首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Recently it has been established that low molecular weight displacers can be successfully employed for the purification of proteins in hydrophobic interaction chromatography (HIC) systems. This work investigates the utility of this technique for the purification of an industrial protein mixture. The study involved the separation of a mixture of three protein forms, that differed in the C-terminus, from their aggregate impurities while maintaining the same relative ratio of the three protein forms as in the feed. A batch high-throughput screening (HTS) technique was employed in concert with fluorescence spectroscopy for displacer screening in these HIC systems. This methodology was demonstrated to be an effective tool for identifying lead displacer candidates for a particular protein/stationary-phase system. In addition, these results indicate that surfactants can be employed at concentrations above their CMCs as effective displacers. Displacement of the recombinant proteins with PEG-3400 and the surfactant Big Chap was shown to increase the productivity as compared to the existing step-gradient elution process.  相似文献   

2.
A robotic high‐throughput displacer screen was developed and employed to identify chemically selective displacers for several protein pairs in cation exchange chromatography. This automated screen enabled the evaluation of a wide range of experimental conditions in a relatively short period of time. Displacers were evaluated at multiple concentrations for these protein pairs, and DC‐50 plots were constructed. Selectivity pathway plots were also constructed and different regimes were established for selective and exclusive separations. Importantly, selective displacement was found to be conserved for multiple protein pairs, demonstrating the technique to be applicable for a range of protein systems. Although chemically selective displacers were able to separate protein pairs that had similar retention in ion exchange but different surface hydrophobicities, they were not able to distinguish protein pairs with similar surface hydrophobicities. This corroborates that displacer‐protein hydrophobic interactions play an important role for this class of selective displacers. Important functional group moieties were established and efficient displacers were identified. These results demonstrate that the design of chemically selective displacers requires a delicate balance between the abilities to displace proteins from the resin and to bind to a selected protein. The use of robotic screening of displacers will enable the extension of chemically selective displacement chromatography beyond hydrophobic displacer‐protein interactions to other secondary interactions and more selective displacement systems. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

3.
Although the ability to carry out simultaneous concentration and purification in a single displacement step has significant advantages for downstream processing of pharmaceuticals, a major impediment to the implementation of displacement chromatography has been the lack of suitable displacer compounds. An important recent advance in the state of the art of displacement chromatography has been the discovery that low-molecular-weight dendritic polymers can be successfully employed as displacers for protein purification in ion-exchange systems. In this article, protected amino acid esters (based on arginine and lysine) are shown to be useful displacers for protein purification in cation-exchange systems. A dynamic affinity plot is employed to evaluate the affinity of these low-molecular-weight compounds under dis-placement conditions. In contrast to large polyelectroyte displacers, the efficacy of these low-molecular-weight displacers was shown to be dependent on both the initial carrier salt concentration and the displacer concentration. In addition to the funcamental interest generated by low-molecular-weight displacers, it is likely that these displacers will have significant operatioal advantages as compared with large polyelectrolyte displacers. (c) 1995 John Wiley & Sons, Inc.  相似文献   

4.
A parallel batch screening technique was employed to identify chemically selective displacers which exhibited exclusive separation behavior for the protein pair α‐chymotrypsin/ribonuclease A on a strong cation exchange resin. Two selective displacers, 1‐(4‐chlorobenzyl)piperidin‐3‐aminesulfate and N′1′‐(4‐methyl‐quinolin‐2‐yl)‐ethane‐1,2‐diamine dinitrate, and one non‐selective displacer, spermidine, were selected as model systems to investigate the mechanism of chemically selective displacement chromatography. Saturation transfer difference (STD) NMR was used to directly evaluate displacer–protein binding. The results indicated that while binding occurred between the two chemically selective displacers and the more hydrophobic protein, α‐chymotrypsin, no binding was observed with ribonuclease A. Further, the non‐selective displacer, spermidine, was not observed to bind to either protein. Importantly, the binding event was observed to occur primarily on the aromatic portion of the selective displacers. Extensive molecular dynamic simulations of protein–displacer–water solution were also carried out. The MD results corroborated the NMR findings demonstrating that the binding of selective displacers occurred primarily on hydrophobic surface patches of α‐chymotrypsin, while no significant long term binding to ribonuclease A was observed. The non‐selective displacer did not show significant binding to either of the proteins. MD simulations also indicated that the charged amine group of the selective displacers in the bound state was primarily oriented towards the solvent, potentially facilitating their interaction with a resin surface. These results directly confirm that selective binding between a protein and displacer is the mechanism by which chemically selective displacement occurs. This opens up many possibilities for future molecular design of selective displacers for a range of applications. Biotechnol. Bioeng. 2009;102: 1428–1437. © 2008 Wiley Periodicals, Inc.  相似文献   

5.
Lactate dehydrogenase from beef heart extract was purified by displacement chromatography on a Tris Acryl DEAE. Chondroitin sulphate C, alginate and Eudragits were tried as displacers. Displacement, in conjunction with a subsequent affinity step, gave high purifications and yields. The potential of this operational mode as an early step in protein recovery and the use of L and S forms of Eudragit as cheap readily available and non-toxic displacers has been demonstrated in this work.  相似文献   

6.
High affinity, low molecular weight anionic displacers were successfully employed for the purification of antisense oligonucleotides. Several important structural characteristics were identified that contribute to the affinity of low molecular weight displacers to a hydrophilized polystyrene divinyl benzene anion exchanger. Sulfonic acid groups were found to possess higher affinity than carboxylic acid and phosphate functionalities, and nonspecific interactions (particularly hydrophobic interactions) were shown to play a major role in the retention process on this stationary phase material. Using this information, two high affinity, low molecular weight displacers were identified. These molecules are relatively inexpensive organic dyes that possess multiple sulfonic acid moieties, as well as aromatic functionalities, which increase nonspecific interactions with the stationary phase. These high affinity displacers, which can be readily detected, were then employed to displace several strongly retained antisense oligonucleotides that could not be displaced by previously established low molecular weight displacers. The displacement process resulted in very high purities of the antisense oligonucleotides. The results presented in this paper are significant in that they demonstrate that low molecular weight displacers for ion-exchange chromatography can possess equal to or greater affinities than their higher molecular weight counterparts, when nonspecific interactions with the stationary phase are exploited. In addition, the results illustrate the high resolutions possible with displacement chromatography and demonstrate an attractive technology for the process scale purification of oligonucleotides.  相似文献   

7.
cDNA3′端代表差异显示分析   总被引:3,自引:0,他引:3  
根据真核mRNA3′端一般含Poly(A)的原理,可使用共同引物将不同的mRNA反转录成cDNA,然后设计特殊引物进行反转录PCR,或者将限制性酶切与反转录PCR偶联使用,均可获得对应于mRNA3′端的cDNA3′端代表扩增子。比较不同条件下的cD-NA3′端代表扩增子,可以获得两种或多种细胞中mRNA的表达差异谱,并分离、克隆差异表达的基因序列  相似文献   

8.
This work investigates the utility of RPLC displacement chromatography for the purification of recombinant brain derived neurotrophic factor (rHu-BDNF) from its variants and E. coli. protein (ECP) impurities. The closely associated variants (six in total) differ by one amino acid from the native BDNF and thus pose a challenging separation problem. Several operational parameters were investigated to study their effects on the yield of the displacement process. The results indicated that the concentration of trifluoroacetic acid (TFA) in the buffer was a key factor in achieving the desired purification. Displacement chromatography on an analytical scale column resulted in extremely high purity and yield in a single chromatographic step. The process was successfully scaled-up with respect to particle and column diameter. The production rate of a pilot scale RPLC displacement process was shown to be 23 times higher than the combined production rates of the current preparative ion exchange and hydrophobic interaction gradient elution steps that are used to remove variant and ECP impurities, respectively.  相似文献   

9.
It is well established that salt enhances the interaction between solutes (e.g., proteins, displacers) and the weak hydrophobic ligands in hydrophobic interaction chromatography (HIC) and that various salts (e.g., kosmotropes, chaotropes, and neutral) have different effects on protein retention. In this article, the solute affinity in kosmotropic, chaotropic, and neutral mobile phases are compared and the selectivity of solutes in the presence of these salts is examined. Since solute binding in HIC systems is driven by the release of water molecules, the total number of released water molecules in the presence of various types of salts was calculated using the preferential interaction theory. Chromatographic retention times and selectivity reversals of both proteins and displacers were found to be consistent with the total number of released water molecules. Finally, the solute surface hydrophobicity was also found to have a significant effect on its retention in HIC systems.  相似文献   

10.
Hydrophobic interaction chromatography (HIC) has been used extensively for the separation of proteins and peptides by elution using a descending salt gradient, with and without the use of detergents or denaturing agents. In this paper we compare different hydrophobic interaction chromatographic media for the separation of multiple forms of hexokinase from rabbit reticulocytes. Among the different hydrophobic chromatographic media tested (Toyopearl Phenyl 650S, Ether 650S and Butyl 650S) Toyopearl Phenyl 650S offered the best separation of multiple forms of hexokinase, probably due to its intermediate hydrophobicity. In order to establish the optimal experimental conditions, we evaluated the effects of different salts, and the results obtained demonstrated that among the antichaotropic salts, ammonium sulphate is the most suitable for the separation of hexokinase sub-types. The sample loading capacity of the three Toyopearl supports was investigated and the recovery of enzymatic activity obtained ranged from 60% to 90%, depending on the different salts and hydrophobic media used. The chromatographic profiles of hexokinase activity from various mammalian and fungal tissues also demonstrate that Toyopearl Phenyl 650S can be successfully employed for the separation of multiple forms of enzymes from different biological sources.  相似文献   

11.
In contrast to high molecular weight polyelectrolyte displacers, the efficacy of low molecular weight displacers are dependent on both mobile phase salt and displacer concentration. This sensitivity to the operating conditions opens up the possibility of carrying out selective displacement where the product(s) of interest can be selectively displaced while the low affinity impurities can be desorbed in the induced salt gradient ahead of the displacement train, and the high affinity impurities either retained or desorbed in the displacer zone. This type of displacement combines the operational advantages of step gradient and the high resolution inherent in a true displacement process, in a single operation. Theoretical expressions are presented for establishing selective displacement operating conditions (initial salt concentration, displacer concentration) based on the Steric Mass Action parameters of the displacer and the linear Steric Mass Action parameters of the feed proteins. Experimental results are presented to elucidate the concept of selective displacement in both cation and anion exchange systems. A mixture of alpha-lactalbumin and beta-lactoglobulin A and B has been used for anion-exchange systems; a four-protein mixture consisting of ribonuclease B, bovine and horse heart cytochrome c, and lysozyme has been employed in cation exchange systems. This article also demonstrates that on-line monitoring can be readily employed for the selective displacement process, thus facilitating the scale-up and control of the process. This work sets the stage for the development of robust large scale high resolution separations using selective displacement chromatography. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 119-129, 1997.  相似文献   

12.
Methods development in chromatographic purification processes is a complex operation and has traditionally relied on trial and error approaches. The availability of a large number of commercial media, choice of different modes of chromatography, and diverse operating conditions contribute to the challenging task of accelerating methods development. In this paper, we describe a novel microtiter-plate based screening method to identify the appropriate sequence of chromatographic steps that result in high purities of bioproducts from their respective culture broths. Protein mixtures containing the bioproduct were loaded on aliquots of different chromatographic media in microtiter plates. Serial step elution of the proteins, in concert with bioproduct-specific assays, resulted in the identification of "active fractions" containing the bioproduct. The identification of a successful chromatographic step was based on the purity of the active fractions, which were then pooled and used as starting material for screening the next chromatographic dimension. This procedure was repeated across subsequent dimensions until single band purities of the protein were obtained. The sequence of chromatographic steps and the corresponding operating conditions identified from the screen were validated under scaled-up conditions. Various modes of chromatography including hydrophobic interaction, ion exchange (cation and anion exchange) and hydrophobic charge-induction chromatography (HCIC), and different operating conditions (pH, salt concentration and type, etc.) were employed in the screen. This approach was employed to determine the sequence of chromatographic steps for the purification of recombinant alpha-amylase from its cell-free culture broth. Recommendations from the screen resulted in single-band purity of the protein under scaled-up conditions. Similar results were observed for an scFv-beta-lactamase fusion protein. The use of a miniaturized screen enables the parallel screening of a wide variety of actual bioprocess media and conditions and represents a novel paradigm approach for the high-throughput process development of recombinant proteins.  相似文献   

13.
Displacement chromatography has been applied to model mixtures of some steroid compounds. From results gained, it appears that this type of chromatographic development can be used to advantage in separation of quantities of steroids as little as 50 mg. It also appears that carrier displacement chromatography may be applicable for the separation of much smaller quantities of steroids.  相似文献   

14.
An overview of different applications of polymer interactions with ion-exchange and dye-affinity chromatographic matrices is presented here. The strength of interaction between the ligand and the polymer plays a crucial role in deciding the mode of chromatographic application. Charged, non-ionic and thermosensitive polymers such as poly(ethylene imine), poly(N-vinyl pyrrolidone) and poly(vinyl caprolactam) respectively, show different degrees of interaction with the dye molecules in dye ligand chromatography. Polymers, with their ability of multipoint and hence strong attachment to the chromatographic matrices, were used as efficient displacers in displacement chromatography. The polymer displacement resulted in better recoveries and sharper elution profiles than traditional salt elutions. The globule–coil transition of the thermosensitive reversible soluble–insoluble polymer, poly(vinyl caprolactam), can be exploited in dye-affinity columns for the temperature induced displacement of the bound protein. In another situation, prior to the column chromatography of crude protein extract, polymers formed complexes with the dye matrix and “shielded” the column. The polymer shielding decreased the nonspecific interactions without affecting the specific interactions of the target protein to the dye matrix.  相似文献   

15.
Hydrophobic interaction chromatography, an important and effective purification strategy, is generally used for the purification of variety of biomolecules. A basic understanding of the protein interaction behavior is required to effectively separate these biomolecules. A colloidal type extended Derjaguin, Landau, Verwey, and Overbeek calculations were utilized to study the interactions behavior of model proteins to commercially available hydrophobic chromatographic materials that is, Toyopearl Phenyl 650C and Toyopearl Butyl 650C. Physicochemical properties of selected model proteins were achieved by contact angle and zeta potential measurements. The contact angle of chromatographic materials used was achieved through sessile drop method on disrupted beads and capillary penetration method (CPM) on intact beads. The surface properties were further used to calculate the interactions of the proteins to chromatographic supports. The calculated secondary energy minimum of the proteins with the chromatographic materials (from the contact angle values determined through both methods can be correlated with the retention volumes from the real chromatography. The secondary energy minimum values are higher for each protein to the chromatographic materials calculated from the inputs derived through sessile drop method compared to CPM. For instance, immunoglobulin G has secondary energy minimum value of 0.17 kT compared to 0.11 kT, obtained through sessile drop method and CPM, respectively. Average relative values of the energy minimum calculated for all proteins are as 1.51 kT and 1.29 kT for Toyopearl Butyl 650C and Toyopearl Phenyl 650C, respectively, as a conversion factor for estimation of secondary energy minimum for both methods.  相似文献   

16.
The linear gradient mode of chromatography is the most widely employed mode of operation in ion-exchange chromatographic separations. However, in recent years, the displacement mode has received considerable attention because of its promise of high throughput and high resolution. To enable a comparison of these two modes of chromatography, it is essential to identify the optimum operating conditions for each. We employed an iterative algorithm to carry out the necessary optimization. The Steric Mass Action model of ion-exchange chromatography is used in concert with the solid-film linear-driving force model to describe the chromatographic behavior of the solutes in these systems. The performances of displacement and gradient modes of chromatography are compared for different types of separation problems. It turns out that for "easy" separations, both the modes are equally effective. However, for challenging separations, the displacement mode is superior to the gradient mode. Our results shed significant light on the performance of gradient and displacement modes in protein ion-exchange systems.  相似文献   

17.
The major limitations associated with conventional packed bed chromatography for protein separation and purification can be overcome by using adsorptive microporous membranes as chromatographic media. Microporous membranes have advantages as support matrices in comparison to conventional bead supports because they are not compressible and they eliminate diffusion limitations. As a result, higher throughput and shorter processing times are possible using these membrane systems. In this paper, we review the current state of development in the area of attaching functionalized polymer brushes onto a microporous membrane to form a novel chromatographic medium for protein separation and purification. The functionalized polymer brushes were appended onto the pore surface of a microporous hollow-fiber membrane uniformly across the membrane thickness by radiation-induced graft polymerization and subsequent chemical modifications. We review various applications of this adsorptive membrane chromatography by focusing on polymer brushes bearing ion-exchange, hydrophobic and affinity groups. Proteins were captured in multilayers by the ion-exchange group-containing polymer brushes due to the formation of a three-dimensional space for protein binding via the electrostatic repulsion of the polymer brushes. In contrast, proteins were captured in a monolayer at most by the polymer brushes containing hydrophobic or affinity ligands. By permeating a protein solution through the pores rimmed by the polymer brushes, an ideal capturing rate of the proteins with a negligible diffusional mass-transfer resistance was achieved by the functionalized polymer brushes, based on ion-exchange, hydrophobic, and affinity interactions.  相似文献   

18.
In the last years, chromatographic supports with amino acids as immobilized ligands (AAILs) were been used successfully for isolation of several biomolecules, such as proteins. In this context and based on specific properties of human soluble cathecol-O-methyltransferase (hSCOMT), we screened and analyzed the effect of experimental conditions, such as pH and ionic strength manipulation for hSCOMT adsorption, over six different AAIL commercial supports. Typically, the proteins adsorption on AAIL chromatographic supports is around their pI. While hSCOMT isoelectric point is around 5.5, this parameter leads us to design new adsorption strategies with several acid buffers for the chromatographic process. In terms of the ionic strength manipulation strategy, the results suggest that the AAILs-hSCOMT interaction is strongly affected by the intrinsic hSCOMT hydrophobic domains. On the other hand, the interaction mechanism of hSCOMT on amino acid resins appears to be highly dependent on the binding pH. Consequently the retention mechanism of the target enzyme on the AAILs can be as either in typical hydrophobic or ionic chromatographic supports, so long as selecting various mobile phases and separation conditions. In spite of these mixed-mode interactions and operation strategies, the elution of interferent's proteins from recombinant host can be achieved only with suitable adjusts in pH mobile phase set point. This lead to a new approach in biochromatographic COMT retention, while possess a higher specificity than other chromatographic methods reported in literature.  相似文献   

19.
Membranes from stably transfected cell lines that express two point mutations of the human organic cation transporter-1 (hOCT1), R488 M and G465R, have been immobilized on the immobilized artificial membrane (IAM) liquid chromatographic stationary phase to form two cellular membrane affinity chromatography (CMAC) columns, CMAC(hOCT1G465R) and CMAC(hOCT1R488M). Columns were created using both stationary phases, and frontal displacement chromatography experiments were conducted using [3H] MMP+ (1-methyl-4-phenylpyridinium) as the marker ligand and various displacers, including the single enantiomers of verapamil, fenoterol, and isoproterenol. The chromatographic data obtained were used to refine a previously developed pharmacophore for hOCT1.  相似文献   

20.
The separation of peptides and proteins by reverse-phase high-performance liquid chromatography with cyanopropylsilyl and large-pore propylsilyl supports, together with aqueous trifluoroacetic acid/acetonitrile gradients, was studied. Operating parameters (trifluoroacetic acid concentration, flow rate, and gradient slope) were evaluated using different enzymatic digests of horse cytochrome c and bovine serum albumin. Peptides ranging in size from five amino acids to 68 kDa could be separated on the propylsilyl column in a single chromatographic run. The cyanopropylsilyl column is suitable as a supplement to the use of the large-pore column for medium size (5-20 amino acids) peptides. The chromatographic supports and conditions presented here offer a simple, sensitive, and rapid separation system for a wide size range of peptides and proteins. They extend the versatility of separation methodology for these molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号