited food sources awaiting them.  相似文献   

15.
Dyer’s woad, Isatis tinctoria, a plant of Eurasian origin is a problematic weed in western North America against which a classical biological weed control programme was initiated in 2004. Three European insect species were selected as candidate agents to control this invasive species, including the root‐mining weevil Aulacobaris fallax. To determine its suitability as an agent, the biology and host specificity of A. fallax were studied in outdoor plots and in the field between 2004 and 2006 in its native European range. Aulacobaris fallax is a univoltine species that lays its eggs from March to August into leaf stalks and roots of dyer’s woad. Larvae mine and pupate in the roots and adults emerge from August to October. Up to 62% of the dyer’s woad plants at the field sites investigated were attacked by this weevil. In no‐choice host‐specificity tests, A. fallax attacked 16 out of 39 species and varieties within the Family Brassicaceae. Twelve of these are native to North America. In subsequent multiple‐choice tests, seven species, all native to North America, suffered a similar level of attack as dyer’s woad, while none of the European species were attacked. Our results demonstrate the importance of including test plant species that have not co‐evolved with the respective candidate agent. In sum, we conclude that the risk of non‐target effects is too high for A. fallax to be considered as a biological control agent for dyer’s woad in the United States.  相似文献   

16.
The expected outcome of weed control in natural systems is that the decline of a dominant weed will result in an increase in diversity of the plant community but this has seldom been tested. Here we evaluate the response of the plant community following the decline of diffuse knapweed (Centaurea diffusa) in six different pastures at White Lake, BC, Canada over five years. This period followed the establishment, spread and high levels of attack by the introduced European weevil, Larinus minutus, as part of a biological control program. Knapweed declined immediately before and during the study period, but, contrary to expectations, the species richness and diversity of the rangeland plant community did not increase. The absolute cover of native and introduced forbs and grasses increased following knapweed decline, but only the introduced grasses showed a consistent increase in cover relative to the other life-forms. However, unlike in other studies, the native plants dominated the study site. We conclude that the changes in plant communities following successful biological control are variable among programs and that the impact of replacement species must be evaluated in assessing the success of ecological restoration programs that use biological control to manage an undesirable weed.  相似文献   

17.
The eleotrid fish Eleotris sandwicensis inhabits lower reaches of streams in the Hawaiian Archipelago, where it feeds on juveniles of native amphidromous gobiid fishes migrating upstream from the ocean. Using high‐speed video and geometric modelling, we evaluated the feeding kinematics and performance of E. sandwicensis on free swimming prey, including two species with juveniles of different characteristic sizes, and compared successful and unsuccessful strikes. With fast jaw movements and a highly expansive buccal cavity, E. sandwicensis achieves high suction performance that enables the capture of elusive prey. Our analyses indicated that the species with larger juveniles (Sicyopterus stimpsoni) could be captured from a distance of up to 18.6% of the predator's body length (BL), but capture of the smaller species (Awaous guamensis) required a closer distance (12.2% BL). Predator–prey distance appears to be the predominant factor determining strike outcome during feeding on juvenile A. guamensis. However, during feeding on juvenile S. stimpsoni, E. sandwicensis shows modulations of strike behaviour that correlate with capture success. Moreover, the ability of E. sandwicensis to capture larger prey fish from longer distances suggests a potential biomechanical basis underlying observations that predation by eleotrids imposes significant selection against large body size in juvenile gobies. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 359–374.  相似文献   

18.
Foreign surveys in China discovered a defoliating insect species feeding on the leaves of Chinese tallowtree (Triadica sebifera), an invasive weed of the southeastern U.S.A. The life history of this species, Sauris nr. purpurotincta (Lepidoptera: Geometridae), was examined and larval no-choice and adult multiple-choice host range tests were conducted in quarantine to evaluate their suitability for biological control of Chinese tallowtree. The results indicated that the larvae have five instars and require approximately 22 days to complete development to the adult stage. Host range tests indicated that the larvae could not feed and complete development on most species tested. However, 40% of the larvae survived when fed leaves of Hippomane mancinella, a state-listed endangered species in Florida, and all larvae survived when fed Morella cerifera, a common native species of the southeastern U.S.A. Multiple-choice oviposition tests indicated eggs were laid on leaves of both a south Florida native plant Gymnanthes lucida and Chinese tallowtree. Considering this broad host range, this species will not be considered further for biological control of Chinese tallowtree in the U.S.A.  相似文献   

19.
The biota of herbivorous arthropods and pathogenic microorganisms associated with Rosa rugosa in its native and exotic ranges is reviewed. This is done as an initial step towards the identification of potential agents for biological control of this plant species invasive in Europe and North America. It is shown that more insect (but apparently not fungal) species attack R. rugosa in its native range than in its exotic range, and that most of the specialized insect and fungal enemies are confined to its native range. Among the close relatives of R. rugosa in its exotic ranges are many native species, as well as economically important crop plants. Few organisms appear to be narrowly specialized to R. rugosa, but true host specificity can only be identified through experimental testing. Based on the literature, the most promising candidates for biocontrol seem to be the aphids Myzus japonensis and Amphorophora amurensis, the leaf hopper Empoasca ussurica, the tortricid moth Notocelia longispina, the cynipid gall-wasp Diplolepis fukudae, and the rust fungi Phragmidium rosae-rugosae and P. yezoense. A screening programme is suggested, investigating the impact of these organisms on R. rugosa performance, their host specificity and the risk of undesired indirect effects in the ecosystem where agents are released. In addition, demographic studies of the target plant should be integrated to provide guidance for the stage in the life cycle most sensitive to control and, thus, enable selection of the most efficient and safe biocontrol agents.  相似文献   

20.
Testing the specificity of candidate agents is a key component of risk analysis in weed biological control. This step is often time-consuming due to the numerous plant species that need to be tested under quarantine conditions in the invaded country of the weed species. Here, we examined whether an abridged phylogenetically based test list could be used in the weed's native range to quickly screen the host specificity of candidate agents. Ten plant species were used to test the host specificity of a promising candidate for the biological control of Sonchus oleraceus in Australia, the gall midge, Cystiphora sonchi. No-choice and choice tests were carried out in the native Mediterranean range of the midge. The results showed the midge has potential to threaten native Australian species, as those species showed high infestation levels in no-choice tests and produced significantly higher numbers of galls in choice tests. As a result of this approach, C. sonchi was rapidly discarded from the list of agents to be imported into Australian quarantines for further tests. This study demonstrates that testing a few key phylogenetically related species in the native range may save cost and effort in a weed biological control programme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号