首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 829 毫秒
1.
Osteoclasts are bone‐resorbing cells formed by fusion of mononuclear precursors. The matrix proteins, fibronectin (FN), vitronectin (VN), and osteopontin (OPN) are implicated in joint destruction and interact with osteoclasts mainly through integrins. To assess the effects of these matrix proteins on osteoclast formation and activity, we used RAW 264.7 (RAW) cells and mouse splenocytes differentiated into osteoclasts on tissue culture polystyrene (TCP) or osteologic? slides pre‐coated with 0.01–20 µg/ml FN, VN, and OPN. At 96 h, osteoclast number and multinucleation were decreased on VN and FN compared to OPN and TCP in both RAW and splenocytes cell cultures. When early differentiation was assessed, VN but not FN decreased cytoplasmic tartrate‐resistant acid phosphatase activity and pre‐osteoclast number at 48 h. OPN had the opposite effect to FN on osteoclast formation. When RAW cells were differentiated on OPN and treated by FN and OPN, osteoclast number only in the FN treated group was 40–60% lower than the control, while the total number of nuclei was unchanged, suggesting that FN delays osteoclast fusion. In contrast to its inhibitory effect on osteoclastogenesis, FN increased resorption by increasing both osteoclast activity and the percentage of resorbing osteoclasts. This was accompanied by an increase in nitric oxide (NO) levels and interleukin‐1β (IL‐1β). IL‐1β production was inhibited using the NO‐synthase inhibitor only on FN indicating a FN‐specific cross‐talk between NO and IL‐1β signaling pathways. We conclude that FN upregulates osteoclast activity despite inhibiting osteoclast formation and that these effects involve NO and IL‐1β signaling. J. Cell. Biochem. 111: 1020–1034, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
3.
4.
Prothrombin (PT) is an RGD-containing bone-residing precursor to the serine protease thrombin (TH), which acts as an agonist for a variety of cellular responses in osteoblasts and osteoclasts. We show here that PT, TH, osteopontin (OPN) and fibronectin (FN) promoted adhesion of isolated neonatal rat long bone osteoclasts. However, the cells that adhered to PT and TH were smaller in size, rounded and contained 3-4 nuclei, in comparison to the cells adhering to OPN and FN, which were larger with extended cytoplasmic processes and 6-7 nuclei. Attachment of the larger osteoclasts to OPN and FN was inhibited by antibodies towards beta 3 and beta 1 integrin subunits, respectively. Whereas an RGD-containing peptide inhibited adhesion of the smaller osteoclasts to PT and TH, this was not seen with the beta 3 or beta 1 antibodies. In contrast, the beta 1 antibody augmented osteoclast adhesion to PT and TH in an RGD-dependent manner. Small osteoclasts were less efficient in resorbing mineralized bovine bone slices, as well as expressed lower mRNA levels of MMP-9 and the cathepsins K and L compared to large osteoclasts. The small osteoclast adhering to PT and TH may represent either an immature, less functional precursor to the large osteoclast or alternatively constitute a distinct osteoclast population with a specific role in bone.  相似文献   

5.
Acidic extracellular pH promotes osteoporotic bone loss by osteoclast activation. However, the change of osteoclastic cell behavior in acidosis-stimulated bone resorption process is unknown. We found that lowering extracellular pH induced an increase in the survival, adhesion, and migration of mature osteoclasts with a full actin ring, leading to enhanced pit formation on dentine slices. Acidosis upregulated osteopontin, which is an Arg-Gly-Asp (RGD) motif-containing matrix protein secreted from osteoclasts and acts as a common modulator for their survival, adhesion, and migration. A synthetic RGD peptide treatment blocked acidosis-induced osteoclast adhesion and migration, likely by competing with the RGD motif-containing extracellular matrix proteins for cell surface integrin binding. We finally observed that acidosis was associated with activation of osteoclast survival/adhesion/migration-related Pyk2, Cbl-b, and Src signals. Collectively, the findings indicate that extracellular acidosis stimulates bone resorption by extending osteoclast survival and facilitating osteoclast adhesion and migration.  相似文献   

6.
Skeletal homeostasis is partly regulated by the mechanical environment and specific signals generated by a cell's adhesion to the matrix. Previous studies demonstrated that osteopontin (OPN) expression is stimulated in response to both cellular adhesion and mechanical stimulation. The present studies examine if specific integrin ligands mediate osteoblast selective adhesion and whether opn mRNA expression is induced in response to these same ligands. Embryonic chicken calvaria osteoblastic cells were plated on bacteriological dishes coated with fibronectin (FN), collagen type I (Col1), denatured collagen/gelatin (G), OPN, vitronectin (VN), laminin (LN) or albumin (BSA). Osteoblastic cells were shown to selectively adhere to FN, Col1, G and LN, yet not to VN, OPN or BSA. Opn mRNA expression was induced by adhesion to Col1, FN, LN and G, but neither OPN nor VN induced this expression. Examination of the activation of the protein kinases A and C second signaling systems showed that only adhesion to FN induced protein kinase A and protein kinase C (PKC) activity while adherence to Col1 induced PKC. Evaluation of the intracellular distribution of focal adhesion kinase (FAK) and p-tyrosine within cells after adherence to FN, VN or BSA demonstrated that adherence to FN stimulated FAK translocation from the nucleus to the cytoplasm and high levels of p-tyrosine localization at the cell surface. However, cell adherence to VN or BSA did not show these morphological changes. These data illustrate that osteoblast selective adhesion is mediated by specific integrin ligands, and induction of intracellular second signal kinase activity is related to the nature of the ligand.  相似文献   

7.
Osteopontin (OPN) is a multifunctional protein implicated in cellular adhesion and migration. Phosphorylation has emerged as a post-translational modification important for certain biological activities of OPN. This study demonstrates that adhesion of isolated neonatal rat osteoclasts in vitro was augmented on bovine milk osteopontin (bmOPN) with post-translational modifications (PTMs) compared to human Escherichia-coli-derived recombinant OPN (hrOPN) without PTMs. The difference in adhesiveness between these OPN variants was more pronounced at low coating concentrations (≤ 10 μg/ml). Both OPN forms adhered exclusively using a β3-integrin. Partial (≤50%) dephosphorylation by tartrate-resistant acid phosphatase (TRAP) in vitro reduced osteoclast attachment to bmOPN to the same level as to hrOPN, demonstrating the importance of specific phosphorylations in OPN-dependent osteoclast adhesion.The involvement of PTMs of OPN in migration of primary rat and mouse osteoclasts was assessed on culture dishes coated with the different OPN forms and then overlaid with gold particles. Here, osteoclasts exhibited haptotactic migration on bmOPN but did not migrate on hrOPN. The presence of neutralizing antibodies to TRAP inhibited migration on bmOPN. Moreover, migration of osteoclasts isolated from TRAP-overexpressing transgenic mice was augmented on bmOPN, but not on hrOPN or type I collagen.These data collectively provide evidence in favor of a role for endogenous TRAP in regulating osteoclast migration on post-translationally modified OPN. In a tissue context, modulation of the phosphorylation level of OPN by extracellular phosphatases, e.g., TRAP, could regulate the extent of degradation such as depth and area at each bone resorption site by triggering osteoclast detachment and facilitate subsequent migration on the bone surface.  相似文献   

8.
9.
Tenascin (TN) is a large oligomeric glycoprotein that is present transiently in the extracellular matrix (ECM) of cells and is involved in morphogenetic movements, tissue patterning, and tissue repair. It has multiple domains, both adhesive and anti-adhesive, that interact with cells and with fibronectin (FN) and other ECM macromolecules. We have studied the consequences of the interaction of TN with a FN matrix on gene expression in rabbit synovial fibroblasts. Fibroblasts plated on a mixed substrate of FN and TN, but not on FN alone, upregulated synthesis of four genes: collagenase, stromelysin, the 92-kDa gelatinase, and c-fos. Although the fibroblasts spread well on both FN and FN/TN substrates, nuclear c-Fos increased within 1 h only in cells that were plated on FN/TN. TN did not induce the expression of collagenase in cells plated on substrates of type I collagen or vitronectin (VN). Moreover, soluble TN added to cells adhering to a FN substrate or to serum proteins had no effect, suggesting that TN has an effect only in the context of mixed substrates of FN and TN. Collagenase increased within 4 h of plating on a FN/TN substrate and exhibited kinetics similar to those for induction of collagenase gene expression by signaling through the integrin FN receptor. Arg-Gly-Asp peptide ligands that recognize either the FN receptor or the VN receptor and function-perturbing anti-integrin monoclonal antibodies diminished the interaction of fibroblasts with a mixed substrate of FN, TN, and VN, but had no effect on the adhesion of fibroblasts to a substrate of FN and VN, suggesting that both receptors recognize the complex. Anti-TN68, an antibody that recognizes an epitope in the carboxyl-terminal type III repeats involved in the interaction of TN with both FN and cells, blocked the inductive effect of the FN/TN substrate, whereas anti-TNM1, an antibody that recognizes an epitope in the amino-terminal anti-adhesive region of epidermal growth factor-like repeats, had no effect. These data suggest that transient alteration of the composition of ECM by addition of proteins like TN may regulate the expression of genes involved in cell migration, tissue remodeling, and tissue invasion, in regions of tissue undergoing phenotypic changes.  相似文献   

10.
The activity of matrix metalloproteinases (MMPs) specifies the ability of the trophoblast cell to degrade extracellular matrix (ECM) substrates. Usually the process of normal human placentation involves a coordinated interaction between the fetal-derived trophoblast cells and their microenvironment in the uterus. In this study, the effects of ECM proteins on the expression of MMP-2, -9, and -14 (membrane-type MMP-1); and the production of tissue inhibitors of metalloproteinase (TIMP) types -1, -2, and -3 have been investigated. Cytotrophoblast cells at 9 or 10 wk of gestation were cultured on various ECM coated dishes under serum-free conditions. Gelatin zymography analysis showed that cells grown on fibronectin (FN), laminin (LN), and vitronectin (VN) secreted more MMP-9 (about 1.5- to 3-fold more) than cells cultured on collagen I (Col I), whereas the secretion of MMP-9 by cells cultured on collagen IV (Col IV) was only half that by the cells on Col I. Northern Blot analysis gave the same results as zymography, indicating that expression of the MMP-9 gene in cytotrophoblast cells can be affected by matrix proteins. There was no significant difference in the expression of MMP-2 either at protein or mRNA levels among the cells cultured on the different matrix substrates. The expression of MMP-14 was regulated in a manner similar to that of MMP-2. Using ELISA, we detected higher levels of TIMP-1 in the culture medium of cells grown on VN, LN, and FN compared with that grown on Col I. But the expression of TIMP-3 mRNA was remarkably inhibited by VN, and ECM proteins had no effect on TIMP-1 and TIMP-2 mRNA expression. It was also observed that cultured cytotrophoblast cells expressed the corresponding receptors for the tested matrix proteins, such as integrins alpha(1), alpha(5), alpha(6), beta(1), and beta(4). Furthermore, the adhesiveness of cytotrophoblast cells on Col I, Col IV, FN, and LN was increased by 62%, 45%, 21%, and 22%, respectively, when compared with adhesiveness on VN. Isolated cytotrophoblast cells remained stationary when cultured on dishes coated with Col I and Col IV, but they assumed a more motile morphology and aggregated into a network when cultured on LN and VN. These data indicate that human trophoblast cells interact with their microenvironment to control their behavior and function.  相似文献   

11.
Osteopontin (OPN) was expressed in murine wild-type osteoclasts, localized to the basolateral, clear zone, and ruffled border membranes, and deposited in the resorption pits during bone resorption. The lack of OPN secretion into the resorption bay of avian osteoclasts may be a component of their functional resorption deficiency in vitro. Osteoclasts deficient in OPN were hypomotile and exhibited decreased capacity for bone resorption in vitro. OPN stimulated CD44 expression on the osteoclast surface, and CD44 was shown to be required for osteoclast motility and bone resorption. Exogenous addition of OPN to OPN-/- osteoclasts increased the surface expression of CD44, and it rescued osteoclast motility due to activation of the alpha(v)beta(3) integrin. Exogenous OPN only partially restored bone resorption because addition of OPN failed to produce OPN secretion into resorption bays as seen in wild-type osteoclasts. As expected with these in vitro findings of osteoclast dysfunction, a bone phenotype, heretofore unappreciated, was characterized in OPN-deficient mice. Delayed bone resorption in metaphyseal trabeculae and diminished eroded perimeters despite an increase in osteoclast number were observed in histomorphometric measurements of tibiae isolated from OPN-deficient mice. The histomorphometric findings correlated with an increase in bone rigidity and moment of inertia revealed by load-to-failure testing of femurs. These findings demonstrate the role of OPN in osteoclast function and the requirement for OPN as an osteoclast autocrine factor during bone remodeling.  相似文献   

12.
13.
Src‐like adaptor protein (SLAP) is a hematopoietic adaptor containing Src homology (SH)3 and SH2 motifs and a unique carboxy terminus. Unlike c‐Src, SLAP lacks a tyrosine kinase domain. We investigated the role of SLAP in osteoclast development and resorptive function. Employing SLAP‐deficient mice, we find lack of the adaptor enhances in vitro proliferation of osteoclast precursors in the form of bone marrow macrophages (BMMs), without altering their survival. Furthermore, osteoclastogenic markers appear more rapidly in SLAP?/? BMMs exposed to RANK ligand (RANKL). The accelerated proliferation of M‐CSF‐treated, SLAP‐deficient precursors is associated with enhanced ERK activation. SLAP's role as a mediator of M‐CSF signaling, in osteoclastic cells, is buttressed by complexing of the adaptor protein and c‐Fms in lipid rafts. Unlike c‐Src, SLAP does not impact resorptive function of mature osteoclasts but induces their early apoptosis. Thus, SLAP negatively regulates differentiation of osteoclasts and proliferation of their precursors. Conversely, SLAP decreases osteoclast death by inhibiting activation of caspase 3. These counterbalancing events yield indistinguishable bones of WT and SLAP?/? mice which contain equal numbers of osteoclasts in basal and stimulated conditions. J. Cell. Biochem. 110: 201–209, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Thrombospondin (TSP), a 450-kDa trimeric glycoprotein secreted by platelets and endothelial cells at sites of tissue injury or inflammation, may play an important role in polymorphonuclear leukocyte (PMN) adherence to blood vessel walls before diapedesis. We have examined the adherence of PMN to TSP and compared it to adherence to other extracellular matrix proteins. PMN adherence to TSP-coated plastic was complete by 60 min with spreading completed by 2 h. The kinetics of adhesion and spreading on TSP were similar to that of vitronectin (VN), laminin (LN), and fibronectin (FN). Activation of PMN with the calcium ionophore A23187 or the chemotactic peptide FMLP increased PMN adherence to LN and FN, but not to TSP or VN, suggesting that PMN activation may differentially regulate expression of TSP and VN receptors as compared to LN and FN receptors. The specificity of PMN adherence to TSP was confirmed by competition with saturating amounts of TSP and inhibition with anti-TSP antibodies. mAb A6.1, which binds to the protease-resistant core of TSP, was the most effective in blocking PMN adherence to TSP. Using TSP proteolytic fragments, we demonstrated that the primary interaction of PMN with TSP was mediated through the 140-kDa COOH-terminal domain. Inasmuch as the 140-kDa fragment of TSP contains an Arg-Gly-Asp sequence similar to the cell recognition site of FN and VN, we determined whether RGDS peptides would inhibit PMN adhesion. RGDS did not significantly inhibit PMN adhesion to TSP, VN, or LN, but reduced PMN adhesion to FN by 50%. To determine if PMN adhesion to TSP was mediated by a beta 2 integrin receptor such as LFA-1, MO-1, or p150,95, we performed adhesion assays using PMN isolated from patients with leukocyte adhesion deficiency that lack beta 2 receptors. Leukocyte adhesion deficiency PMN exhibited normal adherence to TSP. In contrast, adherence to VN, LN, and FN was reduced by 95%. Therefore, adherence to TSP is probably not mediated by a beta 2 integrin receptor. These data contribute to the accumulating evidence that PMN can interact with extracellular matrix proteins through a CD11/CD18-independent process.  相似文献   

15.
Osteoclasts are specialized macrophage derivatives that secrete acid and proteinases to mobilize bone for mineral homeostasis, growth, and replacement or repair. Osteoclast differentiation generally requires the monocyte growth factor m‐CSF and the TNF‐family cytokine RANKL, although differentiation is regulated by many other cytokines and by intracellular signals, including Ca2+. Studies of osteoclast differentiation in vitro were performed using human monocytic precursors stimulated with m‐CSF and RANKL, revealing significant loss in both the expression and function of the required components of store‐operated Ca2+ entry over the course of osteoclast differentiation. However, inhibition of CRAC using either the pharmacological agent 3,4‐dichloropropioanilide (DCPA) or by knockdown of Orai1 severely inhibited formation of multinucleated osteoclasts. In contrast, no effect of CRAC channel inhibition was observed on expression of the osteoclast protein tartrate resistant acid phosphatase (TRAP). Our findings suggest that despite the fact that they are down‐regulated during osteoclast differentiation, CRAC channels are required for cell fusion, a late event in osteoclast differentiation. Since osteoclasts cannot function properly without multinucleation, selective CRAC inhibitors may have utility in management of hyperresorptive states. J. Cell. Physiol. 226: 1082–1089, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Bone is the preferred site of prostate cancer metastasis, contributing to the morbidity and mortality of this disease. A key step in the successful establishment of prostate cancer bone metastases is activation of osteoclasts with subsequent bone resorption causing the release of several growth factors from the bone matrix. CD11b+ cells in bone marrow are enriched for osteoclast precursors. Conditioned media from prostate cancer PC‐3 cells induces CD11b+ cells from human peripheral blood to differentiate into functional osteoclasts with subsequent bone resorption. Analysis of PC‐3 conditioned media revealed high amounts of IL‐6 and IL‐8. CD11b+ cells were cultured with M‐CSF and RANKL, IL‐6, IL‐8, and CCL2, alone or in combination. All of these conditions induced osteoclast fusion, but cells cultured with M‐CSF, IL‐6, IL‐8, and CCL2 were capable of limited bone resorption. Co‐incubation with IL‐6 and IL‐8 and the RANK inhibitor, RANK‐Fc, failed to inhibit osteoclast fusion and bone resorption, suggesting a potential RANKL‐independent mechanism of functional osteoclast formation. This study demonstrates that functional osteoclasts can be derived from CD11b+ cells derived from human PBMCs. Prostate cancer cells secrete factors, including IL‐6 and IL‐8, that play an important role in osteoclast fusion by a RANKL‐independent mechanism. J. Cell. Biochem. 106: 563–569, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Cardiac fibroblasts (CFs) regulate myocardial remodeling by proliferating, differentiating, and secreting extracellular matrix (ECM) proteins. B‐type natriuretic peptide (BNP) is anti‐fibrotic, inhibits collagen production, augments matrix metalloproteinases, and suppresses CF proliferation. Recently, we demonstrated that the ECM protein fibronectin (FN) augmented production of BNP's second messenger, 3′, 5′ cyclic guanosine monophosphate (cGMP) in CFs, supporting crosstalk between FN, BNP, and its receptor, natriuretic peptide receptor A (NPR‐A). Here, we address the specificity of FN to augment cGMP generation by investigating other matrix proteins, including collagen IV which contains RGD motifs and collagen I and poly‐L ‐lysine, which have no RGD domain. Collagen IV showed increased cGMP generation to BNP similar to FN. Collagen I and poly‐L ‐lysine had no effect. As FN also interacts with integrins, we then examined the effect of integrin receptor antibody blockade on BNP‐mediated cGMP production. On FN plates, antibodies blocking RGD‐binding domains of several integrin subtypes had little effect, while a non‐RGD domain interfering integrin αvβ3 antibody augmented cGMP production. Further, on uncoated plates, integrin αvβ3 blockade continued to potentiate the BNP/cGMP response. These studies suggest that both RGD containing ECM proteins and integrins may interact with BNP/NPR‐A to modulate cGMP generation. J. Cell. Physiol. 225: 251–255, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
The majority of hematopoietic stem/progenitor cells (HSPCs) reside in bone marrow (BM) surrounded by a specialized environment, which governs HSPC function. Here we investigated the potential role of bone remodeling cells (osteoblasts and osteoclasts) in homeostasis and stress‐induced HSPC mobilization. Peripheral blood (PB) and BM in steady/mobilized state were collected from healthy donors undergoing allogeneic transplantation and from mice treated with granulocyte colony stimulating factor (G‐CSF), parathyroid hormone (PTH), or receptor activator of nuclear factor kappa‐B ligand (RANKL). The number and the functional markers of osteoblasts and osteoclasts were checked by a series of experiments. Our data showed that the number of CD45?Ter119? osteopontin (OPN)+ osteoblasts was significantly reduced from 4,085 ± 135 cells/femur on Day 0 to 1,032 ± 55 cells/femur on Day 5 in mice (P = 0.02) and from 21.38 ± 0.66 on Day 0 to 14.78 ± 0.65 on Day 5 in healthy donors (P < 0.01). Decrease of osteoblast number leads to reduced level of HSPC mobilization regulators stromal cell‐derived factor‐1 (SDF‐1), stem cell factor (SCF), and OPN. The osteoclast number at bone surface (OC.N/B.s) was significantly increased from 1.53 ± 0.12 on Day 0 to 4.42 ± 0.46 on Day 5 (P < 0.01) in G‐CSF‐treated mice and from 0.88 ± 0.20 on Day 0 to 3.24 ± 0.31 on Day 5 (P < 0.01) in human. Serum TRACP‐5b level showed a biphasic trend during G‐CSF treatment. The ratio of osteoblasts number per bone surface (OB.N/B.s) to OC.N/B.s was changed after adding PTH plus RANKL during G‐CSF treatment. In conclusion, short term G‐CSF treatment leads to reduction of osteoblasts and stimulation of osteoclasts, and interrupting bone remodeling balance may contribute to HSPC mobilization. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The present study demonstrated that invadopodia are associated with invasion by degradation of matrix in prostate cancer cells PC3. To find out the presence of invadopodia in PC3 cells, we performed a few comparative analyses with osteoclasts, which utilize podosomes for migration. Our investigations indeed demonstrated that invadopodia are comparable to podosomes in the localization of Wiskott-Aldrich syndrome protein (WASP)/matrix metalloproteinase-9 and the degradation of matrix. Invadopodia are different from podosomes in the localization of actin/vinculin, distribution during migration, and the mode of degradation of extracellular matrix. Invadopodia enable polarized invasion of PC3 cells into the gelatin matrix in a time-dependent manner. Gelatin degradation was confined within the periphery of the cell. Osteoclasts demonstrated directional migration with extensive degradation of matrix underneath and around the osteoclasts. A pathway of degradation of matrix representing a migratory track was observed due to the rearrangement of podosomes as rosettes or clusters at the leading edge. Reducing the matrix metalloproteinase-9 levels by RNA interference inhibited the degradation of matrix but not the formation of podosomes or invadopodia. Competition experiments with TAT-fused WASP peptides suggest that actin polymerization and formation of invadopodia involve the WASP-Arp2/3 complex pathway. Moreover, PC3 cells overexpressing osteopontin (OPN) displayed an increase in the number of invadopodia and gelatinolytic activity as compared with PC3 cells and PC3 cells expressing mutant OPN in integrin-binding domain and null for OPN. Thus, we conclude that OPN/integrin alphavbeta3 signaling participates in the process of migration and invasion of PC3 cells through regulating processes essential for the formation and function of invadopodia.  相似文献   

20.
Background information. Osteoclasts are cells specialized for bone resorption and play important roles in bone growth and calcium homoeostasis. Differentiation of osteoclasts involves fusion of bone marrow macrophage mononuclear precursors in response to extracellular signals. A dramatic increase in osteoclast cell volume occurs during osteoclast biogenesis and is believed to be mediated by AQP9 (aquaporin 9), a membrane protein that can rapidly transport water and other small neutral solutes across cell membranes. Results. In the present study we report an increase in expression of AQP9 during differentiation of a mouse macrophage cell line into osteoclasts. Bone marrow macrophages from wild‐type and AQP9‐null mice differentiate into osteoclasts that have similar morphology, contain comparable numbers of nuclei, and digest synthetic bone to the same extent. Bones from wild‐type and AQP9‐null mice contain similar numbers of osteoclasts and have comparable density and structure as measured by X‐ray absorptiometry and microcomputed tomography. Conclusions. Our results confirm that AQP9 expression rises during osteoclast biogenesis, but indicate that AQP9 is not essential for osteoclast function or differentiation under normal physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号