首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Respiratory infections, including Mycoplasma pneumoniae (Mp), contribute to asthma pathobiology. To date, the mechanisms underlying the increased susceptibility of asthmatics to airway Mp infection remain unclear. Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) protein is a recently described large airway epithelial cell-derived molecule that was predicted to exert host defense activities. However, SPLUNC1 function and regulation in an infectious or allergic milieu are still unknown. We determined host defense and anti-inflammatory functions of SPLUNC1 protein in Mp infection and the regulation of SPLUNC1 by Mp and allergic inflammation (e.g., IL-13). SPLUNC1 function was examined in Mp or human airway epithelial cell cultures by using SPLUNC1 recombinant protein, overexpression and RNA interference. Human and mouse bronchial epithelial SPLUNC1 was examined using immunostaining, Western blotting, ELISA, laser capture microdissection, and real-time PCR. Mouse models of Mp infection and allergic inflammation and air-liquid interface cultures of normal human primary bronchial epithelial cells were used to study SPLUNC1 regulation by Mp and IL-13. We found that: 1) SPLUNC1 protein decreased Mp levels and inhibited epithelial IL-8 production induced by Mp-derived lipoproteins; 2) normal human and mouse large airway epithelial cells expressed high levels of SPLUNC1; and 3) although Mp infection increased SPLUNC1, IL-13 significantly decreased SPLUNC1 expression and Mp clearance. Our results suggest that SPLUNC1 serves as a novel host defense protein against Mp and that an allergic setting markedly reduces SPLUNC1 expression, which may in part contribute to the persistent nature of bacterial infections in allergic airways.  相似文献   

2.
摘要 目的:研究EP受体在慢性鼻-鼻窦炎伴鼻息肉(chronic rhinosinusitis with nasal polyps, CRSwNP)中的表达及意义。方法:收集20例嗜酸粒细胞性CRSwNP(eosinophilic CRSwNP,ECRSwNP )、20例非嗜酸粒细胞性CRSwNP(noneosinophilic CRSwNP,non-ECRSwNP)患者息肉和14例正常对照组鼻腔钩突黏膜。免疫组织化学和Western blot技术检测各组鼻组织中四种EP受体亚型蛋白的表达;对连续切片行免疫组化染色,检测EP受体与活化的嗜酸粒细胞之间的关系;用Real-time PCR检测各组EP受体和IL-5/IL-13 mRNA的表达水平。结果:EP受体主要表达于鼻黏膜上皮、腺体和上皮下炎症细胞,EP1受体选择性表达于上皮下炎症细胞。与对照组和non-ECRSwNP相比较,ECRSwNP组中EP1 mRNA和蛋白表达均上调,而三组间EP2、EP3和EP4受体的表达无明显差异。连续切片免疫组化染色示,EP1阳性的嗜酸粒细胞占EP1阳性总细胞数的50%。息肉组织EP1 mRNA与IL-5(r=0.55; P <0.001)、IL-13(r=0.69; P<0.001)mRNA的表达水平呈正相关。结论:ECRSwNP中EP1的表达上调与大量的嗜酸粒细胞等浸润有关。EP1受体可能通过趋化和活化嗜酸粒细胞参与ECRSwNP组织炎症的发生和发展。  相似文献   

3.

Background/Objective

Respiratory infections including atypical bacteria Mycoplasma pneumoniae (Mp) contribute to the pathobiology of asthma and chronic obstructive pulmonary disease (COPD). Mp infection mainly targets airway epithelium and activates various signaling pathways such as nuclear factor κB (NF-κB). We have shown that short palate, lung, and nasal epithelium clone 1 (SPLUNC1) serves as a novel host defense protein and is up-regulated upon Mp infection through NF-κB activation in cultured human and mouse primary airway epithelial cells. However, the in vivo role of airway epithelial NF-κB activation in host defense against Mp infection has not been investigated. In the current study, we investigated the effects of in vivo airway epithelial NF-κB activation on lung Mp clearance and its association with airway epithelial SPLUNC1 expression.

Methodology/Main Results

Non-antimicrobial tetracycline analog 9-t-butyl doxycycline (9-TB) was initially optimized in mouse primary tracheal epithelial cell culture, and then utilized to induce in vivo airway epithelial specific NF-κB activation in conditional NF-κB transgenic mice (CC10-CAIKKβ) with or without Mp infection. Lung Mp load and inflammation were evaluated, and airway epithelial SPLUNC1 protein was examined by immunohistochemistry. We found that 9-TB treatment in NF-κB transgene positive (Tg+), but not transgene negative (Tg−) mice significantly reduced lung Mp load. Moreover, 9-TB increased airway epithelial SPLUNC1 protein expression in NF-κB Tg+ mice.

Conclusion

By using the non-antimicrobial 9-TB, our study demonstrates that in vivo airway epithelial NF-κB activation promotes lung bacterial clearance, which is accompanied by increased epithelial SPLUNC1 expression.  相似文献   

4.
BackgroundChronic rhinosinusitis (CRS) is characterized by epithelial activation and chronic T-cell infiltration in sinonasal mucosa and nasal polyps. IL-33 is a new cytokine of the IL-1 cytokine family that has a pro-inflammatory and Th2 type cytokine induction property. The role of IL-33 in the pathomechanisms of CRS and its interaction with other T cell subsets remain to be fully understood.MethodsThe main trigger for IL-33 mRNA expression in primary human sinonasal epithelial cells was determined in multiple cytokine and T-cell stimulated cultures. The effects of IL-33 on naïve, Th0 and memory T-cells was studied by PCR, ELISA and flow cytometry. Biopsies from sinus tissue were analyzed by PCR and immunofluorescence for the presence of different cytokines and receptors with a special focus on IL-33.ResultsIL-33 was mainly induced by IFN-γ in primary sinonasal epithelial cells, and induced a typical CRSwNP Th2 favoring cytokine profile upon co-culture with T-helper cell subsets. IL-33 and its receptor ST2 were highly expressed in the inflamed epithelial tissue of CRS patients. While IL-33 was significantly up-regulated in the epithelium for CRSsNP, its receptor was higher expressed in sinus tissue from CRSwNP.ConclusionsThe present study delineates the influence of IL-33 in upper airway epithelium and a potential role of IL-33 in chronic inflammation of CRSwNP by enhancing Th2 type cytokine production, which could both contribute to a further increase of an established Th2 profile in CRSwNP.  相似文献   

5.
Despite being initially identified in mice, little is known about the sites of production of members of the BPI fold (BPIF) containing (PLUNC) family of putative innate defence proteins in this species. These proteins have largely been considered to be specificaly expressed in the respiratory tract, and we have recently shown that they exhibit differential expression in the epithelium of the proximal airways. In this study, we have used species-specific antibodies to systematically localize two members of this protein family; BPIFA1 (PLUNC/SPLUNC1) and BPIFB1 (LPLUNC1) in adult mice. In general, these proteins exhibit distinct and only partially overlapping localization. BPIFA1 is highly expressed in the respiratory epithelium and Bowman??s glands of the nasal passages, whereas BPIFB1 is present in small subset of goblet cells in the nasal passage and pharynx. BPIFB1 is also present in the serous glands in the proximal tongue where is co-localised with the salivary gland specific family member, BPIFA2E (parotid secretory protein) and also in glands of the soft palate. Both proteins exhibit limited expression outside of these regions. These results are consistent with the localization of the proteins seen in man. Knowledge of the complex expression patterns of BPIF proteins in these regions will allow the use of tractable mouse models of disease to dissect their function.  相似文献   

6.

Background/Objective

The use of electronic cigarettes (e-cigarettes) is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV) infection.

Methodology/Main Results

We examined the effects of e-cigarette liquid (e-liquid) on pro-inflammatory cytokine (e.g., IL-6) production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1) in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.  相似文献   

7.
Although gene expression studies have shown that human PLUNC (palate, lung and nasal epithelium clone) proteins are predominantly expressed in the upper airways, nose and mouth, and proteomic studies have indicated they are secreted into airway and nasal lining fluids and saliva, there is currently little information concerning the localization of human PLUNC proteins. Our studies have focused on the localization of three members of this protein family, namely SPLUNC1 (short PLUNC1), SPLUNC2 and LPLUNC1 (long PLUNC1). Western blotting has indicated that PLUNC proteins are highly glycosylated, whereas immunohistochemical analysis demonstrated distinct patterns of expression. For example, SPLUNC2 is expressed in serous cells of the major salivary glands and in minor mucosal glands, whereas SPLUNC1 is expressed in the mucous cells of these glands. LPLUNC1 is a product of a population of goblet cells in the airway epithelium and nasal passages and expressed in airway submucosal glands and minor glands of the oral and nasal cavities. SPLUNC1 is also found in the epithelium of the upper airways and nasal passages and in airway submucosal glands, but is not co-expressed with LPLUNC1. We suggest that this differential expression may be reflected in the function of individual PLUNC proteins.  相似文献   

8.
9.
10.
Short palate, lung and nasal epithelium clone 1 (SPLUNC1) gene coded a secreted protein found at the surface of nasopharyngeal epithelium, which may be an innate immunity defensive molecular and a risk factor for nasopharyngeal carcinoma (NPC). Here, we observed the effects of SPLUNC1 on the Gram negative bacteria Pseudomonas aeruginosa, evaluated the ability of SPLUNC1 protein binding to lipopolysaccharide. To observe the effect of SPLUNC1 protein on Epstein-Barr virus (EBV), we raised three EBV-transformed B-lymphocyte lines and treated the cells by SPLUNC1 protein; cellular disruption, apoptosis, EBV DNA content, and viral oncogene expression were analyzed. We found that SPLUNC1 protein can bind to bacterial lipopolysaccharide, inhibit the growth of P. aeruginosa, enhance the disruption and apoptosis of EBV-infected B-lymphocytes, downregulate protein expression of EBV latent membrane protein 1, while upregulate protein expression of EBV envelope glycoprotein gp350/220. The total EBV DNA in the culture medium was decreased significantly after 7 days of treatment by SPLUNC1. This study shows that SPLUNC1 not only has the role of antibacteria and antivirus, but also inhibits the potential oncogenicity of EBV in respiratory epithelium. Hou-De Zhou and Xiao-Ling Li contributed equally to this work.  相似文献   

11.
12.
13.
Intestinal epithelial cells (IEC) are capable of responding to IL-1 stimulation by producing a variety of pro-inflammatory cytokines. Recently, we have found that binding of the alpha3beta1 integrin may have a regulatory effect on IL-1 responses and intracellular signaling by suppressing cytokine secretion, mRNA expression and the downstream intracellular signaling events from IKK to NF-kappaB activation. In this study, we extend these findings by showing that treatment of the Caco-2 epithelial cells with a cross-linking anti-alpha3 integrin antibody resulted in a suppression in the levels of IL-1 induced AP-1 binding activity in nuclear extracts. Furthermore, suppressed levels of IL-1 induced c-Jun N-terminal kinase (JNK) phosphorylation and kinase activity were seen with the antibody treated cells. Cells cultured on purified laminin-5, the ligand for the alpha3beta1 integrin, did not show significantly elevated levels of JNK phosphorylation after IL-1 stimulation while cells cultured on fibronectin yielded significantly elevated levels of IL-1 induced JNK phosphorylation. These results indicate that binding of the alpha3beta1 integrin results in a suppression in the activation of the IL-1 induced intracellular signaling pathway from JNK to AP-1. This novel regulatory effect may be a potentially important mechanism to regulate IL-1 mediated responses by IEC.  相似文献   

14.
15.

Background

Pseudomonas aeruginosa (PA) infection is involved in various lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. However, treatment of PA infection is not very effective in part due to antibiotic resistance. α1-antitrypsin (A1AT) has been shown to reduce PA infection in humans and animals, but the underlying mechanisms remain unclear. The goal of our study is to test whether a novel endogenous host defense protein, short palate, lung, and nasal epithelium clone 1 (SPLUNC1), is involved in the therapeutic effect of A1AT during lung PA infection.

Method

SPLUNC1 knockout (KO) and littermate wild-type (WT) mice on the C57BL/6 background were intranasally infected with PA to determine the therapeutic effects of A1AT. A1AT was aerosolized to mice 2 hrs after the PA infection, and mice were sacrificed 24 hrs later. PA load and inflammation were quantified in the lung, and SPLUNC1 protein in bronchoalveolar lavage (BAL) fluid was examined by Western blot.

Results

In WT mice, PA infection significantly increased neutrophil elastase (NE) activity, but reduced SPLUNC1 protein in BAL fluid. Notably, PA-infected mice treated with A1AT versus bovine serum albumin (BSA) demonstrated higher levels of SPLUNC1 protein expression, which are accompanied by lower levels of NE activity, lung bacterial load, and pro-inflammatory cytokine production. To determine whether A1AT therapeutic effects are dependent on SPLUNC1, lung PA load in A1AT- or BSA-treated SPLUNC1 KO mice was examined. Unlike the WT mice, A1AT treatment in SPLUNC1 KO mice had no significant impact on lung PA load and pro-inflammatory cytokine production.

Conclusion

A1AT reduces lung bacterial infection in mice in part by preventing NE-mediated SPLUNC1 degradation.  相似文献   

16.
17.
18.
The chemokine CCL28 is constitutively expressed by epithelial cells at several mucosal sites and is thought to function as a homeostatic chemoattractant of subpopulations of T cells and IgA B cells and to mediate antimicrobial activity. We report herein on the regulation of CCL28 in human colon epithelium by the proinflammatory cytokine IL-1, bacterial flagellin, and n-butyrate, a product of microbial metabolism. In vivo, CCL28 was markedly increased in the epithelium of pathologically inflamed compared with normal human colon. Human colon and small intestinal xenografts were used to model human intestinal epithelium in vivo. Xenografts constitutively expressed little, if any, CCL28 mRNA or protein. After stimulation with the proinflammatory cytokine IL-1, CCL28 mRNA and protein were significantly increased in the epithelium of colon but not small intestinal xenografts, although both upregulated the expression of another prototypic chemokine, CXCL8, in response to the identical stimulus. In studies of CCL28 regulation using human colon epithelial cell lines, proinflammatory stimuli, including IL-1, bacterial flagellin, and bacterial infection, significantly upregulated CCL28 mRNA expression and protein production. In addition, CCL28 mRNA expression and protein secretion by those cells were significantly increased by the short-chain fatty acid n-butyrate, and IL-1- or flagellin-stimulated upregulation of CCL28 by colon epithelial cells was synergistically increased by pretreatment of cells with n-butyrate. Consistent with its upregulated expression by proinflammatory stimuli, CCL28 mRNA expression was attenuated by pharmacological inhibitors of NF-kappaB activation. These findings indicate that CCL28 functions as an "inflammatory" chemokine in human colon epithelium and suggest the notion that CCL28 may act to counterregulate colonic inflammation.  相似文献   

19.
A variety of environmental stresses, as well as inflammatory cytokines, induce activation of c-Jun N-terminal kinases. We describe here that IL-2 deprivation-induced apoptosis in TS1alphabeta cells does not modify c-Jun protein levels and correlates Bcl-2 downregulation and an increase in JNK1, but not JNK2, activity directly related to the induction of apoptosis. Indeed, downregulation of JNK1 expression using antisense oligonucleotides inhibits apoptosis induced by IL-2 withdrawal. Overexpression of Bcl-2 promotes cell survival and blocks JNK1 activation as well as apoptosis caused by IL-2 deprivation. This suggests that inhibition of the JNK1 signaling pathway may be a mechanism through which Bcl-2 promotes cell survival and prevents apoptosis triggered by growth factor withdrawal.  相似文献   

20.
Interleukin 1beta (IL-1beta) induces expression of the inducible nitric-oxide synthase (iNOS) with concomitant release of nitric oxide (NO) from glomerular mesangial cells. These events are preceded by activation of the c-Jun NH(2)-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38(MAPK). Our current study demonstrates that overexpression of the dominant negative form of JNK1 or p54 SAPKbeta/JNK2 significantly reduces the iNOS protein expression and NO production induced by IL-1beta. Similarly, overexpression of the kinase-dead mutant form of p38alpha(MAPK) also inhibits IL-1beta-induced iNOS expression and NO production. In previous studies we demonstrated that IL-1beta can activate MKK4/SEK1, MKK3, and MKK6 in renal mesangial cells; therefore, we examined the role of these MAPK kinases in the modulation of iNOS induced by IL-1beta. Overexpression of the dominant negative form of MKK4/SEK1 decreases IL-1beta-induced iNOS expression and NO production with inhibition of both SAPK/JNK and p38(MAPK) phosphorylation. Overexpression of the kinase-dead mutant form of MKK3 or MKK6 demonstrated that either of these two mutant kinase inhibited IL-1beta-induced p38(MAPK) (but not JNK/SAPK) phosphorylation and iNOS expression. Interestingly overexpression of wild type MKK3/6 was associated with phosphorylation of p38(MAPK); however, in the absence of IL-1beta, iNOS expression was not enhanced. This study suggests that the activation of both SAPK/JNK and p38alpha(MAPK) signaling cascades are necessary for the IL-1beta-induced expression of iNOS and production of NO in renal mesangial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号