首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Three toxins (CM-8, CM-11, and CM-13a) were purified from the venom of Naja haje annulifera by gel filtration on Sephadex G-50 and by ion-exchange chromatography on CM-cellulose. Whereas toxin CM-8 and CM-11 comprise 60 amino acid residues, toxin CM-13a contains 61 residues. All three toxins are cross-linked by four intrachain disulphide bridges. The complete amino acid sequences of these toxins have been elucidated. The reduced and S-carboxymethylated toxins were digested with trypsin and chymotrypsin and the peptides purified by ion-exchange chromatography, gel filtration and chromatography or electrophoresis on paper. The Edman procedure, either through the use of the automatic sequencer or by manual manipulation, was employed to obtain the sequence of the intact toxins and the pure peptides. The chymotryptic digests provided the necessary overlapping peptides which allowed the alignment of the tryptic peptides. The properties of the three toxins were compared with those of the cytotoxin group. The toxicities the serological properties, the sequences and the invariant amino acid residues of toxin CM-8 and CM-11 resemble the corresponding properties of the cytotoxin group. The sequence and serological properties of toxin CM-13a show that it is related to the cytotoxin group, but its toxicity is much lower than those encountered in the cytotoxin group.  相似文献   

2.
Three toxins (CM-2e, CM-4a and CM-7) were purified from the venom of Naja haje annulifera by gel filtration on Sephadex and by ion-exchange chromatography on CM-cellulose. They comprise 60 amino acid residues and are cross-linked by four intrachain disulphide bridges. The complete amino acid sequences of the three toxins have been elucidated. The toxicities, the serological properties, the sequences and the invariant amino acid residues of toxin CM-2e, CM-4a and CM-7 resemble the corresponding properties of the cytotoxin group.  相似文献   

3.
Three polypeptides, M10, M14 and M9, toxic to mammals were isolated from the venom of the Central Asian scorpion Buthus eupeus. All the toxins were shown to be homogeneous according to disc-electrophoresis and N-terminal group analyses. The toxin M9 was digested with trypsin, Staphylococcus aureus proteinase and cleaved with BNPS-skatole. The toxin M14 was subjected to tryptic and chymotryptic hydrolyses. The complete amino acid sequences of the toxins M9 and M14 were established and it was shown that each of them consists of 66 amino acid residues with four intramolecular disulfide bonds.  相似文献   

4.
From the venom of a population of the sea snake Laticauda colubrina from the Solomon Islands, a neurotoxic component, Laticauda colubrina a (toxin Lc a), was isolated in 16.6% (A280) yield. Similarly, from the venom of a population of L. colubrina from the Philippines, a neurotoxic component, Laticauda colubrina b (toxin Lc b), was obtained in 10.0% (A280) yield. The LD50 values of these toxins were 0.12 microgram/g body wt. on intramuscular injection in mice. Toxins Lc a and Lc b were each composed of molecules containing 69 amino acid residues with eight half-cystine residues. The complete amino acid sequences of these two toxins were elucidated. Toxins Lc a and Lc b are different from each other at five positions of their sequences, namely at positions 31 (Phe/Ser), 32 (Leu/Ile), 33 (Lys/Arg), 50 (Pro/Arg) and 53 (Asp/His) (residues in parentheses give the residues in toxins Lc a and Lc b respectively). Toxins Lc a and Lc b have a novel structure in that they have only four disulphide bridges, although the whole amino acid sequences are homologous to those of other known long-chain neurotoxins. It is remarkable that toxins Lc a and Lc b are not coexistent at the detection error of 6% of the other toxin. Populations of Laticauda colubrina from the Solomon Islands and from the Philippines have either toxin Lc a or toxin Lc b and not both of them.  相似文献   

5.
A mass spectrometric method was applied to the B subunit of Vibrio cholerae classical biotype Inaba 569B toxin to determine its amino acid sequence and to confirm the differences in the amino acid sequences predicted from the nucleotide sequences of the genes of El Tor biotype strains 62746 and 2125 toxins. In this method, the Staphylococcus aureus protease V8 digest of the CNBr-treated B subunit of the classical biotype toxin was examined directly by fast-atom-bombardment mass spectrometry without separation of individual peptides. The values of molecular ion signals observed in the mass spectra were compared with the amino acid sequences of the classical biotype and El Tor biotype toxins. All the observed mass values coincided with those calculated from the published sequences of the B subunit except those of the sequences at positions 12-29 and 69-79. Peptides with these sequences were isolated by high-performance liquid chromatography and analyzed by Edman degradation or by combination of mass spectrometry and enzymatic degradation. The results revealed that the amino acid residues at positions 22 and 70 were Asp instead of Asn in the published sequences of classical biotype toxin. It was also found that Asn at position 44 was partially deaminated to Asp. The amino acid sequence of the classical biotype toxin was found to be different only at positions 18 (His----Tyr), 47 (Thr----Ile) and 54 (Gly----Ser) from that of El Tor biotype toxins.  相似文献   

6.
The amino acid sequences of insect-selective scorpion toxins, purified from the venom of Leiurus quinquestriatus quinquestriatus, have been determined by automatic phenyl isothiocyanate degradation of the S-carboxymethylated proteins and derived proteolytic peptides. The excitatory toxin Lqq IT1 and Lqq IT1' (70 residues) show the shift of one half-cystine from an external position, which is characteristic of anti-mammal toxins, to an internal sequence position. Lqq IT2 (61 residues) displays the half-cystine residue in position 12, common to the sequence of all known anti-mammal toxins; it induces flaccid paralysis on insects but is non-toxic for the mouse. Lqq IT2 structurally defines a new type of anti-insect toxins from scorpion venoms. CD spectra and immunological data are in agreement with this finding.  相似文献   

7.
The complete amino acid sequence of an important toxin (toxin 14) from the venom of a Vietnamese scorpion (Buthus occitanus sp.) has been determined, which includes 35 amino acid residues and three disulfide bridges (molecular weight, 3843 Da). The comparison of the sequence with sequences of short scorpion toxins led us to conclude that toxin 14 belongs to a novel group of toxins affecting the excitability of myelinated nerves.  相似文献   

8.
A new series of polypeptide presynaptic antagonists ("omega-agatoxins") was purified from venom of the funnel web spider Agelenopsis aperta. Physiological data indicate that all of these peptides are antagonists of voltage-sensitive calcium channels. Although all three omega-agatoxins (Aga) described here (omega-Aga-IA, omega-Aga-IB, and omega-Aga-IIA) block insect neuromuscular transmission presynaptically, biochemical data permit their subclassification as Type I and Type II toxins. Type I toxins (omega-Aga-IA and -IB) are 7.5 kDa, have closely related amino acid sequences, and exhibit characteristic tryptophan-like UV absorbance spectra. Complete Edman sequencing of omega-Aga-IA reveals it to be a 66-amino acid polypeptide containing 9 cysteines and 5 tryptophan residues. omega-Aga-IIA, a Type II toxin, is 11 kDa, shows limited amino acid sequence similarity to the Type I toxins, and exhibits mixed tryptophan- and tyrosine-like absorbance. Nanomolar concentrations of omega-Aga-IIA inhibit the specific binding of 125I-labeled omega-conotoxin GVIA to chick synaptosomal membranes while omega-Aga-IA and -IB have no effect under identical conditions. The omega-agatoxins thus are defined as two subtypes of neuronal calcium channel toxins with different structural characteristics and calcium channel binding specificities.  相似文献   

9.
Two toxins, which we propose to call toxins 2 and 3, were purified to homogeneity from the venom of the scorpion Centruroides noxius Hoffmann. The full primary structures of both peptides (66 amino acid residues each) was determined. Sequence comparison indicates that the two new toxins display 79% identity and present a high similarity to previously characterized Centruroides toxins, the most similar toxins being Centruroides suffusus toxin 2 and Centruroides limpidus tecomanus toxin 1. Six monoclonal antibodies (mAb) directed against purified fraction II-9.2 (which contains toxins 2 and 3) were isolated in order to carry out the immunochemical characterization of these toxins. mAb BCF2, BCF3, BCF7 and BCF9 reacted only with toxin 2, whereas BCF1 and BCF8 reacted with both toxins 2 and 3 with the same affinity. Simultaneous binding of mAb pairs to the toxin and cross-reactivity of the venoms of different scorpions with the mAb were examined. The results of these experiments showed that the mAb define four different epitopes (A-D). Epitope A (BCF8) is topographically unrelated to epitopes B (BCF2 and BCF7), C (BCF3) and D (BCF9) but the latter three appear to be more closely related or in close proximity to each other. Epitope A was found in all Centruroides venoms tested as well as on four different purified toxins of C. noxius, and thus seems to correspond to a highly conserved structure. Based on the cross-reactivity of their venoms with the mAb, Centruroides species could be classified in the following order: Centruroides elegans, Centruroides suffusus suffusus = Centruroides infamatus infamatus, Centruroides limpidus tecomanus, Centruroides limpidus limpidus, and Centruroides limpidus acatlanensis, according to increasing immunochemical relatedness of their toxins to those of Centruroides noxius. All six mAb inhibited the binding of toxin 2 to rat brain synaptosomal membranes, but only mAb BCF2, which belongs to the IgG2a subclass, displayed a clear neutralizing activity in vivo.  相似文献   

10.
A cytotoxic basic polypeptide, designated as cytotoxin IIa, was purified to homogeneous state from the venom of the Indian cobra (Naja naja) by a combination of gel filtration on Sephadex G-50, CM-cellulose chromatography, and fast protein liquid chromatography. Cytotoxin IIa is a single polypeptide consisting of 60 amino acid residues with four intramolecular disulfide linkages. The toxin showed high cytotoxicity toward Yoshida sarcoma and ascites hepatoma cells as did cytotoxins I and II isolated from the same venom. Analysis of the amino acid sequence revealed that cytotoxin I, IIa, and II are highly homologous in their primary structures and that cytotoxin IIa differs from cytotoxin I only in having Phe 25 and Val 52 in place of Tyr 25 and Glu 52 residues.  相似文献   

11.
A protein with M 7485 Da containing five disulfide bonds was isolated from the venom of cobra Naja oxiana using various types of liquid chromatography. The complete amino acid sequence of the protein was determined by protein chemistry methods, which permitted us to assign it to the group of weak toxins. This is the first weak toxin isolated from the venom of N. oxiana. In a similar way, two new toxins with M 7628 and 7559 Da, which fall into the range of weak toxin masses, were isolated from the venom of the cobra N. kaouthia. The characterization of these proteins using Edman degradation and MALDI mass spectrometry has shown that one of these proteins is a novel weak toxin, and the other is the known weak toxin WTX with an oxidized methionine residue in position 9. Such a modification was detected in weak toxins for the first time. A study of the biological activity of the toxin from N. oxiana showed that, like other weak toxins, it can be bound by α7 and muscle-type nicotinic acetylcholine receptors.  相似文献   

12.
Mollusc-specific toxins from the venom of Conus textile neovicarius.   总被引:3,自引:0,他引:3  
Three peptide toxins exhibiting strong paralytic activity to molluscs, but with no paralytic effects on arthropods or vertebrates, were purified from the venom of the molluscivorous snail Conus textile neovicarius from the Red Sea. The amino acid sequences of these mollusc specific toxins are: TxIA, WCKQSGEMCNLLDQNCCDGYCI-VLVCT (identical to the so called 'King Kong peptide'); TxIB, WCKQSGEMCNVLDQNCCDGYCIVFVCT; TxIIA, WGGYSTYC gamma VDS gamma CCSDNCVRSYCT (gamma = gamma-carboxyglutamate). There is a similarity of the Cys framework of these toxins to that of the omega-conotoxins; however, their net negative charges, high content of hydrophobic residues and uneven number of Cys residues in TxIIA, are highly unusual for conotoxins. When assayed on isolated cultured Aplysia neurons, all three toxins induced membrane depolarization and spontaneous repetitive firing. The TxI toxins also induce a marked prolongation of the action potential duration, which is sodium dependent. These effects differ significantly from the blocking activities of piscivorous venom conotoxins. These mollusc specific conotoxins may therefore serve as new and selective probes for ion-channel functions in molluscan neuronal systems.  相似文献   

13.
In Cnidarians, cnidoblast cells contain organelles called cnidocysts, which are believed to be the product of an extremely complex regulated secretory pathway. When matured, these stinging organelles are capable of storing and delivering toxins. We hypothesized that translated nematocyst proteins might comprise specific sequences serving as signals in sorting to the organelle. A sodium channel neurotoxin from the sea anemone Actinia equina was cloned and the toxin precursor sequence was compared to those of nematocyst collagens, pore-forming toxins and ion channel neurotoxins. It was found that all the analyzed sequences possess a highly conserved stretch of nine amino acid residues ending with Lys-Arg N-terminally of the mature region.  相似文献   

14.
Rho GTPases are the preferred targets of various bacterial cytotoxins, including Clostridium difficile toxins A and B, Clostridium sordellii lethal toxin, the cytotoxic necrotizing factors (CNF1) from Escherichia coli, and the dermonecrotizing toxin (DNT) from Bordetella species. The toxins inactivate or activate specific sets of Rho GTPases by mono-O-glucosylation and deamidation/transglutamination, respectively. Here we studied the structural basis of the recognition of RhoA, which is modified by toxin B, CNF1, and DNT, in comparison with RhoD, which is solely a substrate for lethal toxin. We found that a single amino acid residue in RhoA and RhoD defines the substrate specificity for toxin B and lethal toxin. Change of serine 73 to phenylalanine in RhoA turned RhoA into a substrate for lethal toxin. Accordingly, change of the equivalently positioned phenylalanine 85 in RhoD with serine allowed glucosylation by toxin B. Comparable results were achieved with the Rho-activating and transglutaminating enzymes CNF1 and DNT. Here, amino acid glutamate 64 of RhoA and the equivalent aspartate 76 of RhoD define substrate specificity for CNF1 and DNT, respectively. These data indicate that single amino acid residues located in the switch II region of Rho proteins determine enzyme specificity for diverse bacterial toxins.  相似文献   

15.
Sequence characterization of venom toxins from Thailand cobra   总被引:1,自引:0,他引:1  
Several toxins with distinct pharmacological properties were isolated from the venom of Thailand cobra (Naja naja siamensis) by cation-exchange chromatography. Two neurotoxins and one basic toxin with cardiotoxic activity were further purified and sequenced. The neurotoxins characterized were closely similar to the previously reported long- and short-chain neutrotoxins. The complete sequences of one minor neurotoxin and one cardiotoxin analogue were determined with the automatic protein sequencer in non-stop single runs of Edman degradation coupled with C-terminal sequence determination with carboxypeptidase digestion. The minor neurotoxin consists of 62 amino-acid residues with 8 cysteine residues and is found to be almost identical to cobrotoxin, a major toxic component of Formosa cobra (Naja naja atra). The sequence comparison of the 60-residue cardiotoxin with other reported cytotoxins of snake venoms indicates that 8 cysteine residues at the positions 3, 14, 21, 38, 42, 53, 54, and 59 are invariant among all sequences, with only two conservative changes at other positions along the sequence. The upshot of this report exemplified the facile sequence analysis of venom toxins by the application of pulsed-liquid phase protein sequencer and also revealed new analogues of a minor neurotoxin and one major cardiotoxin reported previously on the same species of Thailand cobra.  相似文献   

16.
Scorpion toxins specific for Na+-channels.   总被引:17,自引:0,他引:17  
Na+-channel specific scorpion toxins are peptides of 60-76 amino acid residues in length, tightly bound by four disulfide bridges. The complete amino acid sequence of 85 distinct peptides are presently known. For some toxins, the three-dimensional structure has been solved by X-ray diffraction and NMR spectroscopy. A constant structural motif has been found in all of them, consisting of one or two short segments of alpha-helix plus a triple-stranded beta-sheet, connected by variable regions forming loops (turns). Physiological experiments have shown that these toxins are modifiers of the gating mechanism of the Na+-channel function, affecting either the inactivation (alpha-toxins) or the activation (beta-toxins) kinetics of the channels. Many functional variations of these peptides have been demonstrated, which include not only the classical alpha- and beta-types, but also the species specificity of their action. There are peptides that bind or affect the function of Na+-channels from different species (mammals, insects or crustaceans) or are toxic to more than one group of animals. Based on functional and structural features of the known toxins, a classification containing 10 different groups of toxins is proposed in this review. Attempts have been made to correlate the presence of certain amino acid residues or 'active sites' of these peptides with Na+-channel functions. Segments containing positively charged residues in special locations, such as the five-residue turn, the turn between the second and the third beta-strands, the C-terminal residues and a segment of the N-terminal region from residues 2-11, seems to be implicated in the activity of these toxins. However, the uncertainty, and the limited success obtained in the search for the site through which these peptides bind to the channels, are mainly due to the lack of an easy method for expression of cloned genes to produce a well-folded, active peptide. Many scorpion toxin coding genes have been obtained from cDNA libraries and from polymerase chain reactions using fragments of scorpion DNAs, as templates. The presence of an intron at the DNA level, situated in the middle of the signal peptide, has been demonstrated.  相似文献   

17.
A major component (S2C4) was purified from Jameson's mamba by gel filtration on Sephadex G-50 and ion-exchange chromatography on CM-cellulose. Protein S2C4 comprises 62 amino acid residues including 8 half-cystine residues. The complete amino acid sequence of the protein has been established. The sequence and the invariant amino acid residues of protein S2C4 resemble a short neurotoxin, a long neurotoxin, a cytotoxin and an angusticeps type protein. However, the position of its four disulphide bridges differs from those encountered in a short neurotoxin or a cytotoxin. Mixtures of protein S2C4 and angusticeps type proteins revealed a marked synergistic effect, in that their toxicity in combination was greater than the sum of their individual toxicities.  相似文献   

18.
The potency of venom from Bracon hebetor against lepidopterous larvae has been known for over 40 years, but previous attempts to purify and characterize individual protein toxins have been largely unsuccessful. Three protein toxins were purified from venom of this small parasitic wasp and the amino acid sequences of 22–31 consecutive residues at the amino-terminus were determined. These relatively large toxins (apparent molecular mass 73 kDa) were labile under many isolation techniques, but anion-exchange chromatography allowed purification with retention of biological activity. Two purified toxins were quite insecticidal (LD50 < 0.3μg/g) when injected into six species of lepidopterous larvae. On a molar basis, one toxin (Brh-I) has the highest known biocidal activity against Heliothis virescens (LD50 = 2 pmol/g).  相似文献   

19.
A pool of synthetic oligonucleotides was used to identify the gene encoding tetanus toxin on a 75-kbp plasmid from a toxigenic non-sporulating strain of Clostridium tetani. The nucleotide sequence contained a single open reading frame coding for 1315 amino acids corresponding to a polypeptide with a mol. wt of 150,700. In the mature toxin molecule, proline (2) and serine (458) formed the N termini of the 52,288 mol. wt light chain and the 98,300 mol. wt heavy chain, respectively. Cysteine (467) was involved in the disulfide linkage between the two subchains. The amino acid sequences of the tetanus toxin revealed striking homologies with the partial amino acid sequences of botulinum toxins A, B, and E, indicating that the neurotoxins from C. tetani and C. botulinum are derived from a common ancestral gene. Overlapping peptides together covering the entire tetanus toxin molecule were synthesized in Escherichia coli and identified by monoclonal antibodies. The promoter of the toxin gene was localized in a region extending 322 bp upstream from the ATG codon and was shown to be functional in E. coli.  相似文献   

20.
Numerous toxins from scorpion venoms are much more toxic to insects than to other animal classes, and possess high affinity to Na+ channels. Many of them active on insects were purified from the venom of Buthus occitanus tunetanus. Using amino acid sequences of BotIT2 and RACE-PCR amplification (Rapid amplification of cDNA ends) technique, we isolated, identified and sequenced the nucleotide sequence from the venom glands of the scorpion Buthus occitanus tunetanus. The cDNA encodes a precursor of an insect toxin of 60 amino acid residues. The deduced nucleotide sequence toxin was identical to the determined amino acid sequence of BotIT2. BotIT2 is more similar to the excitatory toxins in its mode of action and to the depressant toxins in its primary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号