首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The apex of a 3-leaf pea plant was chilled in cold chambers maintained at 5–7°C. The lateral shoots 1 through 5 grew, and shoot 5 eventually dominated other lateral shoots. The apex when returned to the ambient temperature did not reimpose apical dominance. The growing lateral shoots competed with the stem apex. The apices of 2- and 3-leaf plants were chilled and P-32 distribution in these plants was studied in the entire plant, at various intervals of time. Phosphorus-32 accumulation followed the growth pattern of the plant. The lateral shoots accumulated P-32 activity and very little activity was accumulated by the apex. The dominating shoots 2 and 5 accumulated the maximum amount of activity in 2- and 3-leaf plants, respectively. Labeled-IAA moved basipetally through the stem when applied to the cut stump simulating the apex. By cold treatment the translocation of IAA was influenced more than its absorption. The plant seems to metabolize this compound in the later periods of application. The plant now becomes “insensitive” to auxin and the lateral shoots grow.  相似文献   

2.
Judith G. Croxdale 《Planta》1977,133(2):111-115
The transport and accumulation of 32P and [14C] sucrose in decapitated and intact shoot segments of the fern Davallia were studied. The apical buds of intact shoots and the expanding buds of shoots decapitated 4 weeks before application are major sinks for these nutrients. Decapitation results in a shift of 14C accumulation from the apex to the lateral buds within 36 h. This shift can be reversed in shoots decapitated for 12 h by replacing the apex. Increased 14C accumulation into the stump region occurs when decapitated shoot segments are treated with indole-3-acetic acid, and decreased label accumulation into the apical region results when intact shoots are treated with 2,3,5-triiodobenzoic acid.  相似文献   

3.
The release of apical dominance by the physical destruction in situ of the apical meristem and associated leaf primordia (decapitation) promoted the growth of tillers in non-herbicide-treated wild oat plants, as indicated by increased tiller lengths and fresh weights. At 96 h after [14C] herbicide treatment following decapitation, the absorption of [14C]imazamethabenz and total translocation of radioactivity were respectively increased by 28% and 49%. By 96 h after [14C]imazamethabenz application, the radioactivity detected in the roots of decapitated plants was 45% higher than that in the roots of nondecapitated plants while the radioactivity in tillers of decapitated plants was 2.6-fold that in tillers of intact plants. Decapitation together with foliar spraying of imazamethabenz at 200 g ha–1 further reduced tiller fresh weight, greatly decreased the total tiller number, and thereafter significantly increased overall phytotoxicity by 32% as measured by total shoot fresh weight. The results of this study support the hypothesis that main shoot apical dominance limits translocation of applied imazamethabenz to lateral shoots, rendering tillers less susceptible to growth inhibition by the herbicide.  相似文献   

4.
The translocation of14C-ABA from roots into other parts of the plant was followed in intact and decapitated pea seedlings. In intact plants ABA from roots was translocated above all into the apical part of epicotyl. In decapitated plants the regulative ability of intact apex can be partly simulated by exogenous IAA. The growth of lateral buds occurring after decapitation was associated with an intensive flow of14C-ABA from roots into released lateral buds as late as 72 h after decapitation,i.e. in the stage of intensive elongation growth of buds.  相似文献   

5.
In mulberry ( Morus alba L. cv. Shin-ichinose), shoot-tip abscission following the cessation of apical growth could be induced in different internodes, depending on the vigour of the shoot and its apex and other internal and external factors. In the lateral, short shoots of 1-year-old stems of low-pruned trees, the apical growth cessation and shoot-tip abscission (May–June) resulted primarily from the dominance of the upper, long shoots and intense competition among laterals along the stem. Decapitation of the laterals, before abortion of their apices took place (early May), readily caused adventitious abscission of the distal internode. Similar decapitation-induced, adventitious abscission of the distal internode of the upper, long shoots of 1-year-old stems of pruned trees also occurred (May–September), demonstrating that the abscission itself is not directly associated with photoperiod. In May and June, decapitation induced abscission primarily in parallel with or after sprouting of lateral buds and shoot elongation, while in July, August and September, the abscission was induced by decapitation and independently of sprouting. Shoot (stem) orientation positively affected the abscission, which is related to gravimorphic effects on buds and shoots on the lower and lateral sides of the horizontally trained stem. These results suggest that the vigour of shoots and apices is an important determinant of growth and apex abscission in mulberry.  相似文献   

6.
In intact, decapitated and decapitated indole-3-acetic acid (IAA) treated pea seedlings the translocation of benzyl-8-l4C-adenin (14C-BA) from the roots was studied with regard to the release of lateral buds from apex-induced inhibition. In intact plants (controls) a substantial part of the activity was found in the apical part of the epicotyl. Decapitation resulted in the initiation of growth of lateral buds. As early as 24 h after decapitation and application of14C-BA a significantly higher activity was found in growing lateral buds (cotylars) of decapitated plants than in inhibited ones of intact or IAA-treated decapitated plants. The accumulation of14C-activity in stump tops of decapitated plants treated with IAA was associated with the thickening growth.  相似文献   

7.
The effect of short and long term auxin treatments on the elongation of axillary buds and32P accumulation were studied in 2-leaf decapitated Alaska pea sailings. It was found that (1) auxin delayed the elongation of the lateral buds, (2) none of the auxin concentration applied completely inhibited the elongation of axillary buds, (3) auxin had no retarding effect on the growing buds, (4) strong polarization of 32P occurred in the parts above the treated leaf, when auxin was applied for a short period just after decapitation, (5) long term auxin treatments did not induce any such polarization of 32P to the parts above the treated leaf, (6) the root acted as an alternate accumulating organ for 32P when the apex was removed and the buds were inhibited, and (7) in decapitated plants the growing buds polarized 32P.  相似文献   

8.
This paper deals with apical dominance using a dicotylar model obtained after decapitation of pea seedlings with two shoots — one dominant and the other inhibited. When the dominant shoot was decapitated the inhibited one is released from inhibition and after 24 to 72 h begins to grow. However, the levels of trans-zeatin and production of ethylene increase within 4 and 6 hours respectively after release from inhibition, and within an interval of 72 h the levels of both phytohormones begin gradually to decrease. This indicates that also in this model, the release from apical dominance is associated with an increase in the level of cytokinin zeatin and, thereafter, also with an increased production of ethylene. If indolyl-3-acetic acid (IAA) is applied on the decapitated main stem after decapitation of the dominant shoot, the growth of the initially inhibited one is very strongly retarded; if, however, IAA is applied on the decapitated dominant shoot, this inhibition is significantly weaker. This means that the inhibiting effect of IAA on the inhibited shoot originates to a greater degree from the main stem rather than from the dominant shoot. The effect of benzyladenine (BA) is transferred equally from the decapitated main stem and from the decapitated dominant shoot because the initially inhibited shoot begins to grow as well as also other shoots from serial cotyledonary buds.  相似文献   

9.
Auxin–cytokinin interactions in the control of shoot branching   总被引:1,自引:0,他引:1  
In many plant species, the intact main shoot apex grows predominantly and axillary bud outgrowth is inhibited. This phenomenon is called apical dominance, and has been analyzed for over 70 years. Decapitation of the shoot apex releases the axillary buds from their dormancy and they begin to grow out. Auxin derived from an intact shoot apex suppresses axillary bud outgrowth, whereas cytokinin induced by decapitation of the shoot apex stimulates axillary bud outgrowth. Here we describe the molecular mechanisms of the interactions between auxin and cytokinin in the control of shoot branching.  相似文献   

10.
Intact and decapitated 6-node shoots of Hygrophila sp. weregrown aseptically immersed in liquid half-strength Knop's solutionwith microelements and 2% (w/v) sucrose (control medium), andin medium with 0.1 mg l–1 benzyladenine (BA). In intactshoots grown in control medium apical dominance suppressed outgrowthof the lateral buds; in decapitated shoots buds grew out atseveral of the most apical nodes, increasing in size acropetally.There was a lag in outgrowth of the bud at the most apical node,attributable to its initially smaller size. Lateral shoots grewout first at basal nodes of intact shoots in BA medium, decreasingin size acropetally; in decapitated shoots in BA medium lateralshoots of approximately equal size grew out at all nodes. Differentialeffects of decapitation and cytokinin treatment on lateral shootoutgrowth along the shoot could be interpreted by postulatinga basipetally decreasing gradient of endogenous auxin concentrationin the intact shoot. Application of 20 mg l–1 indoleaceticacid (IAA) in agar to decapitated shoots completely preventedbud outgrowth for at least 7 d in control medium, inhibitingit thereafter, and inhibited bud outgrowth in BA medium, thussupporting the hypothesis. Comparison of lateral shoot outgrowthin whole decapitated shoots and severed decapitated shoots (isolatednodes) lent no support to the alternative hypothesis that theremight be an acropetally decreasing concentration gradient ofa bud-promoting substance in the intact shoot, and demonstratedmuch greater lateral shoot growth in isolated nodes. The resultsemphasize important correlative relationships between the partsof a shoot with several nodes.  相似文献   

11.
Depending on the species, coppicing (decapitation) may promote vigorous growth (Eucalyptus camaldulensis Dehn), or cause rapid senescence and death (Eucalyptus obliqua L'Herit). In seedlings of the latter species, the presence of a small upwardly directed shoot on the decapitated stump prevents or delays decline. Coppiced seedlings of E. camaldulensis and E. obliqua, with and without a remaining shoot, were analyzed for starch and soluble sugars (with the anthrone method), gibberellin-like substances (GAs) and cytokinin-like substances (by bioassay), and ethylene (by gas-liquid chromatography) before and after decapitation. Levels of soluble sugars declined similarly in both varieties of eucalypts, and starch reserves appeared adequate for sprouting, and did not diminish following decapitation of the susceptible species. Decapitation did not markedly alter the relatively high amounts of GAs in roots and shoots of E. obliqua, the susceptible species, although increased levels of Gas were observed in the stumps of seedlings left with 1 shoot after decapitation. The overall levels of GaS were relatively low in the roots and stems of the resistant E. camaldulensis, but higher in the shoots. Marked qualitative changes in GAs with decapitation were apparent in the shoots of E. camaldulensis. A single major GA peak occurred prior to decapitation but afer decapitation several additional peaks of GA-like activity appeared. Cytokinin-like activity was initially low in all tissues, but increased dramatically in stump and shoot tissue following decapitation. Increases ranged from approximately 5-fold (stump tissue of either species, minus-shoot treatment) to approximately 40-fold (shoot tissue of the resistant E. camaldulensis seedlings left with 1 shoot). In both E. camaldulensis and E. obliqua ethylene production increased to a peak 7 days after decapitation provided a shoot had been retained. This ethylene peak precedes a marked upturning of the retained shoot, and was not present in the stumps of totally decapitated seedlings. For totally decapitated seedlings ethylene evolution in E. obliqua (the susceptible species), but not E. camaldulensis (the resistant species), had ceased by 15 days.  相似文献   

12.
Correlative Inhibition in the Shoot of Agropyron repens ( L.) Beauv   总被引:1,自引:0,他引:1  
Correlative inhibition was investigated in plants of Agropyronrepens at two temperatures. Reciprocal inhibition ocrurred betweenthe main shoot apex and the outgrowing axillary shoots, withthe balance of inhibition varying with temperature. Apical dominancewas stronger at 10 °C than at 20 °C , but even at 10°C release of apical dominance by decapitation had onlyminor effects on the timing of outgrowth, growth pattern andrate of dry weight aocumulation of the axillary shoots. Dominanceof the main shoot apex by the axillary shoots was stronger at20 °C than at 10 °C. Removal of axillary buds preventeddecline in size and activity of the main shoot apex ard resultedin increased rates of primordium initiation, leaf emergenceand dry weight accumulation in the main shoot. It is suggestedthat a system of reciprocal dominance provides a mechanism formaintaining the characteristic habit of the grass plant andlimits growth in height of vegetative shoots. Agropyron repens (L.) Beauv, couch grass, correlative inhibition, apical dominance, shoot, apex  相似文献   

13.
The lateral buds of intact Brussels sprout plants containedless auxin and gibberellin than the main apex. When the apexwas removed the auxin content of the top lateral buds increasedwithin 2 days, but gibberellin activity did not increaseuntilshoot extension was apparent. Auxin application to the cut surfaceof decapitated plants caused lateral bud inhibition, but didnot completely prevent bud growth. Both auxin and gibberellinactivity in the plant apex decreased with increasing age, butonly gibberellin activity decreased in the lateral buds. Theauxin content of the lateral buds on intact plants increasedwith time. It is suggested that in Brussels sprouts, lateral bud inhibitionis due to sub-optimal auxin activity, and that decapitationinduces an auxin increase in these buds which then grow out.Lateral shoots are produced following decapitation of youngplants because the gibberellin content of the lateral buds isrelatively high. Only bud swelling occurs in decapitated olderplants because the gibberellin content of the buds is too lowto stimulate shoot extension. It is concluded that these results support the theory that hormone-inducednutrient diversion may control lateral bud development.  相似文献   

14.
Correlatively inhibited pea shoots (Pisum sativum L.) did not transport apically applied 14C-labelled indol-3yl-acetic acid ([14C]IAA), and polar IAA transport did not occur in internodal segments cut from these shoots. Polar transport in shoots and segments recovered within 24 h of removing the dominant shoot apex. Decapitation of growing shoots also resulted in the loss of polar transport in segments from internodes subtending the apex. This loss was prevented by apical applications of unlabelled IAA, or by low temperatures (approx. 2° C) after decapitation. Rates of net uptake of [14C]IAA by 2-mm segments cut from subordinate or decapitated shoots were the same as those in segments cut from dominant or growing shoots. In both cases net uptake was stimulated to the same extent by competing unlabelled IAA and by N-1-naphthylphthalamic acid. Uptake of the pH probe [14C]-5,5-dimethyloxazolidine-2,4-dione from unbuffered solutions was the same in segments from both types of shoot. Patterns of [14C]IAA metabolism in shoots in which polar transport had ceased were the same as those in shoots capable of polar transport. The reversible loss of polar IAA transport in these systems, therefore, was not the result of loss or inactivation of specific IAA efflux carriers, loss of ability of cells to maintain transmembrane pH gradients, or the result of a change in IAA metabolism. Furthermore, in tissues incapable of polar transport, no evidence was found for the occurrence of inhibitors of IAA uptake or efflux. Evidence is cited to support the possibility that the reversible loss of polar auxin transport is the result of a gradual randomization of effluxcarrier distribution in the plasma membrane following withdrawal of an apical auxin supply and that the recovery of polar transport involves reestablishment of effluxcarrier asymmetry under the influence of vectorial gradients in auxin concentration.Abbreviations DMO 5,5-dimethyloxazolidine-2,4-dione - IAA indol-3yl-acetic acid - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid This work was supported by grant no. GR/D/08760 from the U.K. Science and Engineering Research Council. We thank Mrs. R.P. Bell for technical assistance.  相似文献   

15.
Lateral buds of pea plants can be released from apical dominance and even be transformed into dominant shoots when repeatedly treated with synthetic exogenous cytokinins (CKs). The mechanism of the effect of CKs, however, is not clear. The results in this work showed that the stimulatory effects of CKs on the growth of lateral buds and the increase in their fresh weights in pea plants depended on the structure and concentration of the CKs used. The effect of N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU) was stronger than that of 6-benzylaminopurine (6-BA). Indoleacetic acid (IAA) concentration in shoot, IAA export out of the treated apex and basipetal transport in stems were markedly increased after the application of CPPU or 6-BA to the apex or the second node of pea plant. This increase was positively correlated with the increased concentration of the applied CKs. These results suggest that the increased IAA synthesis and export induced by CKs application might be responsible for the growth of lateral shoots in intact pea plants.  相似文献   

16.
The outgrowth of lateral buds is known to be controlled by theupper shoot tissues, which include the apex, the young leavesand the upper stem. An analysis of the influence of these plantparts on axillary bud elongation in Ipomoea nil was carriedout by various treatments on these specific tissues. A restriction of elongation in the main shoot due to eitherdecapitation or shoot inversion resulted in the release of apicaldominance A non-linear type of compensating growth relationshipwas observed between the 13 cm apical growing region of thestem and the lateral buds. It was determined by decapitation,defoliation and AgNO3 treatments that both the 13 cm stem-growthregion and the young leaves (1–5 cm in length) had a muchgreater inhibitory influence on the outgrowth of specified lateralbuds than did the stem apex (consisting of the terminal 0.5cm of the shoot). The specified lateral buds which were analyzedfor outgrowth were located a number of nodes below the shootapex. The intervening nodes were debudded. Although the importanceof young leaves in the control of apical dominance has beenpreviously recognized, the most significant result from thepresent study with Ipomoea was the strong influence of the 13cm apical growth region of the stem on the out growth of thelateral buds. Apical dominance, Ipomoea nil L., Pharbitis nil, growth region, lateral bud outgrowth, decapitation, defoliation, shoot inversion  相似文献   

17.
Summary The influence of decapitation and treatment with IAA and/or kinetin on the pattern of distribution of 14C-labelled sucrose applied to the third leaf of 14-day old dwarf pea seedlings was investigated. Decapitation resulted in a diversion of the labelled metabolites to the lateral buds, and greatly increased the radioactivity present in the root system indicating that in these seedlings the roots and apex actively competed for translocates from the third leaf. Application of IAA to the decapitated internode prevented the growth of the lateral buds for the duration of the experiment and restored the pattern of distribution of labelled metabolites found in the intact plant. Application of kinetin alone resulted in a marked accumulation of labelled materials in the lateral buds, but when kinetin was applied with IAA metabolites were once again diverted from the lateral buds to the treated internode. Neither of these treatments had any influence on the proportion of the translocated materials which accumulated in the root system when compared with intact plants. The results are discussed in relation to current concepts of hormone-directed transport of nutrients in plants.  相似文献   

18.
It was postulated that the release of lateral buds from apical dominance is triggered by the immediate increase in apoplastic water potential (hydrostatic pressure) that is produced by shoot decapitation and that is rapidly transmitted throughout the plant. In experiments conducted to test this hypothesis the use of a strain gauge transducer capable of measuring bud growth with an accuracy of ± 0.1 μm, showed that growth of the inhibited lateral bud at the primary leaf node of Phaseolus vulgaris (L.) ev. Canadian Wonder was initiated within 1 to 5 s following shoot decapitation or excision of the primary leaves. When only the apical bud was excised the lateral bud showed a brief, transitory growth response of ca 1 min duration, but the axillary buds of the first and second trifoliate leaves were released from inhibition. Decapitation of the shoot just below the first trifoliate leaf induced a lateral bud response characterized by three distinct stages: a) a rapid initial growth response with a mean duration of 4.9 min b) a period of arrested growth, which varied in duration from 2 min to 4 h and c) the subsequent resumption of growth.
Excision of both primary leaves induced a rapid but transitory bud response of considerably greater duration than that induced by apical bud excision. Excision of the primary leaves prior to decapitation of the shoot eliminated the phase of arrested growth, which characterized the bud response to decapitation of the intact plant. The rapidity of the bud response to both shoot decapitation and leaf excision and the interaction between the effect of these two treatments are consistent with the hypothesis that competition for water plays a major role in the correlative inhibition of lateral buds.  相似文献   

19.
The morphology of axillary shoots of pea plants (Pisum sativumL. cv. Alaska) was analysed as a function of the position ofthe bud on the plant axis and the stage of plant developmentwhen the buds began to grow. Buds from the three most basalnodes were stimulated to develop by decapitating the main shootwhen buds were still growing (4 d plants), shortly after budsbecame dormant (7 d plants) or after the initiation of floweringon the main shoot (post-flowering plants, about 21 d after sowing).Branch shoots were scored for node of floral initiation (NFI),shoot length, and node of multiple leaflets (NML), a measureof leaf complexity. Shoots that developed spontaneously fromupper nodes (nodes 5-9) on intact post-flowering plants werescored for NFI. NFI for basal buds on 4 and 7 d plants variedas a function of nodal position and ranged from 5 to 6·7nodes. NFI on these plants was not influenced by bud size orwhether a bud was growing or dormant when the plant was decapitated.NFI for shoots derived from basal buds on decapitated post-floweringplants and upper nodes on intact post-flowering plants was about4. Reduced NFI on post-flowering plants may be due to depletionof a cotyledon-derived floral inhibitor. Basal axillary shootson 4 d plants were about 20% longer than those on 7 d plantsand about five times longer than those on post-flowering plants.These differences may be due to depletion of gibberellic acidsfrom the cotyledons. NFI and NML for the main shoot and forbasal axillary shoots were similar under some experimental conditionsbut different under other conditions, so it is likely that eachdevelopmental transition is regulated independently.Copyright1995, 1999 Academic Press Apical dominance, bud development, garden pea, initiation of flowering, Pisum sativum L., shoot morphology  相似文献   

20.
Experiments were performed on the first and second internodes and 4-cm-long apical segments of main roots of pea (Pisum sativum L.) seedlings, grown in the light and decapitated above the second node on the seventh day after seed germination. Endogenous phytohormones were measured by the enzyme-linked immunosorbent assay during three days after decapitation of seedlings. The IAA level in the internodes decreased 2–3 times on the second day after decapitation of seedlings while the cytokinin level increased 5–6 times for zeatin and zeatin riboside (Z and ZR) and 1.5–2 times for isopentenyl adenine and isopentenyl adenosine (IP and IPA). In contrast to internodes, the IP and IPA contents in the roots of decapitated seedlings did not change, but the levels of Z and ZR increased 1.5–2 times compared to intact plant roots. The IAA level in the apical region of root remained almost unchanged after the removal of shoot apex. It was concluded that the apical meristem of the main root is not the site of the cytokinin response to the auxin signal coming from the stem apex and that a slight accumulation of Z and ZR after decapitation is due to upper zones of the root. There was no difference in the content of gibberellin-like substances between the internodes of intact and decapitated seedlings. However, the content of gibberellins (GA) in the root tip decreased after decapitation of seedling, which suggests an essential role of apical bud in supplying the root with GA and/or intermediates for their biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号