首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When [3H]inositol prelabelled cultured bovine adrenal chromaffin cells were stimulated with 56 mM KCl (high K+), 300 microM carbamylcholine (CCh) or 10 microM angiotensin II (Ang II), a rapid accumulation of [3H]IP3 was observed. At the same time, high K+ or CCh induced rapid increases in 45Ca2+ uptake, but Ang II did not induce a significant 45Ca2+ uptake. The concentration-response curve for KCl-induced [3H]IP3 accumulation coincided well with that for KCl-induced 45Ca2+ uptake into the cells. Nifedipine, a Ca2+ channel antagonist, inhibited the high K(+)-induced [3H]IP3 accumulation and 45Ca2+ uptake with a similar potency. Nifedipine at a similar concentration range also inhibited CCh-induced 45Ca2+ uptake. Although nifedipine inhibited CCh-induced [3H]IP3 accumulation, the potency was approximately 300-fold less than that for the inhibition of 45Ca2+ uptake. Nifedipine failed to affect the Ang II-induced [3H]IP3 accumulation. BAY K 8644 (2 microM), a Ca2+ channel activator, plus partially depolarizing concentration of KCl (14 mM), induced 45Ca2+ uptake and [3H]IP3 accumulation. Ionomycin (1 microM and 10 microM), a Ca2+ ionophore, also induced 45Ca2+ uptake and [3H]IP3 accumulation in a concentration-dependent manner. Pretreatment of the cells with protein kinase C activator, 100 nM 12-O-tetradecanoyl phorbol-13-acetate, for 10 min, partially inhibited CCh and Ang II-induced [3H]IP3 accumulation, but failed to inhibit the high K(+)-induced accumulation. Furthermore, the effects of high K+ and Ang II on the IP3 accumulation was additive. Ang II and CCh induced a rapid and transient increase in inositol 1,4,5-trisphosphate (1,4,5-IP3) accumulation (5 s) followed by a slower accumulation of inositol 1,3,4-trisphosphate (1,3,4-IP3). High K+ evoked an increase in 1,3,4-IP3 accumulation but obvious accumulation of 1,4,5-IP3 could not be detected. In Ca2(+)-depleted medium, high K(+)-induced [3H]IP3 accumulation was completely abolished, whereas [3H]IP3 accumulation induced by CCh and Ang II was partially inhibited. These results demonstrate the existence of the Ca2+ uptake-triggered mechanism of IP3 accumulation represented by high K+, and also the Ca2+ uptake-independent mechanism of IP3 accumulation represented by Ang II in cultured bovine adrenal chromaffin cells. Mechanism of CCh-induced IP3 accumulation has an intermediate property between those of high K+ and Ang II.  相似文献   

2.
3.
Carbachol (CCh), a muscarinic agonist that elicits the formation of inositol trisphosphate (IP3) and diacylglycerol (DG), induces a calcium-dependent [3H]norepinephrine ([3H]NE) release [IC50 = (2.7 +/- 0.5) X 10(-4) M] in rat brain slices. Similarly, other muscarinic agonists evoke [3H]NE release which is specifically inhibited by muscarinic antagonists such as 3-quinuclidinyl benzilate, atropine, and N-methyl-4-piperidyl benzilate. The atropine-sensitive evoked release is effectively inhibited by neomycin (IC50 = 50 microM), a phospholipase C inhibitor that interferes with IP3-dependent cellular processes. In addition, polymyxin B, a rather selective inhibitor of protein kinase C (PK-C), abolishes the agonist-mediated release with a half-maximal effective concentration of 0.53 microM (750 ng/ml). These results have a significant implication for the mechanism by which agonists generating IP3 and DG act as inducers of neurotransmitter release in the CNS. However, since both neomycin and polymyxin B act also as N-calcium-channel blockers, other possible mechanisms are discussed. The CCh-induced release suggests that in the CNS an agonist-receptor interaction leads to a calcium-dependent neurotransmitter release, most likely via promoting the IP3/DG as second messengers followed by activation of PK-C.  相似文献   

4.
The dynamics of carbachol (CCh)-induced [Ca(2+)](i) changes was related to the kinetics of muscarinic cationic current (mI(cat)) and the effect of Ca(2+) release through ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP(3)Rs) on mI(cat) was evaluated by fast x-y or line-scan confocal imaging of [Ca(2+)](i) combined with simultaneous recording of mI(cat) under whole-cell voltage clamp. When myocytes freshly isolated from the longitudinal layer of the guinea-pig ileum were loaded with the Ca(2+)-sensitive indicator fluo-3, x-y confocal imaging revealed CCh (10 microM)-induced Ca(2+) waves, which propagated from the cell ends towards the myocyte centre at 45.9 +/- 8.8 microms(-1) (n = 13). Initiation of the Ca(2+) wave preceded the appearance of any measurable mI(cat) by 229 +/- 55 ms (n = 7). Furthermore, CCh-induced [Ca(2+)](i) transients peaked 1.22 +/- 0.11s (n = 17) before mI(cat) reached peak amplitude. At -50 mV, spontaneous release of Ca(2+) through RyRs, resulting in Ca(2+) sparks, had no effect on CCh-induced mI(cat) but activated BK channels leading to spontaneous transient outward currents (STOCs). In addition, Ca(2+) release through RyRs induced by brief application of 5 mM caffeine was initiated at the cell centre but did not augment mI(cat) (n = 14). This was not due to an inhibitory effect of caffeine on muscarinic cationic channels (since application of 5 mM caffeine did not inhibit mI(cat) when [Ca(2+)](i) was strongly buffered with Ca(2+)/BAPTA buffer) nor was it due to an effect of caffeine on other mechanisms possibly involved in the regulation of Ca(2+) sensitivity of muscarinic cationic channels (since in the presence of 5 mM caffeine, photorelease of Ca(2+) upon cell dialysis with 5 mM NP-EGTA/3.8 mM Ca(2+) potentiated mI(cat) in the same way as in control). In contrast, IP(3)R-mediated Ca(2+) release upon flash photolysis of "caged" IP(3) (30 microM in the pipette solution) augmented mI(cat) (n = 15), even though [Ca(2+)](i) did not reach the level required for potentiation of mI(cat) during photorelease of Ca(2+) (n = 10). Intracellular calcium stores were visualised by loading of the myocytes with the low-affinity Ca(2+) indicator fluo-3FF AM and consisted of a superficial sarcoplasmic reticulum (SR) network and some perinuclear formation, which appeared to be continuous with the superficial SR. Immunostaining of the myocytes with antibodies to IP(3)R type 1 and to RyRs revealed that IP(3)Rs are predominant in the superficial SR while RyRs are confined to the central region of the cell. These results suggest that IP(3)R-mediated Ca(2+) release plays a central role in the modulation of mI(cat) in the guinea-pig ileum and that IP(3) may sensitise the regulatory mechanisms of the muscarinic cationic channels gating to Ca(2+).  相似文献   

5.
Lee KP  Jun JY  Chang IY  Suh SH  So I  Kim KW 《Molecules and cells》2005,20(3):435-441
Classical transient receptor potential channels (TRPCs) are thought to be candidates for the nonselective cation channels (NSCCs) involved in pacemaker activity and its neuromodulation in murine stomach smooth muscle. We aimed to determine the role of TRPC4 in the formation of NSCCs and in the generation of slow waves. At a holding potential of -60 mV, 50 mM carbachol (CCh) induced INSCC of amplitude [500.8+/-161.8 pA (n=8)] at -60 mV in mouse gastric smooth muscle cells. We investigated the effects of commercially available antibodies to TRPC4 on recombinant TRPC4 expressed in HEK cells and CCh-induced NSCCs in gastric smooth muscle cells. TRPC4 currents in HEK cells were reduced from 1525.6+/-414.4 pA (n=8) to 146.4+/-83.3 pA (n=10) by anti-TRPC4 antibody and INSCC amplitudes were reduced from 230.9+/-36.3 pA (n=15) to 49.8+/-11.8 pA (n=9). Furthermore, INSCC in the gastric smooth muscle cells of TRPC4 knockout mice was only 34.4+/-10.4 pA (n=8) at -60 mV. However, slow waves were still present in the knockout mice. Our data suggest that TRPC4 is an essential component of the NSCC activated by muscarinic stimulation in the murine stomach.  相似文献   

6.
Snake vomeronasal receptor neurons in slice preparations were studied using the patch-clamp technique in the conventional and nystatin-perforated whole-cell configurations. The mean resting potential was approximately -70 mV; the average input resistance was 3 GOmega. Neurons required current injection of only 1-10 pA to display a variety of spiking patterns. Intracellular dialysis of 100 microM inositol 1,4,5-trisphosphate (IP(3)) evoked an inward current in 38% of neurons, with an average peak amplitude of 16.4 +/- 2.8 pA at a holding potential of -70mV. Application of 100 microM 3-deoxy-3-fluoro-D-myo-inositol 1,4,5-trisphosphate (F-IP(3)), a derivative of IP(3), also evoked an inward current in 4/8 (50%) neurons (32.6 +/- 58 pA at -70 mV, n = 4). The reversal potentials of the induced components were estimated to be -14 +/- 5 mV for IP(3) and -17 +/- 3 mV for F-IP(3). Bathing the neurons in 10 microM ruthenium red solution greatly reduced the IP(3)-evoked inward current to 1.6 +/- 1.1 pA at -70 mV (n = 6). With Cs(+)-containing internal solution, neither the Ca(2+)-ATPase inhibitor thapsigargin (1-50 microM) nor the Ca(2+)-ionophore ionomycin (10 microM) evoked a significant current response, suggesting that IP(3) can elicit current response in the neurons without mediation by intracellular Ca(2+) stores. Intracellular application of 1 mM cAMP evoked no detectable current response. Extracellular application of chemoattractant for snakes evoked a very large inward current. The reversal potential of the chemoattractant-induced current was similar to that of the IP(3)-induced current. The present results suggest that IP(3) may act as a second messenger in the transduction of chemoattractants in the garter snake vomeronasal organ.  相似文献   

7.
Acid-induced esophagitis is associated with sustained longitudinal smooth muscle (LSM) contraction and consequent esophageal shortening. In addition, LSM strips from opossums with esophagitis are hyper-responsive, while the circular smooth muscle (CSM) contractility is impaired. To determine the origin of these changes, studies were performed on esophageal smooth muscle cells isolated from opossum esophagi perfused intraluminally on 3 consecutive days with either saline (control; n = 8) or HCl (n = 9). CSM and LSM cells, obtained by enzymatic digestion, were exposed to various concentrations of carbachol (CCh) and fixed. CCh induced concentration-dependent contraction of both LSM and CSM cells. CCh-induced LSM cell contraction was not different between control and esophagitis animals; however, there was marked attenuation in the CCh-induced contraction of CSM cells from esophagitis animals. Morphological studies revealed significant hypertrophy of the CSM cells. These findings suggest that impaired CSM contractility can be attributed at least in part to alterations to the CSM cell itself. In contrast, hyper-contractility demonstrated in LSM strips is likely related to factors in the surrounding tissue.  相似文献   

8.
Regulation of the increase in inositol phosphate (IP) production and intracellular Ca2+ concentration ([Ca2+]i by protein kinase C (PKC) was investigated in cultured rat vascular smooth muscle cells (VSMCs). Pretreatment of VSMCs with phorbol 12-myristate 14-acetate (PMA, 1 microM) for 30 min almost abolished the BK-induced IP formation and Ca2+ mobilisation. This inhibition was reduced after incubating the cells with PMA for 4 h, and within 24 h the BK-induced responses were greater than those of control cells. The concentrations of PMA giving a half-maximal (pEC50) and maximal inhibition of BK induced an increase in [Ca2+]i, were 7.8 +/- 0.3 M and 1 microM, n = 8, respectively. Prior treatment of VSMCs with staurosporine (1 microM), a PKC inhibitor, inhibited the ability of PMA to attenuate BK-induced responses, suggesting that the inhibitory effect of PMA is mediated through the activation of PKC. Paralleling the effect of PMA on the BK-induced IP formation and Ca2+ mobilisation, the translocation and downregulation of PKC isozymes were determined by Western blotting with antibodies against different PKC isozymes. The results revealed that treatment of the cells with PMA for various times, translocation of PKC-alpha, betaI, betaII, delta, epsilon, and zeta isozymes from the cytosol to the membrane were seen after 5 min, 30 min, 2 h, and 4 h of treatment. However, 24-h treatment caused a partial downregulation of these PKC isozymes in both fractions. Treatment of VSMCs with 1 microM PMA for either 1 or 24 h did not significantly change the K(D) and Bmax of the BK receptor for binding (control: K(D) = 1.7 +/- 0.2 nM; Bmax = 47.3 +/- 4.4 fmol/mg protein), indicating that BK receptors are not a site for the inhibitory effect of PMA on BK-induced responses. In conclusion, these results demonstrate that translocation of PKC-alpha, betaI, betaII, delta, epsilon, and zeta induced by PMA caused an attenuation of BK-induced IPs accumulation and Ca2+ mobilisation in VSMCs.  相似文献   

9.
The biochemical signaling pathways involved in nitric oxide (NO)- mediated cholinergic inhibition of L-type Ca2+ current (ICa[L]) were investigated in isolated primary pacemaker cells from the rabbit sinoatrial node (SAN) using the nystatin-perforated whole-cell voltage clamp technique. Carbamylcholine (CCh; 1 microM), a stable analogue of acetylcholine, significantly inhibited ICa(L) after it had been augmented by isoproterenol (ISO; 1 microM). CCh also activated an outward K+ current, IK(ACh). Both of these effects of CCh were blocked completely by atropine. Preincubation of the SAN cells with L-nitro- arginine methyl ester (L-NAME; 0.2-1 mM), which inhibits NO synthase (NOS), abolished the CCh-induced attenuation of ICa(L) but had no effect on IK(ACh). Coincubation of cells with both L-NAME and the endogenous substrate of NOS, L-arginine (1 nM), restored the CCh- induced attenuation of ICa(L), indicating that L-NAME did not directly interfere with the muscarinic action of CCh on ICa(L). In the presence of ISO the CCh-induced inhibition of ICa(L) could be mimicked by the NO donor 3-morpholino-sydnonimine (SIN-1; 0.1 mM). SIN-1 had no effect on its own or after a maximal effect of CCh had developed, indicating that it does not inhibit ICa(L) directly. SIN-1 failed to activate IK(ACh), demonstrating that it did not activate muscarinic receptors. Both CCh and NO are known to activate guanylyl cyclase and elevate intracellular cGMP. External application of methylene blue (10 microM), which interferes with the ability of NO to activate guanylyl cyclase, blocked the CCh-induced attenuation of ICa(L). However, it also blocked the activation of IK(ACh), suggesting an additional effect on muscarinic receptors or G proteins. To address this, a separate series of experiments was performed using conventional whole-cell recordings with methylene blue in the pipette. Under these conditions, the CCh-induced attenuation of ICa(L) was blocked, but the activation of IK(ACh) was still observed. Methylene blue also blocked the SIN-1-induced decrease in ICa(L). 6-anilino-5,8-quinolinedione (LY83583; 30 microM), an agent known to decrease both basal and CCh-stimulated cGMP levels, prevented the inhibitory effects of both CCh and SIN-1 on ICa(L), but had no effect on the activation of IK(ACh) by CCh. In combination, these results show that CCh- and NO-induced inhibition of ICa(L) is mediated by cGMP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Intracellular free calcium concentration [( Ca2+]1) was measured in suspensions of fura-2 loaded smooth-muscle cells isolated from the anterior byssus retractor muscle of Mytilus edulis. Successive application of 5mM carbachol (CCh) and 100mM KCl to the cells transiently elevated [Ca2+]1 from the resting value of 124 +/- 4.5nM (mean +/- S.E., n = 14) to 295 +/- 15.3 and 383 +/- 20.5 nM, respectively. The response to CCh was concentration-dependent with an ED50 of 10(-5) M. Under the microscope, 67 +/- 3.0 and 83 +/- 1.3 % of fura-2 loaded cells contracted on the addition of 5mM CCh and 100mM KCl, respectively. In Ca2+ -free sea water, the CCh induced change in [Ca2+]1 was partially suppressed whereas that induced by KCl was completely abolished, suggesting an agonist-evoked release of stored Ca2+.  相似文献   

11.
The properties of calcium transport in microsomes and the effect of inositol 1,4,5-trisphosphate (IP3) on accumulated calcium were studied in rat thymocytes. Active calcium transport shows an apparent affinity constant for calcium of 0.2 +/- 0.01 microM and a maximal velocity of 2.3 +/- 0.6 nmol/mg/30 min (mean +/- SD). IP3 was able to induce release of calcium only in the absence of oxalate. At 6 microM ambient free calcium, half-maximal effect of IP3 was attained at 2 microM and maximal calcium release was produced by IP3 concentrations over 5 microM. Barium and strontium did not modify calcium uptake by microsomes but markedly inhibited the action of IP3.  相似文献   

12.
We have investigated the coupling of muscarinic acetylcholine receptors (mAChR) to phospholipid hydrolysis in a human neuroblastoma cell line, LA-N-2, by measuring the formation of 3H-inositol phosphates (3H-IP) and of [3H]phosphatidylethanol ([3H]PEt) in cells prelabeled with [3H]inositol and [3H]oleic acid. The muscarinic agonist carbachol (CCh) stimulated the phospholipase C (PLC)-mediated formation of 3H-IP in a time- and dose-dependent manner (EC50 = 40-55 microM). In addition, in the presence of ethanol (170-300 mM), CCh elevated levels of [3H]PEt [which is regarded as a specific indicator of phospholipase D (PLD) activity] by three- to sixfold. The effect of CCh on PEt formation also was dose dependent (EC50 = 50 microM). Both effects of CCh were antagonized by atropine, indicating that they were mediated by mAChR. Incubation of LA-N-2 cells with the phorbol ester phorbol 12-myristate 13-acetate (PMA, 0.1 microM; 10 min) increased [3H]PEt levels by up to 10-fold. This effect was inhibited by the protein kinase C (PKC) inhibitor staurosporine (1 microM) or by pretreatment for 24 h with 0.1 microM PMA, by 74% and 65%, respectively. In contrast, the effect of CCh on PEt accumulation was attenuated by only 28% in the presence of staurosporine (1 microM). In summary, these results suggest that, in LA-N-2 neuroblastoma cells, mAChR are coupled both to phosphoinositide-specific PLC and to PLD. PKC is capable of stimulating PLD activity in these cells; however, it is not required for stimulation of the enzyme by mAChR activation.  相似文献   

13.
The aliphatic alcohol octanol is thought to modulate enzyme secretion from the exocrine pancreas by the inhibition of gap junction permeability. We have now investigated the effects of octanol on salivary secretion and intracellular calcium concentration ([Ca2+]i), measured in isolated perfused rat mandibular glands and in isolated mandibular acinar cells respectively. Stimulation of perfused glands with 10 microM carbachol (CCh) evoked a rapid increase in fluid secretion followed by a decrease to a sustained elevated level. Application of 1 mM octanol during CCh stimulation inhibited fluid secretion reversibly. In isolated acini, the CCh-induced [Ca2+]i increase was reversibly inhibited by the same concentration of octanol. However, octanol also inhibited the increase in [Ca2+]i in single acinar cells where gap junctions were no longer functional, indicating that octanol directly affected the intracellular Ca2+ signalling pathway. The initial increase in [Ca2+]i induced by 0.5-10 microM CCh, which is due to Ca2+ release from IP3-sensitive Ca2+ stores, was not affected by pretreatment with octanol. In contrast, CCh-, phenylephrine- or thapsigargin-induced Ca2+ entry was almost completely and reversibly inhibited by octanol. Octanol also blocked agonist-evoked Ca2+ entry in pancreatic acinar cells, and thapsigargin-evoked Ca2+ entry in fibroblasts. These data strongly suggest that octanol blocks salivary secretion from mandibular gland by the inhibition of capacitative Ca2+ entry, and raise the possibility that octanol may be a useful tool for inhibiting agonist-evoked Ca2+ entry pathways.  相似文献   

14.
Human neuroblastoma SH-SY5Y cells, predominantly expressing type 1 inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R), were stably transfected with IP(3)R type 3 (IP(3)R3) cDNA. Immunocytochemistry experiments showed a homogeneous cytoplasmic distribution of type 3 IP(3)Rs in transfected and selected high expression cloned cells. Using confocal Ca(2+) imaging, carbachol (CCh)-induced Ca(2+) release signals were studied. Low CCh concentrations (< or = 750 nM) evoked baseline Ca(2+) oscillations. Transfected cells displayed a higher CCh responsiveness than control or cloned cells. Ca(2+) responses varied between fast, large Ca(2+) spikes and slow, small Ca(2+) humps, while in the clone only Ca(2+) humps were observed. Ca(2+) humps in the transfected cells were associated with a high expression level of IP(3)R3. At high CCh concentrations (10 microM) Ca(2+) transients in transfected and cloned cells were similar to those in control cells. In the clone exogenous IP(3)R3 lacked the C-terminal channel domain but IP(3)-binding capacity was preserved. Transfected cells mainly expressed intact type 3 IP(3)Rs but some protein degradation was also observed.We conclude that in transfected cells expression of functional type 3 IP(3)Rs causes an apparent higher affinity for IP(3). In the clone, the presence of degraded receptors leads to an efficient cellular IP(3) buffer and attenuated IP(3)-evoked Ca(2+) release.  相似文献   

15.
Pretreatment of adrenal chromaffin cells with protein kinase C activators, i.e. 12-O-tetradecanoyl phorbol-13-acetate (TPA) and 1-oleoyl 2-acetyl glycerol (OAG), partially inhibited carbamylcholine (CCh)-induced rise in intracellular free Ca2+ concentration ([Ca2+]i). The apparent IC50 values of TPA and OAG were 3 nM and 25 microM, respectively. The effect of TPA on the CCh-induced rise in [Ca2+]i was overcome by pretreatment of the cells with a protein kinase C inhibitor, 1-(5-isoquinidinesulfonyl)-2-methylpiperazine hydrochloride (H-7). In contrast, KCl-induced rise in [Ca2+]i was not affected by pretreating the cells with TPA or OAG. An inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate failed to affect the CCh-induced rise in [Ca2+]i. CCh-induced 45Ca2+ uptake was also partially inhibited by pretreatment of the cells with TPA or OAG, but KCl-induced 45Ca2+ uptake was not affected by these pretreatments. These results indicate that protein kinase C activation causes an uncoupling of signal transduction between the nicotinic receptors and Ca2+ channels.  相似文献   

16.
Inositol 1,4,5-trisphosphate (IP3) is considered to be important for activation of mammalian oocytes at the time of fertilization, and activation induces a rise in intracellular Ca2+ concentration ([Ca2+]i) by release from the Ca2+ stores in the oocytes. Therefore, IP3 could act as an artificial activator of porcine oocytes. Activation and development, and rise in [Ca2+]i in matured oocytes injected with various concentrations of IP3 were investigated in this study. Porcine oocytes were recovered from the ovaries of prepubertal gilts, matured for 46-48 h and cultured in vitro for 7 days in following treatments as non-injected oocytes (NI), injected with carrier buffer, 2.5, 5 and 500 microM of IP3. The result showed that IP3 activated porcine oocytes matured in vitro (NI 3.8%, buffer 7.1%, 2.5 microM IP3 73.5%, 5 microM IP3 76.2%, 500 microM IP3 85.2%). There was a slight but not significant increase in the proportion of oocytes activated as the level of IP3 increased. The rate of development to the cleavage stage increased remarkably when the concentration of IP3 increased (NI 4.9%, buffer 5.7%, 2.5 microM IP3 30.3%, 5 microM IP3 47.1%, 500 microM IP3 78.1%). Blastocyst development was only observed in oocytes that had been injected with a higher concentration of IP3 (5 microM IP3 6.1% and 500 microM IP3 5.3%). Both the peak value and duration of [Ca2+]i rise also increased as the concentration of IP3 increased. Baseline values (ratio value, R) for [Ca2+]i ranged from 1.51 to 1.57 and was not affected by the buffer treatment. The peak value of [Ca2+]i rose significantly with increasing level of IP3 treatment (2.5 microM IP3, 3.54 +/- 0.32; 5 microM IP3, 7.50 +/- 0.37; 500 microM IP3, 8.54 +/- 0.33). Similarly, the duration of the [Ca2+]i rise increased as the level of IP3 increased (2.5 microM IP3, 43.7+/- 7.00 s; 5 microM IP3, 93.5 +/- 9.17 s; 500 microM IP3, 160.6 +/- 18.9 s). It was concluded that injected IP3 promotes the development of porcine matured oocytes and that their developmental ability is positively correlated with the rise in [Ca2+]i induced by IP3.  相似文献   

17.
Forskolin and vasoactive intestinal polypeptide (VIP) were shown to increase cyclic AMP accumulation in a human neuroblastoma cell line, SK-N-SH cells. The alpha 2-adrenergic agonist UK 14304 decreased forskolin-stimulated cyclic AMP levels by 40 +/- 2%, with an EC50 of 83 +/- 20 nM. This response was blocked by pretreatment with pertussis toxin (PT) (EC50 = 1 ng/ml) or by the alpha 2-antagonists yohimbine, idazoxan, and phentolamine. Antagonist IC50 values were 0.3 +/- 0.1, 2.2 +/- 0.3, and 1.4 +/- 0.1 microM, respectively. This finding suggests the presence of normal inhibitory coupling of SK-N-SH cell alpha 2-adrenergic receptors to adenylate cyclase via the inhibitory GTP-binding protein species, Gi. Muscarinic receptors in many target cell types are coupled to inhibition of adenylate cyclase. However, in SK-N-SH cells, muscarinic agonists synergistically increased (67-95%) the level of cyclic AMP accumulation elicited by forskolin or VIP. EC50 values for carbamylcholine (CCh) and oxotremorine facilitation of the forskolin response were 1.2 +/- 0.2 and 0.3 +/- 0.1 microM, respectively. Pharmacological studies using the muscarinic receptor subtype-preferring antagonists 4-diphenylacetoxy-N-methylpiperidine, pirenzepine, and AF-DX 116 indicated mediation of this response by the M3 subtype. IC50 values were 14 +/- 1, 16,857 +/- 757, and 148,043 +/- 16,209 nM, respectively. CCh-elicited responses were unaffected by PT pretreatment. Muscarinic agonist binding affinity was indirectly measured by the ability of CCh to compete for [3H]quinuclidinyl benzilate binding sites on SK-N-SH cell membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In the present study, an activation mechanism for phospholipase D (PLD) in [3H]palmitic acid-labeled pheochromocytoma PC12 cells in response to carbachol (CCh) was investigated. PLD activity was assessed by measuring the formation of [3H]phosphatidylethanol ([3H]PEt), the specific marker of PLD activity, in the presence of 0.5% (vol/vol) ethanol. CCh caused a rapid accumulation of [3H]-PEt, which reached a plateau within 1 min, in a concentration-dependent manner. The [3H]PEt formation by CCh was completely antagonized by atropine, demonstrating that the CCh effect was mediated by the muscarinic acetylcholine receptor (mAChR). A tumor promoter, phorbol 12-myristate 13-acetate (PMA), also caused an increase in [3H]-PEt content, which reached a plateau at 30-60 min after exposure, but an inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate, did not. Although a protein kinase C (PKC) inhibitor, staurosporine (5 microM), blocked PMA-induced [3H]PEt formation by 77%, it had no effect on the CCh-induced formation. These results suggest that mAChR-induced PLD activation is independent of PKC, whereas PLD activation by PMA is mediated by PKC. NaF, a common GTP-binding protein (G protein) activator, and a stable analogue of GTP, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), also stimulated [3H]PEt formation in intact and digitonin-permeabilized cells, respectively. GTP, UTP, and CTP were without effect. Furthermore, guanosine 5'-O-(2-thiodiphosphate) significantly inhibited CCh- and GTP gamma S-induced [3H]PEt formation in permeabilized cells but did not inhibit the formation by PMA, and staurosporine (5 microM) had no effect on [3H]PEt formation by GTP gamma S.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Neurally intact (NI) rats and chronic spinal cord injured (SCI) rats were studied to determine how activation of mechanosensory or cholinergic receptors in the bladder urothelium evokes ATP release from afferent terminals in the bladder as well as in the spinal cord. Spinal cord transection was performed at the T(9)-T(10) level 2-3 weeks prior to the experiment and a microdialysis fiber was inserted in the L(6)-S(1) lumbosacral spinal cord one day before the experiments. Mechanically evoked (i.e. 10 cm/W bladder pressure) ATP release into the bladder lumen was approximately 6.5-fold higher in SCI compared to NI rats (p<0.05). Intravesical carbachol (CCh) induced a significantly greater release of ATP in the bladder from SCI as compared to NI rats (3424.32+/-1255.57 pmol/ml versus 613.74+/-470.44 pmol/ml, respectively, p<0.05). However, ATP release in NI or SCI rats to intravesical CCh was not affected by the muscarinic antagonist atropine (Atr). Spinal release of ATP to bladder stimulation with 10 cm/W pressure was five-fold higher in SCI compared to NI rats (p<0.05). CCh also induced a significantly greater release of spinal ATP in SCI rats compared to controls (4.3+/-0.9 pmol versus 0.90+/-0.15 pmol, p<0.05). Surprisingly, the percent inhibitory effect of Atr on CCh-induced ATP release was less pronounced in SCI as compared to NI rats (49% versus 89%, respectively). SCI induces a dramatic increase in intravesical pressure and cholinergic receptor evoked bladder and spinal ATP release. Muscarinic receptors do not mediate intravesical CCh-induced ATP release into the bladder lumen in NI or SCI rats. In NI rats sensory muscarinic receptors are the predominant mechanism by which CCh induces ATP release from primary afferents within the lumbosacral spinal cord. Following SCI, however, nicotinic or purinergic receptor mechanisms become active, as evidenced by the fact that Atr was only partially effective in inhibiting CCh-induced spinal ATP release.  相似文献   

20.
The subsecond mobilization of intracellular Ca2+ by IP3 was measured with rapid mixing techniques to determine how cells achieve rapid rises in cytosolic [Ca2+] during receptor-triggered calcium spiking. In permeabilized rat basophilic leukemia cells at 11 degrees C, more than 80% of the 0.7 fmol of Ca2+/cell sequestered by the ATP-driven pump could be released by IP3. Half of the stored Ca2+ was released within 200 ms after addition of saturating (1 microM) IP3. The flux rate was half-maximal at 120 nM IP3. Ca2+ release from fully loaded stores was highly cooperative; the Hill coefficient over the 2-40 nM range was greater than 3. The delay time of channel opening was inversely proportional to [IP3], increasing from 150 ms at 100 nM IP3 to 1 s at 15 nM, indicating that the rate-limiting step in channel opening is IP3 binding. Multiple binding steps are required to account for the observed delay and nonexponential character of channel opening. A simple model is proposed in which the binding of four IP3 molecules to identical and independent sites leads to channel opening. The model agrees well with the data for KD = 18 nM, kon = 1.2 X 10(8) M-1 s-1, and koff = 2.2 s-1. The approximately 1-s exchange time of bound IP3 indicates that the channel gating sites are distinct from binding sites having approximately 100-s exchange times that were previously found with radiolabeled IP3. The approximately 1-1s response time of [Ca2+] to a rapid increase in IP3 level can account for observed rise times of calcium spikes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号