首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The transport of exogenous indol-3yl-acetic acid (IAA) from the apical tissues of intact, light-grown pea (Pisum sativum L. cv. Alderman) shoots exhibited properties identical to those associated with polar transport in isolated shoot segments. Transport in the stem of apically applied [1-14C]-or [5-3H]IAA occurred at velocities (approx. 8–15 mm·h-1) characteristic of polar transport. Following pulse-labelling, IAA drained from distal tissues after passage of a pulse and the rate characteristics of a pulse were not affected by chases of unlabelled IAA. However, transport of [1-14C]IAA was inhibited through a localised region of the stem pretreated with a high concentration of unlabelled IAA or with the synthetic auxins 1-napthaleneacetic acid and 2,4-dichlorophenoxyacetic acid, and label accumulated in more distal tissues. Transport of [1-14C]IAA was also completely prevented through regions of the intact stem treated with N-1-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid.Export of IAA from the apical bud into the stem increased with total concentration of IAA applied (labelled+unlabelled) but approached saturation at high concentrations (834 mmol·m-3). Transport velocity increased with concentration up to 83 mmol·m-3 IAA but fell again with further increase in concentration.Stem segments (2 mm) cut from intact plants transporting apically applied [1-14C]IAA effluxed 93% of their initial radioactivity into buffer (pH 7.0) in 90 min. The half-time for efflux increased from 32.5 to 103.9 min when 3 mmol·m-3 NPA was included in the efflux medium. Long (30 mm) stem sections cut from immediately below an apical bud 3.0 h after the apical application of [1-14C]IAA effluxed IAA when their basal ends, but not their apical ends, were immersed in buffer (pH 7.0). Addition of 3 mmol·m-3 NPA to the external medium completely prevented this basal efflux.These results support the view that the slow long-distance transport of IAA from the intact shoot apex occurs by polar cell-to-cell transport and that it is mediated by the components of IAA transmembrane transport predicted by the chemiosmotic polar diffusion theory.Abbreviations IAA indol-3yl-acetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphthaleneacetic acid - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

2.
Phenylacetic acid (PAA), a naturally-occurring acidic plant growth substance, was readily taken up by pea (Pisum sativum L. cv. Alderman) stem segments from buffered external solutions by a pH-dependent, non-mediated diffusion. Net uptake from a 0.2 M solution at pH 4.5 proceeded at a constant rate for at least 60 min and, up to approx. 100 M, the rate of uptake was directly proportional to the external concentration of the compound. The net rate of uptake of PAA was not affected by the inclusion of indol-3yl-acetic acid (IAA) in the uptake medium (up to approx. 30 M) and, unlike the net uptake of IAA, was not stimulated by N-1-naphthylphthalamic acid (NPA) or 2,3,5-triiodobenzoic acid. At an external concentration of 0.2 M and pH 4.5, the net rate of uptake of PAA was about twice that of IAA. It was concluded that the uptake of PAA did not involve the participation of carriers and that PAA was not a transported substrate for the carriers involved in the uptake and polar transport of IAA. Nevertheless, the inclusion of 3–100 M unlabelled PAA in the external medium greatly stimulated the uptake by pea stem segments of [1-14C]IAA (external concentration 0.2 M). It was concluded that whilst PAA was not a transported substrate for the NPA-sensitive IAA efflux carrier, it interacted with this carrier to inhibit IAA efflux from cells. Over the concentration range 3–100 M, PAA progressively reduced the stimulatory effect of NPA on IAA uptake, indicating that PAA also inhibited carrier-mediated uptake of IAA. The consequences of these observations for the regulation of polar auxin transport are discussed.Abbreviations IAA indol-3yl-acetic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - NPA N-1-naphthylphthalamic acid - PAA phenylacetic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

3.
The characteristics of transmembrane transport of 14C-labelled indol-3yl-acetic acid ([1-14C]IAA) were compared in Chlorella vulgaris Beij., a simple unicellular green alga, and in Chara vulgaris L., a branched, multicellular green alga exhibiting axial polarity and a high degree of cell and organ specialization. In Chara thallus cells, three distinguishable trans-plasmamembrane fluxes contributed to the net uptake of [1-14C]-IAA from an external solution, viz.: a non-mediated, pH-sensitive influx of undissociated IAA (IAAH); a saturable influx of IAA; and a saturable efflux of IAA. Both saturable fluxes were competitively inhibited by unlabelled IAA. Association of [3H]IAA with microsomal preparations from Chara thallus tissue was competitively inhibited by unlabelled IAA. Results indicated that up-take carriers occurred in the membranes at a much higher density than efflux carriers. The efflux component of IAA net uptake by Chara was not affected by several phytotropins (N-1-naphthylphthalmic acid, NPA; 2-(1-pyrenoyl)benzoic acid; and 5-(2-carboxyphenyl)-3-phenylpyrazole), which are potent non-competitive inhibitors of specific auxin-efflux carriers in more advanced plant groups, and no evidence was found for a specific association of [3H]NPA with Chara microsomal preparations. It was concluded that Chara lacked phytotropin receptors. Net uptake of [1-14C]IAA also was unaffected by 2,3,5-triiodobenzoic acid except at concentrations ( 10–1 mol · m–3) high enough to depress cytoplasmic pH (determined by uptake of 5,5-dimethyloxazolidine-2,4-dione). Chlorella cells accumulated [1-14C]IAA from an external solution by pH-sensitive diffusion of IAA across the plasma membrane and anion (IAA) trapping, but no evidence was found in Chlorella for the occurrence of IAA carriers. These results indicate that carrier systems capable of mediating the transmembrane transport of auxins appeared at a very early stage in the evolution of green plants, possibly in association with the origin of a differentiated, multicellular plant body. Phytotropin receptors evolved independently of the carriers.Abbreviations CPP 5-(2-carboxyphenyl)-3-phenylpyrazole - DMO 5,5-dimethyloxazolidine-2,4-dione - IAA indol-3yl-acetic acid - NPA N-1-naphthylphthalamic acid - PBA 2-(1-pyrenoyl)benzoic acid - TIBA 2,3,5-triiodobenzoic acid We thank the Nuffield Foundation for the award of an Undergraduate Research Bursary to J.E.D.-F., Dr. G.F. Katekar, C.S.I.R.O., Canberra, Australia for generous gifts of phytotropins, and Mrs. R.P. Bell for technical support.  相似文献   

4.
When [1-14C]indol-3yl-acetic acid ([1-14C]IAA) was applied to the upper surface of a mature foliage leaf of garden pea (Pisum sativum L. cv. Alderman), 14C effluxed basipetally but not acropetally from 30-mm-long internode segments excised 4 h after the application of [1-14C]IAA. This basipetal efflux was strongly inhibited by the inclusion of 3.10–6 mol· dm3 N-1-naphthylphthalamic acid (NPA) in the efflux buffer. In contrast, when [14C] sucrose was applied to the leaf, the efflux of label from stem segments excised subsequently was neither polar nor sensitive to NPA. The [1-14C]IAA was initially exported from mature leaves in the phloem — transport was rapid and apolar; label was recovered from aphids feeding on the stem; and label was recovered in exudates collected from severed petioles in 20 mM ethylenediaminetetraacetic acid. No 14C was detected in aphids feeding on the stems of plants to which [1-14C]IAA had been applied apically, even though the internode on which they were feeding transported considerable quantities of label. Localised applications of NPA to the stem strongly inhibited the basipetal transport of apically applied [1-14C]IAA, but did not affect transport of [1-14C]IAA in the phloem. These results demonstrate for the first time that IAA exported from leaves in the phloem can be transferred into the extravascular polar auxin transport pathway but that reciprocal transfer probably does not occur. In intact plants, transfer of foliar-applied [1-14C]IAA from the phloem to the polar auxin transport pathway was confined to immature tissues at the shoot apex. In plants in which all tissues above the fed leaf were removed before labelling, a limited transfer of IAA occurred in more mature regions of the stem.Abbreviations IAA indol-3yl-acetic acid - EDTA ethylenediaminetetraacetic acid - NPA N-1-naphthylphthalamic acid We are grateful to the Nuffield Foundation for supporting this research under the NUF-URB95 scheme and for the provision of a bursary to A.J.C. We thank Professor Dennis A. Baker for constructive comments on a draft of this paper and Mrs. Rosemary Bell for her able technical assistance.  相似文献   

5.
The transport of [14C]phenylacetic acid (PAA) in intact plants and stem segments of light-grown pea (Pisum sativum L. cv. Alderman) plants was investigated and compared with the transport of [14C]indiol-3yl-acetic acid (IAA). Although PAA was readily taken up by apical tissues, unlike IAA it did not undergo long-distance transport in the stem. The absence of PAA export from the apex was shown not to be the consequence of its failure to be taken up or of its metabolism. Only a weak diffusive movement of PAA was observed in isolated stem segments which readily transported IAA. When [1-14C]PAA was applied to a mature foliage leaf in light, only 5.4% of the 14C recovered in ethanol extracts (89.6% of applied 14C) had been exported from the leaf after 6.0 h. When applied to the corresponding leaf, [14C]sucrose was readily exported (46.4% of the total recovered ethanol-soluble 14C after 6.0 h). [1-14C]phenylacetic acid applied to the root system was readily taken up but, after 5.0 h, 99.3% of the recovered 14C was still in the root system.When applied to the stem of intact plants (either in lanolin at 10 mg·g-1, or as a 10-4 M solution), unlabelled PAA blocked the transport through the stem of [1-14C]IAA applied to the apical bud, and caused IAA to accumulate in the PAA-treated region of the stem. Applications of PAA to the stem also inhibited the basipetal polar transport of [1-14C]IAA in isolated stem segments. These results are consistent with recent observations (C.F. Johnson and D.A. Morris, 1987, Planta 172, 400–407) that no carriers for PAA occur in the plasma membrane of the light-grown pea stem, but that PAA can inhibit the carrier-mediated efflux of IAA from cells. The possible functions of endogenous PAA are discussed and its is suggested that an important role of the compound may be to modulate the polar transport and-or accumulation by cells of IAA.Abbreviations IAA indol-3yl-acetic acid - NPA N-1-naphthylphthalamic acid - PAA phenylacetic acid - IIBA 2,3,5-triiodobenzoic acid  相似文献   

6.
Treatment of etiolated zucchini (Cucurbita pepo L.) hypocotyl tissue with sub-micromolar concentrations of the cationophore monensin rapidly (<20 min) inhibited the transport catalytic activity of the specific auxin-anion efflux carrier and reduced the inhibition of this carrier by the phytotropin N-1-naphthylphthalamic acid (NPA). Monensin inhibited the basipetal polar transport of indol-3yl-acetic acid (IAA) in long (30 mm) zucchini segments. At concentrations lower than 10–5 mol·dm–3 monensin did not affect uptake of the pH probe [2-14C]5,5-dimethyloxazolidine-2,4-dione (DMO) or that of the membrane-potential probe tetra[14C-phenyl]phosphonium bromide (TPP+), did not affect the response of IAA net uptake to external Ca2+ concentration and did not alter the metabolism of IAA. It was concluded that low concentrations of monensin inhibit transport through the Golgi apparatus of auxin efflux carrier protein and that the efflux carriers turn over very rapidly in the plasma membrane. Monensin pretreatment did not affect the saturable binding of [3H]NPA to microsomal membranes, indicating that the auxin-efflux catalytic sites and the NPA-binding sites are located on separate proteins. At higher concentrations (10–5 mol·dm–3) monensin inhibited both mediated uptake and mediated efflux components of IAA transport. This effect was at least in part attributable to perturbation by monensin of the driving forces for mediated uptake since high concentrations of monensin also reduced the uptake of DMO and TPP+.Abbreviations CH cycloheximide - DMO 5,5-dimethyloxazolidine-2,4-dione - MDMP 2-(4-methyl-2,6-dinitroanlilino)N-methyl-propionamide - NPA N-1-naphthylphthalamic acid - TPP+ tetraphenylphosphonium ion We thank Mrs. R.P. Bell for technical assistance and Drs. G.F. Katekar and M.A. Venis for generous gifts of NPA. S.W. was supported by the U.K. Science and Engineering Research Council.  相似文献   

7.
Distal applications of indol-3yl-acetic acid (IAA) to debladed cotyledonary petioles of cotton (Gossypium hirsutum L.) seedlings greatly delayed petiole abscission, but similar applications of phenylacetic acid (PAA) slightly accelerated abscission compared with untreated controls. Both compounds prevented abscission for at least 91 h when applied directly to the abscission zone at the base of the petiole. The contrasting effects of distal IAA and PAA on abscission were correlated with their polar transport behaviour-[1-14C]IAA underwent typical polar (basipetal) transport through isolated 30 mm petiole segments, but only a weak diffusive movement of [1-14C]PAA occurred.Removal of the shoot tip substantially delayed abscission of subtending debladed cotyledonary petioles. The promotive effect of the shoot tip on petiole abscission could be replaced in decapitated shoots by applications of either IAA or PAA to the cut surface of the stem. Following the application of [1-14C]IAA or [1-14C]PAA to the cut surface of decapitated shoots, only IAA was transported basipetally through the stem. Proximal applications of either compound stimulated the acropetal transport of [14C]sucrose applied to a subtending intact cotyledonary leaf and caused label to accumulate at the shoot tip. However, PAA was considerably less active than IAA in this response.It is concluded that whilst the inhibition of petiole abscission by distal auxin is mediated by effects of auxin in cells of the abscission zone itself, the promotion of abscission by the shoot tip (or by proximal exogenous auxin) is a remote effect which does not require basipetal auxin transport to the abscission zone. Possible mechanisms to explain this indirect effect of proximal auxin on abscission are discussed.  相似文献   

8.
A. R. Sheldrake 《Planta》1979,145(2):113-117
Segments of mesocotyls of Avena sativa L. transported [1-14C]indol-3yl-acetic acid (IAA) with strictly basipetal polarity. Treatment of the segments with solutions of sorbitol caused a striking increase in basipetal auxin transport, which was greatest at concentrations around 0.5 M. Similar effects were observed with mannitol or quebrachitol as osmotica, but with glucose or sucrose the increases were smaller. Polar transport was still detectable in segments treated with 1.2 M sorbitol. The effects of osmotic stress on the polar transport of auxin were reversible, but treatment with sorbital solutions more concentrated than 0.5 M reduced the subsequent ability of mesocotyl segments to grow in response to IAA. The increased transport of auxin in the osmotically stressed segments could not be explained in terms of an increased uptake from donor blocks. The velocity of transport declined with higher concentrations of osmoticum. The reasons for the enhancement of auxin transport by osmotic stress are not known.  相似文献   

9.
Monensin and brefeldin A (BFA), inhibitors of Golgi-mediated protein secretion, rapidly perturb the transport catalytic activity of specific plasma membrane-associated efflux carriers for indole-3-acetic acid (IAA) and inhibit polar transport of IAA. To determine if these responses result solely from perturbation of the efflux carrier or whether specific auxin uptake carrier function is also affected, the influence of BFA on the cellular transport of a range of auxins with contrasting affinities for specific auxin uptake and efflux carriers was investigated in zucchini (Cucurbita pepo L.) hypocotyl tissue. In-flight addition of BFA (3 · 10−5 mol · dm−3) caused a rapid (lag < 10 min) and substantial (fourfold) increase in the rate of [1-14C]IAA net uptake by zucchini hypocotyl tissue. In the presence of the specific auxin efflux carrier inhibitor N-1-naphthylphthalamic acid (NPA; 3 · 10−6 mol · dm−3), BFA slightly reduced the rate of [1-14C]IAA net uptake. Stimulation of [1-14C]IAA net uptake by BFA was concentration-dependent. In the absence of BFA, net uptake of [1-14C]IAA exhibited the characteristic biphasic response to increasing concentrations of competing cold IAA but in the presence of BFA, [1-14C]IAA uptake decreased smoothly with increase in concentration of competing unlabelled IAA, indicating a loss of auxin efflux carrier activity but retention of functional uptake carriers. The half-time for mediated efflux of [1-14C]IAA from preloaded zucchini tissue was substantially increased by BFA (t1/2 = 51 min, controls; 107 min, BFA-treated). Treatment with BFA and/or NPA did not significantly affect the net uptake by, or efflux from, zucchini tissue of [1-14C]2,4-dichlorophenoxyacetic acid ([1-14C]2,4-D), a substrate for the auxin uptake carrier but not the auxin efflux carrier. Uptake of [1-14C]2,4-D declined smoothly with increasing concentrations of competing unlabelled IAA whether or not BFA was included in the uptake medium, confirming the failure of BFA to perturb auxin uptake carrier function. Transport of 1-[4-3H]naphthaleneacetic acid (1-NAA) exhibited little response to BFA or NPA, confirming that it is only a weakly transported substrate for the efflux carrier in zucchini cells. Received: 12 November 1997 / Accepted: 27 January 1998  相似文献   

10.
Muday GK  Lomax TL  Rayle DL 《Planta》1995,195(4):548-553
Roots of the tomato (Lycopersicon esculentum, Mill.) mutant diageotropica (dgt) exhibit an altered phenotype. These roots are agravitropic and lack lateral roots. Relative to wild-type (VFN8) roots, dgt roots are less sensitive to growth inhibition by exogenously applied IAA and auxin transport inhibitors (phytotropins), and the roots exhibit a reduction in maximal growth inhibition in response to ethylene. However, IAA transport through roots, binding of the phytotropin, tritiated naphthylphthalamic acid ([3H]NPA), to root microsomal membranes, NPA-sensitive IAA uptake by root segments, and uptake of [3H]NPA into root segments are all similar in mutant and wild-type roots. We speculate that the reduced sensitivity of dgt root growth to auxin-transport inhibitors and ethylene is an indirect result of the reduction in sensitivity to auxin in this single gene, recessive mutant. We conclude that dgt roots, like dgt shoots, exhibit abnormalities indicating they have a defect associated with or affecting a primary site of auxin perception or action.Abbreviations BCA bicinchoninic acid - IAA indole 3-acetic acid - dgt diageotropica - IC50 concentration for 50% inhibition of growth - NPA N-1-naphthylphthalamic acid - SCB-1 semicarbazone 1 This research was supported by grants from Sandoz Agro, Inc. (G.K.M), the National Aeronautics and Space Administration (NASA) and the National Science Foundation (T.L.L), and NASA (D.L.R.).  相似文献   

11.
D. A. Morris 《Planta》1979,146(5):603-605
The velocity of exogenous indol-3yl-acetic acid ([1-14C]IAA) transport from the apical buds of intact pea, sunflower and cotton plants was determined from 0.5° C to 47° C. The minimum temperature at which transport occurred varied from 2° C (pea and sunflower) to 7° C (cotton). Above these temperatures the velocity of transport increased steadily to maxima near 44° C in all three species. Further increase in temperature resulted in a complete cessation of transport, suggesting a sudden high-temperature breakdown of the auxin transport system. Temperature coefficients (Q10) for transport velocity calculated from Arrhenius plots were low (1.36 to 1.41 between 15° C and 30° C).Arrhenius plots for the chilling-sensitive cotton and sunflower plants exhibited abrupt discontinuities at 14.6° C and 8.7° C respectively. An Arrhenius plot for the chilling-resistant pea exhibited no such discontinuity over the whole temperature range at which transport occurred.Abbreviation IAA indol-3yl-acetic acid  相似文献   

12.
The endogenous indol-3yl-acetic acid (IAA) of detipped apical segments from roots of maize (cv ORLA) was greatly reduced by an exodiffusion technique which depended upon the preferential acropetal transport of the phytohormone into buffered agar. When IAA was applied to the basal cut ends of freshly prepared root segments only growth inhibitions were demonstrable but after the endogenous auxin concentration had been reduced by the exodiffusion technique it became possible to stimulate growth by IAA application. The implications of the interaction between exogenous and endogenous IAA in the control of root segment growth are discussed with special reference to the role of endogenous IAA in the regulation of root growth and geotropism.Abbreviations IAA indol-3yl-acetic acid - GC-MS gas chromatography-mass spectrometry  相似文献   

13.
J. W. Patrick 《Planta》1979,146(1):107-112
14C-photosynthate transfer in decapitated stems of P. vulgaris plants, treated with IAA (indol-3yl-acetic acid), appeared, as ascertained by microautoradiography, to be restricted to cells of sieve-element appearance. The IAA-induced promotion of photosynthate transport was found not to depend on any artifacts caused by the decapitation procedure. Rather, decapitation primarily served the purpose of removing photosynthate sources above the point of hormone application which otherwise suppressed the expression of the IAA effect on acropetal photosynthate transport. Furthermore, by manipulating stem levels of endogenous auxins with the inhibitor of polar auxin transport, 1-(21-carboxyphenyl)-3-phenylpropane-1,3-dione (ACP1.55), evidence was obtained indicating that photosynthate transfer to the shoot apex depended, at least in part, on endogenous levels of auxins at site(s) remote from the apical sink (i.e. shoot apex).Abbreviations ACP1.55 1-(21-carboxyphenyl)-3-phenylpropane-1,3-dione - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - IAA indol-3yl-acetic acid  相似文献   

14.
Cotyledon segments derived from zygote embryos of mango (Mangifera indica L. cv. Zihua) were cultured on agar medium for 28 days. Depending on different pre-treatments with plant growth regulators, two distinct patterns of adventitious roots were observed. A first pattern of adventitious roots was seen at the proximal cut surface, whereas no roots were formed on the opposite, distal cut surface. The rooting ability depended on the segment length and was significantly promoted by pre-treatment of embryos with indol-3-acetic acid (IAA) or indole-3-butyric acid (IBA) for 1 h. A pre-treatment with the auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) completely inhibited adventitious root formation on proximal cut surfaces. A second pattern of roots was observed on abaxial surfaces of cotyledon segments when embryos were pre-treated with 2,700 μM 1-naphthalenacetic acid (NAA) for 1 h. Histological observations indicated that both patterns of adventitious roots originated from parenchymal cells, but developmental directions of the root primordia were different. A polar auxin transport assay was used to demonstrate transport of [3H] indole-3-acetic acid (IAA) in cotyledon segments from the distal to the proximal cut surface. In conclusion, we suggest that polar auxin transport plays a role in adventitious root formation at the proximal cut surface, whereas NAA levels (influx by diffusion; carrier mediated efflux) seem to control development of adventitious roots on the abaxial surface of cotyledon segments.  相似文献   

15.
D. A. Morris 《Planta》1977,136(1):91-96
Dwarf pea plants bearing two cotyledonary shoots were obtained by removing the epicotyl shortly after germination, and the patterns of distribution of 14C in these plants was investigated following the application of [14C]IAA to the apex of one shoot. Basipetal transport to the root system occurred, but in none of the experiments was 14C ever detected in the unlabelled shoot even after transport periods of up to 48 h. This was true both of plants with two equal growing shoots and of plants in which one shoot had become correlatively inhibited by the other, and in the latter case applied whether the dominant or subordinate shoot was labelled. In contrast, when [14C]IAA was applied to a mature foliage leaf of one shoot transfer of 14C to the other shoot took place, although the amount transported was always low. Transport of 14C from the apex of a subordinate shoot on plants bearing one growing and one inhibited shoot was severely restricted compared with the transport from the dominant shoot apex, and in some individual plants no transport at all was detected. Removal of the dominant shoot apex rapidly restored the capacity of the subordinate shoot to transport apically-applied [14C]IAA, and at the same time led to rapid cambial development and secondary vascular differentiation in the previously inhibited shoot. Applications of 1% unlabelled IAA in lanolin to the decapitated dominant shoot maintained the inhibition of cambial development in the subordinate shoot and its reduced capacity for auxin transport. These results are discussed in relation to the polarity of auxin transport in intact plants and the mechanism of correlative inhibition.Abbreviations IAA Indol-3-yl-acetic acid - TIBA 2,3,5-triiodobenzoic acid - 2,4D 2,4-dichlorophenoxyacetic acid - IAAsp Indol-3-yl-acetyl aspartic acid  相似文献   

16.
M. Sabater  P. H. Rubery 《Planta》1987,171(4):514-518
Carrier-mediated uptake of indole-3-acetic acid (IAA) by microsomal vesicles from Cucurbita pepo L. hypocotyls was strongly inhibited by 2,4-dichlorophenoxyacetic acid (2,4-D; i 50= 0.3 M) but only weakly by 1-naphthylacetic acid (NAA). The fully ionised auxin indol-3-yl methanesulphonic acid also inhibited (i 50=3 M). The same affinity ranking of these auxins for the uptake carrier, an electroimpelled auxin anion-H+ symport, is demonstrable in hypocotyl segments. The specificity of the auxin-anion eflux carrier was tested by the ability of different nonradioactive auxins to compete with [3H]IAA and reduce the stimulation of net radioactive uptake by N-1-naphthylphthalamic acid (NPA), a noncompetitive inhibitor of this carrier. By this criterion, NAA and IAA had comparable affinities, with 2,4-D interaction more weakly. Stimulation of [3H]IAA uptake by NAA, as a result of competition for the efflux carrier, could also be demonstrated when a suitable concentration of 2,4-D was used selectively to inhibit the uptake carrier. However, when [3H]NAA was used, no stimulation of its association with vesicles by NPA, 2,3,5-triiodobenzoic acid, or nonradioactive NAA was found. In hypocotyl segments, [3H]NAA net uptake was much less sensitive to NPA stimulation than was [14C]IAA uptake. The apparent contradictions concerning NAA could be explained by carrier-mediated auxin efflux making a smaller relative contribution to the overall transport of NAA than of IAA. The relationship between carrier specificity as manifested in vitro and the specificity of polar auxin transport is discussed.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - ION3 mixture of 4 M carbonylcyanide m-chlorophenylhydrazone, nigericin and valinomycin - IMS indol-3-yl methanesulphonic acid - NAA 1-naphthylacetic aci - NPA N-1-naphthylphthalamic acid  相似文献   

17.
D. A. Morris 《Planta》1980,150(5):431-434
When a d.c. potential of 9.0 V was applied to the stem of intact pea seedlings (Pisum sativum L. cv. Meteor and cv. Alderman) via 10 mM KCl-soaked filter paper electrodes placed ca. 50 mm apart the stem passed a steady current of 15–20 A (resistance ca. 100 k cm-1). The basipetal transport of [1-14C]IAA applied to the apical bud was completely inhibited over the portion of the stem through which current flowed and 14C-labelled compounds accumulated in the vicinity of the upper electrode. The inhibition of transport was independent of the polarity of the applied potential. The basipetal transport of IAA in the stem above the electrode was not affected.Labelled auxin accumulated at the upper electrode both as unchanged IAA and as a compound tentatively identified as indol-3yl-acetyl aspartic acid (IAAsp). These compounds were only slowly remobilised when the current was interrupted. However, the ability of the transport system to move freshly-applied IAA was rapidly and fully restored when the potential was removed. No injury to the plant was detected after maintaining a current flow for up to 72 h. No leakage of 14C-labelled compounds into the KCl solution bathing the electrodes was detected.Abbreviations IAA indol-3yl-acetic acid - IAAsp indol-3yl-acetyl aspartic acid  相似文献   

18.
Using both 1-mm segments of corn (Zea mays L.) coleoptiles and a preparation of membranes isolated from the same source, we have compared the effectiveness of several inhibitors of geotropism and polar transport in stimulating uptake of auxin (indole-3-acetic acid, IAA) into the tissue and in competing with N-1-naphthylphthalamic acid (NPA) for a membrane-bound site. Low concentrations of 2,3,5-triiodobenzoic acid (TIBA), NPA, 2-chloro-9-hydroxyfluorene-9-carboxylic acid (morphactin), and fluorescein, eosin, and mercurochrome all stimulated net uptake of [3H]IAA by corn coleoptile tissues while higher concentrations reduced the uptake of both [3H]IAA and another lipophilic weak acid, [14C]benzoic acid. Since low concentrations of fluorescein and its derivatives competed for the same membrane-bound site in vitro as did morphactin and NPA, the basis for both the specific stimulation of auxin accumulation and the inhibition of polar auxin transport by all these compounds may be their ability to interfere with the carrier-mediated efflux of auxin anions from cells. At higher concentrations, the decrease in accumulation of weak acids was nonspecific and thus may be the result of acidification of the cytoplasm and a general decrease in the driving force for uptake of the weak acids. Triiodobenzoic acid was an exception. Low concentration of TIBA (0.1–1 M) were much less effective than NPA in competing for the NPA receptor in vitro, but little different from NPA in ability to stimulate auxin uptake. One possibility is that TIBA, a substance which is polarly transported, may compete with auxin for the polar transport site while NPA, morphactin, and the fluorescein derivatives may render this site inactive.Abbreviations C1-NPA 2,3,4,5-tetrachloro-N-1-naphthylphthalamic acid - IAA indole-3-acetic acid - -NAA -naphthaleneacetic acid - -NAA -naphthalenacetic acid - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

19.
1. The uptake of indol-3-yl acetic acid ([1-14C]IAA, 0–2.0 M) into light-grown pea stem segments was measured under various conditions to investigate the extent to which mechanisms of auxin transport in crown gall suspension culture cells (Rubery and Sheldrake, Planta 118, 101–121, 1974) are also found in a tissue capable of polar auxin transport. — 2. IAA uptake increased as the external pH was lowered. IAA uptake was less than that of benzoic acid (BA), naphthylacetic acid (NAA) or 2,4 dichlorophenoxyacetic acid (2,4D) under equivalent conditions. TIBA enhanced net IAA uptake through inhibition of efflux, and to a lesser extent, also increased uptake of NAA and 2,4D while it had no effect on BA uptake. — 3. Both DNP and, at higher concentrations, BA, reduced IAA uptake probably because of a reduction of cytoplasmic pH. However, low concentrations of both BA and DNP caused a slight enhancement of IAA net uptake, possibly through a reduction of carrier-mediated IAA efflux. In the presence of TIBA, the inhibitory effects of DNP and BA were more severe and there was no enhancement of uptake at low concentrations. — 4. Non-radioactive IAA (10 M) reduced uptake of labelled IAA but further increases in concentration up to 1.0 mM produced first an inhibition (0–10 min) of labelled IAA uptake, followed by a stimulation at later times. Non-radioactive 2,4 D decreased, but was not observed to stimulate, uptake of labelled IAA. In the presence of TIBA labelled IAA uptake was inhibited by non-radioactive IAA regardless of its concentration. — 5. Sulphydryl reagents PCMB and PCMBS promoted or inhibited IAA uptake depending, respectively, on whether they penetrated or were excluded from the cells. The penetrant PCMB also reduced the promotion of labelled IAA uptake by TIBA or by high concentrations of added non-labelled IAA. — 6. Our findings are interpreted as being consistent with the diffusive entry of unionised IAA into cells together with some carrier-mediated uptake. Auxin efflux from the cells also appears to have a carrier-mediated contribution, at least part of which is inhibited by TIBA, and which has a capacity at least as great as that of the uptake carrier. The data indicate that pea stem segments contain cells whose mechanisms of trans-membrane auxin transport fit the model of polar auxin transport proposed from experiments with crown gall suspension cells, although differences, particularly of carrier specificity, are apparent between the two systems.Abbreviations IAA indol-3-yl acetic acid - BA benzoic acid - NAA 1-naphthylacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - TIBA 2,3,5-triiodobenzoic acid - DNP 2,4-dinitrophenol - PCMB p-chloromercuribenzoic acid - PCMBS p-chloromercuribenzene sulphonic acid This work was performed in Cambridge during the tenure of a sabbatical leave by P.J.D. Supported by a grant for supplies from the American Philosophical Society to P.J.D.  相似文献   

20.
The effect of cycloheximide (CH) on the indol-3yl-acetic acid (IAA)-stimulated transport of 14C-labelled abscisic acid (ABA) and 14C-labelled sucrose was studied in 110 mm long pea epicotyl segments. IAA application resulted in elongation growth of the segments. This effect was decreased by CH treatment which also reduced [14C] ABA and [14C] sucrose accumulation in the growing apical part of the segments. A reduction in [14C] IAA uptake and in protein synthesis in this part of the segments was also observed. The simultaneous inhibition of protein synthesis and reduction of [14C] ABA and [14C] sucrose transport suggests that IAA can stimulate the transport of ABA and sucrose through a protein synthesis-based elongation growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号